Skip to main content
Erschienen in: Clinical Hypertension 1/2023

Open Access 01.12.2023 | Research

The association between carbon and nitrogen stable isotope ratios of human hair and hypertension

verfasst von: Song Vogue Ahn, Jong-Ku Park

Erschienen in: Clinical Hypertension | Ausgabe 1/2023

Abstract

Background

The relationship between stable isotope ratios and dietary protein sources has been reported. However, few studies have examined the effect of stable isotope ratios on metabolic risk in humans. We investigated whether the stable isotope ratios of carbon and nitrogen in human hair are associated with blood pressure and hypertension.

Methods

We conducted a cross-sectional study of 392 subjects (228 men and 164 women). Hair samples of the subjects were used for the measurement of stable isotope ratios of carbon (δ13C) and nitrogen (δ15N).

Results

The δ13C and δ15N values showed positive correlations with diastolic blood pressure in the subjects without antihypertensive medication. In the subjects without antihypertensive medication, the multivariable-adjusted odds ratio (95% confidence interval) for hypertension was 1.55 (1.04–2.30) per 1‰ increase in δ15N and 1.22 (0.86–1.73) per 1‰ increase in δ13C, respectively. However, in the subjects with antihypertensive medication, neither δ13C nor δ15N values showed a significant association with hypertension.

Conclusions

The stable isotopic ratio of nitrogen in scalp hair is independently associated with hypertension in subjects without antihypertensive medication. The hair δ15N value might be used as a surrogate marker to screen a high-risk population for hypertension.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
Anti-HTN
Antihypertensive
BP
Blood pressure
CI
Confidence interval
DBP
Diastolic blood pressure
HDL
High-density lipoprotein
HOMA-IR
Homeostasis model assessment of insulin resistance
HTN 1
Hypertension grade 1
HTN 2
Hypertension grade 2
KSH
Korean Society of Hypertension
OR
Odds ratio
PDB
Pee Dee Belemnite
SBP
Systolic blood pressure

Background

Hypertension is a major public health issue and is one of the most significant risk factors for cardiovascular disease, cerebrovascular accidents, and chronic kidney disease [14]. It has been found that prevention and control of hypertension could substantially reduce the risk for cardiovascular disease [5], and dietary and lifestyle factors play an important role in the development and management of hypertension [6].
In ecological and archeology investigations, stable isotope ratios have been utilized to provide quantitative information on food intake in animal and human bodies and the cycle of materials [7]. As animal and human body proteins reflect their dietary history, analysis of stable isotopes could determine the sources of foods and materials [8]. Carbon (13C/12C, δ13C) and nitrogen (15N/14N, δ15N) stable isotope ratios have lately been suggested as possible indicators for food intake and nutritional health [911]. It has been reported that those who consume more animal protein have higher δ13C and δ15N levels in scalp hair [1114]. Although diet is a significant risk factor for hypertension and metabolic diseases [6, 15, 16], little is known regarding the relationship between stable isotope ratios and metabolic risk in humans. Results of recent studies have suggested the possible association of nitrogen stable isotope ratios with metabolic syndrome and serum leptin levels [17, 18].
Biomarkers may be beneficial in detecting and predicting the risk of chronic illnesses including hypertension, diabetes, and metabolic syndrome [1921]. Despite the high prevalence of hypertension and its potential complications, the ability of carbon and nitrogen stable isotope ratios to function as biomarkers of high blood pressure is poorly understood. Thus, we investigated whether the ratios of carbon and nitrogen stable isotopes in human hair are associated with blood pressure and hypertension.

Methods

Study subjects

We conducted a cross-sectional study of stable isotopic analysis with 399 subjects (233 men and 166 women), which is an ancillary study of the community-based cohort study [17, 19]. Hair samples of study subjects were collected for the measurement of carbon and nitrogen stable isotope ratios. We excluded seven subjects with incomplete data and then included 392 subjects (228 men and 164 women) for the data analyses. The study protocol was approved by the Institutional Review Board of Yonsei University Wonju College of Medicine and was in compliance with the Declaration of Helsinki. Written informed consent was obtained from each study subject.

