Skip to main content
Erschienen in: BMC Ophthalmology 1/2023

Open Access 01.12.2023 | Case Report

Secondary ocular hypertension due to tentorial dural arteriovenous fistula: a case report

verfasst von: Yao Ma, Kun Lv, Kangyi Yang, Huijuan Wu

Erschienen in: BMC Ophthalmology | Ausgabe 1/2023

Abstract

Background

Tentorial dural arteriovenous fistulas (TDAVFs) are abnormal shunts between meningeal arteries and the intradural venous system located in the tentorial dura mater, which typically manifest with haemorrhage or progressive neurological disorders. TDAVFs with pure ocular presentation have been rarely reported.

Case Presentations

The case of a 56-year-old man presented with unilateral eye redness, proptosis and elevated intraocular pressure was reported herein, which was caused by a TDAVF. The fistula was fed by the left posterior cerebral artery and posterior meningeal artery. The drainage was into the basal vein and internal cerebral veins, which led the arterial blood flow forward to the left superior ophthalmic vein directly. The redundant blood flow caused the rise of episcleral venous pressure, leading to the clinical presentations. Gamma knife radiosurgery was performed then considering the delicate vascular structure and its deep location. The corkscrew hyperaemia was gradually alleviated after the surgery, but the intraocular pressure remained elevated at follow-ups.

Conclusion

Dural arteriovenous fistulas which are not directly connected to cavernous sinus could cause ocular presentations like proptosis, eye redness and ocular hypertension.
Begleitmaterial
Hinweise

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12886-023-03124-8.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
AVM
Abnormal vascular malformations
CCF
Carotid cavernous fistulas
DAVF
Dural arteriovenous fistula
DSA
Digital subtraction angiography
EVP
Episcleral venous pressure
GKR
Gamma knife radiosurgery
IOP
Intraocular pressure
TDAVF
Tentorial dural arteriovenous fistula
MMA
Middle meningeal artery
MRA
Cranial magnetic resonance angiography
PMA
Posterior meningeal artery
TAO
Thyroid-associated ophthalmopathy

Background

Secondary ocular hypertension is a group of disorders in which the rise of intraocular pressure (IOP) is associated with the primary ocular or systemic diseases. Ocular hypertension due to elevated episcleral venous pressure (EVP) is relatively rare [1]. Patients with dural arteriovenous fistulas (DAVFs) primarily experience neurological symptoms [2]. Ocular manifestations are uncommon and mostly associated with DAVFs in cavernous sinus. Tentorial dural arteriovenous fistulas (TDAVFs) are DAVFs located in the tentorial dura mater, typically accompanied by intracerebral haemorrhage or progressive neurological deficit (97%) [3]. To our knowledge, there have been reported few cases of TDAVFs primarily presenting with unilateral proptosis and ocular hypertension.

Case presentations

A 56 years old male presented to our ophthalmology department with complaints of 9-month redness and proptosis in the left eye. No apparent visual impairment, distorted vision, or neurological symptoms were reported. The patient had no history of head or ocular trauma and had been diagnosed with Hashimoto’s thyroiditis for 5 years.
On examinations, visual acuity was 20/20 for both eyes, and the IOP was 12mmHg and 25mmHg in the right and left respectively. Non proptosis was noted in the left eye without lid retraction or eye movement restrictions. The exophthalmometer readings were 14 mm and 19mm for the right and left eye. Corkscrew hyperaemia with dilated scleral vessels was observed in the left eye (Figure 1A). Gonioscopy showed open angles in both anterior chambers and no obvious lesions were found in the optic disc or fundus vessels bilaterally. Visual fields examination showed no visual field loss and optical coherence tomography (OCT) indicated no optic nerve rim loss or notch, and no retinal nerve fiber layer defects. Normal extraocular muscles were shown by ultrasonography. Magnetic resonance imaging (MRI) of head and orbit indicated no space-occupying orbital abnormality.
Suspecting a secondary ocular hypertension caused by abnormal vascular malformations (AVMs), cranial magnetic resonance angiography (MRA) and diagnostic digital subtraction angiography (DSA) were further performed. MRA indicated a right embryonic posterior cerebral artery and an open left posterior communicating artery. DSA showed a TDAVF fed by the left posterior cerebral artery and posterior meningeal artery (PMA). The drainage of the malformed vascular structure was into the basal vein and internal cerebral veins, leading the arterial blood flow forward to the left superior ophthalmic vein (Figure 1B, video).
Endovascular surgery was considered of high risk due to the delicate nature of the vascular malformation and its deep location. Therefore, gamma knife radiosurgery (GKR) was performed with a dose of 32.7Gy at the center and 18Gy at the periphery. Carteolol hydrochloride and brimonidine tartrate eye drops were also prescribed for the left eye to lower IOP. The corkscrew hyperaemia was gradually alleviated after the surgery, but the IOP remained elevated. At the six-month follow-up, IOP in the left eye was 24mmHg, but there was still no evidence of visual field loss or retinal nerve fiber layer impairment.

Discussion and conclusions

The elevated IOP with an open angle could have been mistaken for primary open-angle glaucoma, but the corkscrew hyperaemia with dilated scleral vessels suggested the need to rule out intracranial AVMs. In addition, the history of Hashimoto’s thyroiditis also raised the possibility of thyroid-associated ophthalmopathy (TAO). According to previous study, TAO is generally associated with Graves’ disease and rarely with Hashimoto’s thyroiditis [4]. In approximately 40% of patients with TAO, systemic and ocular presentations have a simultaneous onset. The most common clinical sign is lid retraction (90%), followed by proptosis (60%) and eye movement restrictions (40%). However, it should be noted that researchers have postulated the enlargement of superior rectus muscle alone may cause reduced venous outflow through simple external compression and/or periphlebitis of the superior ophthalmic vein [5]. In the present case, the patient’s asymmetric proptosis might have been a source of confusion. However, no significant imaging findings indicated orbital congestion, increased fat volume, or enlarged extraocular muscles.
Common causes of ocular hypertension related to elevated EVP can be listed as followings: AVMs, venous obstruction (including retrobulbar tumor and thyroid-associated orbitopathy), superior vena cava syndrome and idiopathic dilated episcleral vessels. Among AVMs, DAVFs in cavernous sinus and carotid cavernous fistulas (CCF) were closely related to ocular manifestations [6]. Other types of AVMs with ophthalmic presentation have also been reported, such as DAVFs supplied by ascending pharyngeal artery, sphenoparietal DAVF, [7] and AVMs in the right parietal-occipital area [8]. DSA remains the gold standard for evaluating and detecting the detail of AVMs. In these cases, retrograde arteriovenous mixed blood eventually flows into superior ophthalmic vein through different indirect aberrant drainage pathways, resulting in unilateral eye redness, proptosis, recurrent headache, etc. In this case, the shunt was located in the tentorium cerebelli area without direct connections with the cavernous sinus. As shown by DSA, the abnormal vascular structure was fed by the left posterior cerebral artery and PMA (arising from the left vertebral artery), draining into the basal vein and internal cerebral veins. Then the left superior ophthalmic vein collected the redundant blood flow, leading to an increase in EVP and resulting in clinical presentations such as elevated IOP, proptosis and tortuously dilated scleral vessels.
Previous studies have shown that TDAVFs are mainly supplied by branches of the meningohypophyseal trunk, middle meningeal artery (MMA), PMA and occipital artery [9]. Besides, they frequently have angiographic features associated with hemorrhage, which could lead to severe neurological sequelae [10]. Ocular presentations of TDAVFs are uncommon, as they typically occur simultaneously with neurological symptoms and signs. Liang-Fu Zhou et al. recorded two TDAVFs with diplopia, headache, vertigo and ataxia. Goetz’s group also reported an unusual TDAVF case that a 38-year-old female with long-standing bilateral proptosis experienced sudden headache and visual disturbances [11]. Angiography revealed a DAVF supplied by a falx branch from the left vertebral artery and bilateral middle meningeal arteries, which drained directly into the dilated Galen vein through the cavernous sinus and the basal vein into bilateral superior ophthalmic veins. With a different drainage pattern from the case reported here, a 59-year-old man presented with unilateral progressive chemosis and exophthalmos reported by Naotsugu Toki turned out to be a TDAVF that was fed by the MMA and the meningohypophyseal artery, drained into the superior ophthalmic veins and the cerebellar cortical veins via an enlarged petrosal vein [12]. To our knowledge, there have been few reported cases of TDAVFs primarily presenting with unilateral proptosis and ocular hypertension.
Generally, endovascular approach is the first-line treatment for most DAVFs. Stereotactic radiosurgery and surgery remain alternative or even last salvage options, particularly when an endovascular treatment fails or is considered dangerous [13]. In this case, endovascular treatment may be of danger due to the delicate structure and surgically risky location, therefore radiosurgery could be a better option with high obliteration and low mortality rates [14]. The mechanisms of AVMs obliteration after radiosurgery involve progressive intimal thickening, thrombosis of irradiated vessels, and ultimately occlusion of the vascular lumen [15]. Pan et al. have reported a complete obliteration rate of 58% for TDAVFs treated with either radiosurgery exclusively or radiosurgery after failed surgery/embolization [16]. Complete occlusion can usually be obtained 2–5 years after treatment. Further follow-up is still needed to assess the outcome of the surgery.
In conclusion, DAVFs without direct connection to cavernous sinus can cause glaucomatous presentations. In clinical practice, ophthalmologists should take a consideration of intracranial disease when ophthalmic symptoms occur purely and targeted examinations are necessary for diagnosing this type of disease.