Data collection

Medical and family history, lifestyle factors, dietary intake, and physical examinations were all collected using comprehensive questionnaires and completed according to standardized procedures [19]. Subjects’ blood pressures were measured after they had rested for at least 5 minutes in a quiet environment using a standard sphygmomanometer. An appropriate-sized cuff was wrapped around the upper right arm at heart level while subjects were sitting. Two measurements were taken with at least 5-minute intervals between them, and the mean of the two measurements of blood pressure was used for the analysis. Based on the 2018 Korean Society of Hypertension guidelines, hypertension was defined as systolic blood pressure ≥ 140 mmHg or diastolic blood pressure ≥ 90 mmHg [22]. Weights, heights, and waist circumferences were measured while subjects wore light indoor attire with no shoes. Smoking status, alcohol consumption, physical activity, and exercise were assessed based on self-report. A semiquantitative food frequency questionnaire designed for Korean adults was used to examine dietary intake [23], and nutrient consumption was estimated using the nutrient database. After fasting for 12 hours, subjects’ venous blood samples were taken. Fasting blood glucose was measured using a glucose oxidase-based assay, and the blood levels of high-density lipoprotein (HDL) cholesterol and triglyceride were determined using enzyme methods (ADVIA 1800; Siemens Healthcare Diagnostics, Tarrytown, NY, USA). Insulin resistance was estimated using the homeostasis model assessment of insulin resistance (HOMA-IR) method with the following formula: fasting insulin (μIU/mL) × fasting blood glucose (mg/dL) / 405 [24].

Stable isotopic analysis

Hair samples were taken by being cut from the subject’s crown and as close to the scalp as feasible. A standard process was used to prepare the hair samples [7, 25]. Hairs were cleaned twice by soaking in a 2:1 mixture of methanol and chloroform for 30 minutes to remove lipids and hair product residues, then rinsed in distilled water for 15 minutes. Hair samples were wrapped in aluminum foil and cut into 15-mm sections, then vacuum-dried overnight to eliminate moisture. Carbon and nitrogen isotopes were analyzed using an isotope-ratio mass spectrometer (GV IsoPrime, Manchester, UK) connected to an elemental analyzer (EuroEA3000 series; Eurovector, Milano, Italy) at the Korea Basic Science Institute. The Dumas principle was used to operate the elemental analyzer, which involves dynamic flash combustion followed by gas chromatography column separation of the gaseous species produced [26]. Isotopic ratios are expressed in delta (δ) notation in parts per thousand (‰) relative to the accepted international standards: Vienna Pee Dee Belemnite for carbon isotopes and atmospheric air for nitrogen isotopes. The ratio is expressed as δ (‰) = [(Rx / Rs) − 1] × 1000, where Rx is the 13C/12C or 15N/14N isotopic ratio of the sample, and Rs is the 13C/12C or 15N/14N isotopic ratio of the standard. The analytical precision was ±0.2‰ for δ13C and ± 0.3‰ for δ15N, respectively.

Statistical analysis

We examined the distribution and normality of data and performed one-way analyses of variance, Kruskal-Wallis tests, or chi-square tests to compare differences in the profiles of study subjects. Pearson’s or Spearman’s correlation coefficients were calculated to test the correlation between δ13C or δ15N values and other variables. We used multivariable logistic regression models to evaluate the independent association of δ13C or δ15N values with hypertension. Five logistic regression models were used, each with a different degree of confounder adjustment. In model 1, we adjusted for age and sex. In model 2, we additionally adjusted for total energy intake and dietary sodium intake. In model 3, we additionally adjusted for fasting blood glucose, HDL cholesterol, and triglyceride. In model 4, we additionally adjusted for smoking status, alcohol consumption, and regular exercise. In model 5, we additionally adjusted for waist circumference. Further, we assessed the association of δ13C or δ15N values with hypertension stratified by antihypertensive medication. SAS ver. 9.4 (SAS Institute Inc., Cary, NC, USA) was used for all statistical analyses. All comparisons were considered statistically significant if the P-value was less than 0.05.