Acknowledgements

We’d like to thank the patient for his participation in this study. This work was supported by the Department of Ophthalmology, Peking University People’s Hospital, Beijing, China.

Declarations

This study complied with the principles of the Declaration of Helsinki and was approved by the Institutional Review Board of Peking University People’s Hospital (Beijing, China).
Informed consent was obtained from the patient for his case to be presented and discussed.

Competing interests

The authors declare that they have no competing interests.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Anhänge

Electronic supplementary material

Below is the link to the electronic supplementary material.
Literatur
1.
Zurück zum Zitat Shiau T, Armogan N, Yan DB, Thomson HG, Levin AV. The role of episcleral venous pressure in glaucoma associated with Sturge-Weber syndrome. J Aapos. 2012;16(1):61–4.CrossRefPubMed Shiau T, Armogan N, Yan DB, Thomson HG, Levin AV. The role of episcleral venous pressure in glaucoma associated with Sturge-Weber syndrome. J Aapos. 2012;16(1):61–4.CrossRefPubMed
2.
Zurück zum Zitat Elhammady MS, Ambekar S, Heros RC. Epidemiology, clinical presentation, diagnostic evaluation, and prognosis of cerebral dural arteriovenous fistulas. Handb Clin Neurol. 2017;143:99–105.CrossRefPubMed Elhammady MS, Ambekar S, Heros RC. Epidemiology, clinical presentation, diagnostic evaluation, and prognosis of cerebral dural arteriovenous fistulas. Handb Clin Neurol. 2017;143:99–105.CrossRefPubMed
3.
Zurück zum Zitat Zhou LF, Chen L, Song DL, Gu YX, Leng B. Tentorial dural arteriovenous fistulas. Surg Neurol. 2007;67(5):472–81. discussion 81 – 2.CrossRefPubMed Zhou LF, Chen L, Song DL, Gu YX, Leng B. Tentorial dural arteriovenous fistulas. Surg Neurol. 2007;67(5):472–81. discussion 81 – 2.CrossRefPubMed
4.
Zurück zum Zitat Bahn RS, Heufelder AE. Pathogenesis of Graves’ ophthalmopathy. N Engl J Med. 1993;329(20):1468–75.CrossRefPubMed Bahn RS, Heufelder AE. Pathogenesis of Graves’ ophthalmopathy. N Engl J Med. 1993;329(20):1468–75.CrossRefPubMed
5.
Zurück zum Zitat Loré F, Polito E, Cerase A, Bracco S, Loffredo A, Pichierri P, et al. Carotid cavernous fistula in a patient with Graves’ ophthalmopathy. J Clin Endocrinol Metab. 2003;88(8):3487–90.CrossRefPubMed Loré F, Polito E, Cerase A, Bracco S, Loffredo A, Pichierri P, et al. Carotid cavernous fistula in a patient with Graves’ ophthalmopathy. J Clin Endocrinol Metab. 2003;88(8):3487–90.CrossRefPubMed
6.
Zurück zum Zitat Ghorbani M, Asaadi S, Wipplinger C, Griessenauer CJ, Zangi-Abadi F, Mortazavi A. Dural arteriovenous fistulas with venous drainage patterns inducing ocular manifestations mimicking a carotid cavernous fistula: report of 2 cases. World Neurosurg. 2019;127:216–9.CrossRefPubMed Ghorbani M, Asaadi S, Wipplinger C, Griessenauer CJ, Zangi-Abadi F, Mortazavi A. Dural arteriovenous fistulas with venous drainage patterns inducing ocular manifestations mimicking a carotid cavernous fistula: report of 2 cases. World Neurosurg. 2019;127:216–9.CrossRefPubMed
7.
Zurück zum Zitat Baartman BJ, Bauer A, Hui F, Lystad L, Singh AD. Dural Arteriovenous Fistula presenting with purely Contralateral Ophthalmic Manifestations. Ocul Oncol Pathol. 2017;3(2):106–9.CrossRefPubMed Baartman BJ, Bauer A, Hui F, Lystad L, Singh AD. Dural Arteriovenous Fistula presenting with purely Contralateral Ophthalmic Manifestations. Ocul Oncol Pathol. 2017;3(2):106–9.CrossRefPubMed
8.