Results

A total of 175 subjects had hypertension in 392 study subjects. Of the 175 hypertensive subjects, 45.1% were taking antihypertensive medications. Table 1 shows the profiles of the study subjects. Age, body mass index, waist circumference, fasting blood glucose, HOMA-IR, triglyceride, and the proportion of lipid-lowering medication were the highest, and total cholesterol and HDL cholesterol were the lowest in the hypertensive subjects with antihypertensive medication.
Table 1
Characteristics of study subjects
Characteristic
Non-hypertensive subjects
Hypertensive subjects with antihypertensive medication
Hypertensive subjects without antihypertensive medication
P-valuea)
Number
217
79
96
Age (yr)
60.7 ± 8.6
63.6 ± 7.3
62.1 ± 7.6
0.015
Male sex
120 (55.3)
51 (64.6)
57 (59.4)
0.018
δ13C, ‰ vs. PDB
−20.4 ± 0.9
−20.6 ± 0.9
−20.3 ± 0.8
0.095
δ15N, ‰ vs. air
11.5 ± 0.8
11.6 ± 0.8
11.7 ± 0.8
0.075
Body mass index (kg/m2)
23.5 ± 3.1
25.2 ± 3.4
24.4 ± 3.2
< 0.001
Waist circumference (cm)
82.3 ± 8.4
87.1 ± 8.8
84.2 ± 7.7
< 0.001
Systolic blood pressure (mmHg)
119.7 ± 9.6
132.0 ± 15.4
144.1 ± 9.6
< 0.001
Diastolic blood pressure (mmHg)
74.6 ± 7.3
79.9 ± 9.8
88.8 ± 9.0
< 0.001
Fasting glucose (mg/dL)
97.7 ± 17.3
103.4 ± 16.2
97.4 ± 11.8
0.015
HOMA-IR (unit)
1.6 (1.2–2.1)
1.9 (1.5–3.0)
1.7 (1.3–2.1)
0.001
Total cholesterol (mg/dL)
184.3 ± 31.7
175.2 ± 31.5
188.3 ± 30.1
0.020
Triglyceride (mg/dL)
111 (78–150)
138 (109–217)
126 (95–167)
< 0.001
HDL cholesterol (mg/dL)
54.2 ± 11.3
50.4 ± 12.1
54.2 ± 14.1
0.046
Lipid-lowering medication
3 (1.38)
13 (16.5)
0
< 0.001
Total energy intake (kcal/day)
1671.1 ± 532.1
1658.3 ± 411.0
1701.4 ± 556.9
0.843
Sodium intake (mg/day)
2965.5 ± 1734.6
3070.6 ± 1984.5
3260.1 ± 1913.9
0.452
Current smoker
36 (16.6)
10 (12.7)
16 (16.7)
0.690
Alcohol drinker
105 (48.4)
49 (62.0)
54 (56.3)
0.089
Regular exercise
58 (26.7)
25 (31.6)
32 (33.3)
0.437
Data are presented as mean ± standard deviation, number (%), or median (25th–75th percentile)
PDB Pee Dee Belemnite, HOMA-IR Homeostasis model assessment of insulin resistance, HDL High-density lipoprotein
a)P-value from Kruskal-Wallis test
In all subjects, the δ13C values showed positive correlations with diastolic blood pressure (r = 0.119, P = 0.018), waist circumference (r = 0.150, P = 0.003), and total energy intake (r = 0.145, P = 0.004), and showed negative correlation with age (r = − 0.226, P < 0.001). The δ15N values showed positive correlations with diastolic blood pressure (r = 0.117, P = 0.021), body mass index (r = 0.207, P < 0.001), waist circumference (r = 0.316, P < 0.001), fasting glucose (r = 0.122, P = 0.015), and total energy intake (r = 0.168, P < 0.001), and showed negative correlations with age (r = − 0.123, P = 0.015) and HDL cholesterol (r = − 0.120, P = 0.018) in all subjects. In the subjects without antihypertensive medication, the δ13C values showed positive correlations with diastolic blood pressure (r = 0.157, P = 0.005), waist circumference (r = 