Zurück zum Zitat Shen S, Liu X, Chen J, Yang C, Shi C, Zhou Q. A cerebral arteriovenous malformation mistakenly diagnosed as dry eye and glaucoma: a case report. BMC Ophthalmol. 2019;19(1):148.CrossRefPubMedPubMedCentral Shen S, Liu X, Chen J, Yang C, Shi C, Zhou Q. A cerebral arteriovenous malformation mistakenly diagnosed as dry eye and glaucoma: a case report. BMC Ophthalmol. 2019;19(1):148.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Lewis AI, Tomsick TA, Tew JM. Jr. Management of tentorial dural arteriovenous malformations: transarterial embolization combined with stereotactic radiation or surgery. J Neurosurg. 1994;81(6):851–9.CrossRefPubMed Lewis AI, Tomsick TA, Tew JM. Jr. Management of tentorial dural arteriovenous malformations: transarterial embolization combined with stereotactic radiation or surgery. J Neurosurg. 1994;81(6):851–9.CrossRefPubMed
10.
Zurück zum Zitat Lawton MT, Sanchez-Mejia RO, Pham D, Tan J, Halbach VV. Tentorial dural arteriovenous fistulae: operative strategies and microsurgical results for six types. Neurosurgery. 2008;62(3 Suppl 1):110–24. discussion 24 – 5.PubMed Lawton MT, Sanchez-Mejia RO, Pham D, Tan J, Halbach VV. Tentorial dural arteriovenous fistulae: operative strategies and microsurgical results for six types. Neurosurgery. 2008;62(3 Suppl 1):110–24. discussion 24 – 5.PubMed
11.
Zurück zum Zitat Benndorf G, Schmidt S, Sollmann WP, Kroppenstedt SN. Tentorial dural arteriovenous fistula presenting with various visual symptoms related to anterior and posterior visual pathway dysfunction: case report. Neurosurgery. 2003;53(1):222–6. discussion 6–7.CrossRefPubMed Benndorf G, Schmidt S, Sollmann WP, Kroppenstedt SN. Tentorial dural arteriovenous fistula presenting with various visual symptoms related to anterior and posterior visual pathway dysfunction: case report. Neurosurgery. 2003;53(1):222–6. discussion 6–7.CrossRefPubMed
12.
Zurück zum Zitat Toki N, Masuo O, Nishibayashi H, Yako R, Kawaguchi T, Izawa D, et al. [Tentorial Dural Arteriovenous Fistula presenting with ocular symptoms:a Case Report]. No Shinkei Geka. 2018;46(3):219–25.PubMed Toki N, Masuo O, Nishibayashi H, Yako R, Kawaguchi T, Izawa D, et al. [Tentorial Dural Arteriovenous Fistula presenting with ocular symptoms:a Case Report]. No Shinkei Geka. 2018;46(3):219–25.PubMed
13.
Zurück zum Zitat Baharvahdat H, Ooi YC, Kim WJ, Mowla A, Coon AL, Colby GP. Updates in the management of cranial dural arteriovenous fistula. Stroke Vasc Neurol. 2020;5(1):50–8.CrossRefPubMed Baharvahdat H, Ooi YC, Kim WJ, Mowla A, Coon AL, Colby GP. Updates in the management of cranial dural arteriovenous fistula. Stroke Vasc Neurol. 2020;5(1):50–8.CrossRefPubMed
14.
Zurück zum Zitat Arslan I, Tezcanli E, Yilmaz M, Cizmeli O, Sengoz M, Peker S. Gamma Knife Radiosurgery for Arteriovenous Malformations: clinical series of 199 patients. Turk Neurosurg. 2017;27(2):301–8.PubMed Arslan I, Tezcanli E, Yilmaz M, Cizmeli O, Sengoz M, Peker S. Gamma Knife Radiosurgery for Arteriovenous Malformations: clinical series of 199 patients. Turk Neurosurg. 2017;27(2):301–8.PubMed
15.
Zurück zum Zitat Huo X, Jiang Y, Lv X, Yang H, Zhao Y, Li Y. Gamma Knife surgical treatment for partially embolized cerebral arteriovenous malformations. J Neurosurg. 2016;124(3):767–76.CrossRefPubMed Huo X, Jiang Y, Lv X, Yang H, Zhao Y, Li Y. Gamma Knife surgical treatment for partially embolized cerebral arteriovenous malformations. J Neurosurg. 2016;124(3):767–76.CrossRefPubMed
16.
Zurück zum Zitat Pan DH, Chung WY, Guo WY, Wu HM, Liu KD, Shiau CY, et al. Stereotactic radiosurgery for the treatment of dural arteriovenous fistulas involving the transverse-sigmoid sinus. J Neurosurg. 2002;96(5):823–9.CrossRefPubMed Pan DH, Chung WY, Guo WY, Wu HM, Liu KD, Shiau CY, et al. Stereotactic radiosurgery for the treatment of dural arteriovenous fistulas involving the transverse-sigmoid sinus. J Neurosurg. 2002;96(5):823–9.CrossRefPubMed
Metadaten
Titel
Secondary ocular hypertension due to tentorial dural arteriovenous fistula: a case report
verfasst von
Yao Ma
Kun Lv
Kangyi Yang
Huijuan Wu
Publikationsdatum
01.12.2023
Verlag
BioMed Central
Erschienen in
BMC Ophthalmology / Ausgabe 1/2023
Elektronische ISSN: 1471-2415
DOI
https://doi.org/10.1186/s12886-023-03124-8