0.165, P = 0.004), fasting glucose (r = 0.123, P = 0.030), and total energy intake (r = 0.141, P = 0.013), and showed negative correlation with age (r = − 0.231, P < 0.001). The δ15N values showed positive correlations with systolic blood pressure (r = 0.113, P = 0.045), diastolic blood pressure (r = 0.179, P = 0.001), body mass index (r = 0.174, P = 0.002), waist circumference (r = 0.295, P < 0.001), fasting glucose (r = 0.135, P = 0.017), and total energy intake (r = 0.191, P < 0.001), and showed negative correlation with age (r = − 0.166, P = 0.003) in the subjects without antihypertensive medication (Table 2).
Table 2
Correlations between δ13C, δ15N values and other variables
Variable
Correlation coefficients (P-value)
δ13C, ‰ vs. PDB
δ15N, ‰ vs. air
All subjects (n = 392)
 Systolic blood pressure (mmHg)
0.013 (0.799)
0.059 (0.247)
 Diastolic blood pressure (mmHg)
0.119 (0.018)
0.117 (0.021)
 Age (yr)
−0.226 (< 0.001)
− 0.123 (0.015)
 Body mass index (kg/m2)
0.063 (0.210)
0.207 (< 0.001)
 Waist circumference (cm)
0.150 (0.003)
0.316 (< 0.001)
 Fasting glucose (mg/dL)
0.037 (0.462)
0.122 (0.015)
 HOMA-IR (unit)
−0.033a) (0.519)
0.072a) (0.152)
 Total cholesterol (mg/dL)
0.021 (0.681)
0.016 (0.746)
 Triglyceride (mg/dL)
0.053a) (0.293)
0.031a) (0.536)
 HDL cholesterol (mg/dL)
0.045 (0.378)
−0.120 (0.018)
 Total energy intake (kcal/day)
0.145 (0.004)
0.168 (< 0.001)
 Sodium intake (mg/day)
0.003 (0.959)
−0.024 (0.642)
Subjects without antihypertensive medication (n = 313)
 Systolic blood pressure (mmHg)
0.042 (0.462)
0.113 (0.045)
 Diastolic blood pressure (mmHg)
0.157 (0.005)
0.179 (0.001)
 Age (yr)
−0.231 (< 0.001)
− 0.166 (0.003)
 Body mass index (kg/m2)
0.065 (0.252)
0.174 (0.002)
 Waist circumference (cm)
0.165 (0.004)
0.295 (< 0.001)
 Fasting glucose (mg/dL)
0.123 (0.030)
0.135 (0.017)
 HOMA-IR (unit)
−0.022a) (0.700)
0.080a) (0.160)
 Total cholesterol (mg/dL)
0.004 (0.937)
0.070 (0.220)
 Triglyceride (mg/dL)
0.114a) (0.043)
0.052a) (0.360)
 HDL cholesterol (mg/dL)
0.002 (0.966)
−0.096 (0.090)
 Total energy intake (kcal/day)
0.141 (0.013)
0.191 (< 0.001)
 Sodium intake (mg/day)
−0.065 (0.266)
−0.061 (0.298)
Data are presented as Pearson correlation coefficients (P-value)
a) Spearman rank correlation coefficients (P-value)
PDB Pee Dee Belemnite, HOMA-IR Homeostasis model assessment of insulin resistance, HDL High-density lipoprotein
The associations between δ13C or δ15N values and systolic and diastolic blood pressures were visualized by regression analyses (Fig. 1). The δ15N values showed positive correlations with both systolic blood pressure (R2 = 0.013, P = 0.045) and diastolic blood pressure (R2 = 0.032, P = 0.001). The δ13C values showed significant correlations with diastolic blood pressure (R2 = 0.025, P = 0.005). Furthermore, δ15N values progressively increased with the blood pressure classification of the Korean Society of Hypertension in the subjects without antihypertensive medication (P for trend =0.010) (Fig. 2) [22].
Table 3 shows odds ratios (ORs) for hypertension according to δ13C and δ15N tertiles in the subjects without antihypertensive medication. The ORs for hypertension comparing subjects in the highest to those in the lowest tertile of δ13C and δ15N values were 1.12 (95% confidence interval [CI], 0.54–2.29; P for trend = 0.769) and 2.19 (95% CI, 1.03–4.65; P for trend = 0.040), respectively, in multivariable models, adjusted for age, sex, total energy intake, dietary sodium intake, fasting blood glucose, triglyceride, HDL cholesterol, smoking, alcohol consumption, regular exercise, and waist circumference.
Table 3
Odds ratios for hypertension according to δ13C, δ15N tertiles in 313 subjects without antihypertensive medication
Variable
Odds ratio (95% confidence interval)
Terrtile 1
Terrtile 2
Terrtile 3
P for trend
per 1‰ increase
δ13C, ‰ vs. PDB
<−20.71
−20.71 to −19.99
≥ − 19.98
 Hypertension
40 (29.4)
44 (33.6)
41 (32.8)
  Model 1
1.00
0.98 (0.53–1.84)
1.21 (0.61–2.38)
0.583
1.24 (0.89–1.73)
  Model 2
1.00
0.98 (0.52–1.83)
1.20 (0.61–2.36)
0.602
1.24 (0.89–1.73)
  Model 3
1.00
0.94 (0.50–1.77)
1.17 (0.59–2.34)
0.643
1.23 (0.88–1.73)
  Model 4
1.00
0.94 (0.49–1.77)
1.10 (0.54–2.26)
0.788
1.22 (0.86–1.72)
  Model 5
1.00
0.93 (0.49–1.76)
1.12 (0.54–2.29)
0.769
1.22 (0.86–1.73)
δ15N, ‰ vs. air
< 11.18
11.18 to 11.85
≥11.86
 Hypertension
35 (27.6)
43 (33.3)
47 (34.6)
  Model 1
1.00
1.55 (0.81–2.95)
2.31 (1.13–4.74)
0.022
1.57 (1.08–2.28)
  Model 2
1.00
1.57 (0.82–3.00)
2.32 (1.13–4.76)
0.021
1.56 (1.07–2.28)
  Model 3
1.00
1.61 (0.84–3.11)
2.33 (1.12–4.85)
0.024
1.61 (1.10–2.37)
  Model 4
1.00
1.54 (0.79–3.01)
2.28 (1.09–4.80)
0.029
1.58 (1.07–2.33)
  Model 5
1.00
1.50 (0.77–2.94)
2.19 (1.03–4.65)
0.040
1.55 (1.04–2.30)
Model 1, adjusted for age, sex; Model 2, model 1 + additionally adjusted for total energy intake, dietary sodium intake; Model 3, model 2 + additionally adjusted for fasting glucose, triglyceride, high-density lipoprotein cholesterol; Model 4, model 3 + additionally adjusted for smoking, alcohol consumption, regular exercise; Model 5, model 4 + additionally adjusted for waist circumference; PDB, Pee Dee Belemnite
In all subjects, the corresponding OR (95% CI) per 1‰ increase in δ15N for hypertension was 1.17 (0.84–1.63) after adjusting for age, sex, total energy intake, dietary sodium intake, fasting blood glucose, triglyceride, HDL cholesterol, smoking, alcohol consumption, regular exercise, and waist circumference. When we divided subjects by antihypertensive medication, the positive association between a 1‰ increase in δ15N and hypertension was significant in subjects without antihypertensive medication (OR, 1.55; 95% CI, 1.04–2.30), whereas the association between a 1‰ increase in δ15N and hypertension was not significant in subjects with antihypertensive medication (OR, 0.53; 95% CI, 0.23–1.23). A 1‰ increase in δ13C was not associated with hypertension in all subjects and any subgroup of antihypertensive medication (Fig. 3).