Weitere Artikel der Ausgabe 1/2023

BMC Ophthalmology 1/2023 Zur Ausgabe

Neu im Fachgebiet Augenheilkunde

Metastase in der periokulären Region

Metastasen Leitthema

Orbitale und periokuläre metastatische Tumoren galten früher als sehr selten. Aber mit der ständigen Aktualisierung von Medikamenten und Nachweismethoden für die Krebsbehandlung werden neue Chemotherapien und Strahlenbehandlungen eingesetzt. Die …

Staging und Systemtherapie bei okulären und periokulären Metastasen

Metastasen Leitthema

Metastasen bösartiger Erkrankungen sind die häufigsten Tumoren, die im Auge diagnostiziert werden. Sie treten bei ungefähr 5–10 % der Patienten mit soliden Tumoren im Verlauf der Erkrankung auf. Besonders häufig sind diese beim Mammakarzinom und …

Wundheilung nach Trabekulektomie

Trabekulektomie CME-Artikel

Die überschießende Wundheilung in der filtrierenden Glaukomchirurgie ist ein zentraler Faktor für ein operatives Versagen. Nach der Einführung der Trabekulektomie in den 1960er-Jahren wurden viele Faktoren erkannt, die mit einer vermehrten …

„standard operating procedures“ (SOP) – Vorschlag zum therapeutischen Management bei periokulären sowie intraokulären Metastasen

Metastasen Leitthema

Peri- sowie intraokuläre Metastasen sind insgesamt gesehen selten und meist Zeichen einer fortgeschrittenen primären Tumorerkrankung. Die Therapie ist daher zumeist palliativ und selten kurativ. Zudem ist die Therapiefindung sehr individuell. Die …

Update Augenheilkunde

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.