Discussion

The nitrogen, but not carbon, stable isotopic ratio is independently associated with hypertension in the subjects without antihypertensive medication. Higher δ15N values of hair were associated with an increased risk of hypertension. However, in the subjects with antihypertensive medication, neither δ13C nor δ15N values showed a significant association with hypertension. This is the first research to explore the potential clinical implications of δ15N values in relation to hypertension.
Stable isotopic analysis of hair has been known as a noninvasive technology that provides a long-term reflection of food consumption [10]. Previous studies have found a positive correlation between animal protein intake and δ13C and δ15N values [13, 27]. Nitrogen stable isotope ratios are known to be nutritional indicators for dietary meat consumption [7, 13, 28], particularly red and processed meat, which might explain the association between δ15N values and hypertension. High amounts of meat intake have been associated with a higher risk of hypertension in previous studies [6, 29], which might have contributed to the link between δ15N and hypertension. A UK research reported that those who consumed more animal protein showed higher δ15N values than vegans, suggesting that nitrogen stable isotope ratios might be utilized as a nutritional biomarker for dietary meat consumption [7]. Higher nitrogen stable isotope ratios in the human body are attributed to the kinetic fractionation of nitrogen stable isotopes during the deamination and transamination of amino acids, which results in increased excretion of lighter nitrogen isotopes and enrichment of 15N in the body [12].
δ15N values might be also an indicator of other metabolic risk factors, such as heavy metals or persistent organic pollutants, which are known to be associated with hypertension [3032]. Bioaccumulation trends in the marine food chain are similar for nitrogen stable isotopes, heavy metals, and persistent organic contaminants [3335]. The nitrogen stable isotope ratio is reported to be correlated with mercury exposure [36], which could be associated with high blood pressure and hypertension [37]. Given that δ15N values were related to fish consumption, the δ15N values associated with fish consumption might be linked to heavy metals or persistent organic pollutants, perhaps contributing to the positive correlation of δ15N values with hypertension [38, 39]. More research is needed to understand the link between δ15N values and blood pressure.
In the present study, the association of δ15N values with hypertension was only found in the subjects not taking antihypertensive drugs, and no such association was observed in the subjects taking antihypertensive drugs. The use of antihypertensive drugs, which lower blood pressure, might alter the association between blood pressure levels and δ15N values. In addition, our findings might be attributed to the difference in lipid profiles between the subjects with and without antihypertensive medication. Dyslipidemia has been known to be associated with hypertension [40], and previous studies have reported that blood lipid profiles including total cholesterol, HDL cholesterol, LDL cholesterol, and triglyceride were higher in patients with uncontrolled hypertension compared to those with controlled hypertension [4143]. Those findings seem to be consistent with our results that blood levels of total cholesterol and HDL cholesterol were higher in the subjects without antihypertensive medication than in those with antihypertensive medication. Additionally, the proportion of lipid-lowering medication was higher in the subjects with antihypertensive medication than in those without antihypertensive medication.
Our findings showed that δ13C values of hair were not associated with hypertension. The proportion of C3 plants (e.g., rice, wheat, fruits, and vegetables) and C4 plants (e.g., cane and maize) in a person’s diet determines the carbon stable isotope ratios in the human body [12, 44], δ13C values might be employed as a biomarker for sugar-sweetened drinks containing C4 sugars [12, 44]. Dietary carbohydrate intake could be associated with the risk of hypertension [45], but δ13C values have been reported to show no significant correlation with carbohydrate intake in Korean diets [17]. The δ13C values also have been reported to be inversely associated with dietary fish intake and diabetes [28, 46]. The complicated and contradictory relationships of δ13C with various factors might explain the lack of association between δ13C and hypertension.
There are several limitations to this study that should be considered. First, the direction of a causal relationship between nitrogen stable isotope ratios and hypertension could not be established because this study has a cross-sectional design. Longitudinal studies may be necessary to clarify the direction of causation. Second, because this study only included elderly Koreans, the findings may be limited in their generalizability. Third, measurement error may exist, particularly due to random within-person variation although lifestyle factors and dietary intake were measured according to standardized procedures.

Conclusions

The stable isotopic ratio of nitrogen in scalp hair is independently associated with hypertension in subjects without antihypertensive medication. The hair δ15N value might be used as a surrogate marker to screen a high-risk population for hypertension. Further research is needed to fully comprehend the mechanism behind the association between stable isotope ratios and blood pressure.

Acknowledgements

Not applicable.

Declarations

This study was approved by the Institutional Review Board of Yonsei University Wonju College of Medicine and was in compliance with the Declaration of Helsinki. Written informed consent was obtained from each study subject.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Vasan RS, Larson MG, Leip EP, Evans JC, O'Donnell CJ, Kannel WB, et al. Impact of high-normal blood pressure on the risk of cardiovascular disease. N Engl J Med. 2001;345:1291–7.CrossRef Vasan RS, Larson MG, Leip EP, Evans JC, O'Donnell CJ, Kannel WB, et al. Impact of high-normal blood pressure on the risk of cardiovascular disease. N Engl J Med. 2001;345:1291–7.CrossRef
2.
Zurück zum Zitat Lewington S, Clarke R, Qizilbash N, Peto R, Collins R, Prospective Studies Collaboration. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet. 2002;360:1903–13.CrossRef Lewington S, Clarke R, Qizilbash N, Peto R, Collins R, Prospective Studies Collaboration. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet. 2002;360:1903–13.CrossRef
3.
Zurück zum Zitat D’Agostino RB Sr, Vasan RS, Pencina MJ, Wolf PA, Cobain M, Massaro JM, et al. General cardiovascular risk profile for use in primary care: the Framingham heart study. Circulation. 2008;117:743–53.CrossRef D’Agostino RB Sr, Vasan RS, Pencina MJ, Wolf PA, Cobain M, Massaro JM, et al. General cardiovascular risk profile for use in primary care: the Framingham heart study. Circulation. 2008;117:743–53.CrossRef
4.
Zurück zum Zitat Klag MJ, Whelton PK, Randall BL, Neaton JD, Brancati FL, Ford CE, et al. Blood pressure and end-stage renal disease in men. N Engl J Med. 1996;334:13–8.CrossRef Klag MJ, Whelton PK, Randall BL, Neaton JD, Brancati FL, Ford CE, et al. Blood pressure and end-stage renal disease in men. N Engl J Med. 1996;334:13–8.CrossRef
5.
Zurück zum Zitat Blood Pressure Lowering Treatment Trialists’ Collaboration, Turnbull F, Neal B, Ninomiya T, Algert C, Arima H, et al. Effects of different regimens to lower blood pressure on major cardiovascular events in older and younger adults: meta-analysis of randomised trials. BMJ. 2008;336:1121–3.CrossRef Blood Pressure Lowering Treatment Trialists’ Collaboration, Turnbull F, Neal B, Ninomiya T, Algert C, Arima H, et al. Effects of different regimens to lower blood pressure on major cardiovascular events in older and younger adults: meta-analysis of randomised trials. BMJ. 2008;336:1121–3.CrossRef
6.
Zurück zum Zitat Valenzuela PL, Carrera-Bastos P, Gálvez BG, Ruiz-Hurtado G, Ordovas JM, Ruilope LM, et al. Lifestyle interventions for the prevention and treatment of hypertension. Nat Rev Cardiol. 2021;18:251–75.CrossRef Valenzuela PL, Carrera-Bastos P, Gálvez BG, Ruiz-Hurtado G, Ordovas JM, Ruilope LM, et al. Lifestyle interventions for the prevention and treatment of hypertension. Nat Rev Cardiol. 2021;18:251–75.CrossRef
7.
Zurück zum Zitat O’Connell TC, Hedges RE. Investigations into the effect of diet on modern human hair isotopic values. Am J Phys Anthropol. 1999;108:409–25.CrossRef O’Connell TC, Hedges RE. Investigations into the effect of diet on modern human hair isotopic values. Am J Phys Anthropol. 1999;108:409–25.CrossRef
8.
Zurück zum Zitat Hermes TR, Frachetti MD, Bullion EA, Maksudov F, Mustafokulov S, Makarewicz CA. Urban and nomadic isotopic niches reveal dietary connectivities along Central Asia’s silk roads. Sci Rep. 2018;8:5177.CrossRef Hermes TR, Frachetti MD, Bullion EA, Maksudov F, Mustafokulov S, Makarewicz CA. Urban and nomadic isotopic niches reveal dietary connectivities along Central Asia’s silk roads. Sci Rep. 2018;8:5177.CrossRef
9.
Zurück zum Zitat Macko SA, Engel MH, Andrusevich V, Lubec G, O’Connell TC, Hedges RE. Documenting the diet in ancient human populations through stable isotope analysis of hair. Philos Trans R Soc Lond Ser B Biol Sci. 1999;354:65–76.CrossRef Macko SA, Engel MH, Andrusevich V, Lubec G, O’Connell TC, Hedges RE. Documenting the diet in ancient human populations through stable isotope analysis of hair. Philos Trans R Soc Lond Ser B Biol Sci. 1999;354:65–76.CrossRef
10.
Zurück zum Zitat Petzke KJ, Fuller BT, Metges CC. Advances in natural stable isotope ratio analysis of human hair to determine nutritional and metabolic status. Curr Opin Clin Nutr Metab Care. 2010;13:532–40.CrossRef Petzke KJ, Fuller BT, Metges CC. Advances in natural stable isotope ratio analysis of human hair to determine nutritional and metabolic status. Curr Opin Clin Nutr Metab Care. 2010;13:532–40.CrossRef
11.
Zurück zum Zitat Ehleringer JR, Covarrubias Avalos S, Tipple BJ, Valenzuela LO, Cerling TE. Stable isotopes in hair reveal dietary protein sources with links to socioeconomic status and health. Proc Natl Acad Sci U S A. 2020;117:20044–51.CrossRef Ehleringer JR, Covarrubias Avalos S, Tipple BJ, Valenzuela LO, Cerling TE. Stable isotopes in hair reveal dietary protein sources with links to socioeconomic status and health. Proc Natl Acad Sci U S A. 2020;117:20044–51.CrossRef
12.
Zurück zum Zitat Huelsemann F, Flenker U, Koehler K, Schaenzer W. Effect of a controlled dietary change on carbon and nitrogen stable isotope ratios of human hair. Rapid Commun Mass Spectrom. 2009;23:2448–54.CrossRef Huelsemann F, Flenker U, Koehler K, Schaenzer W. Effect of a controlled dietary change on carbon and nitrogen stable isotope ratios of human hair. Rapid Commun Mass Spectrom. 2009;23:2448–54.CrossRef
13.
Zurück zum Zitat Petzke KJ, Boeing H, Klaus S, Metges CC. Carbon and nitrogen stable isotopic composition of hair protein and amino acids can be used as biomarkers for animal-derived dietary protein intake in humans. J Nutr. 2005;135:1515–20.CrossRef Petzke KJ, Boeing H, Klaus S, Metges CC. Carbon and nitrogen stable isotopic composition of hair protein and amino acids can be used as biomarkers for animal-derived dietary protein intake in humans. J Nutr. 2005;135:1515–20.CrossRef
14.
Zurück zum Zitat Yeung EH, Saudek CD, Jahren AH, Kao WH, Islas M, Kraft R, et al. Evaluation of a novel isotope biomarker for dietary consumption of sweets. Am J Epidemiol. 2010;172:1045–52.CrossRef Yeung EH, Saudek CD, Jahren AH, Kao WH, Islas M, Kraft R, et al. Evaluation of a novel isotope biomarker for dietary consumption of sweets. Am J Epidemiol. 2010;172:1045–52.CrossRef
15.
Zurück zum Zitat Baxter AJ, Coyne T, McClintock C. Dietary patterns and metabolic syndrome: a review of epidemiologic evidence. Asia Pac J Clin Nutr. 2006;15:134–42. Baxter AJ, Coyne T, McClintock C. Dietary patterns and metabolic syndrome: a review of epidemiologic evidence. Asia Pac J Clin Nutr. 2006;15:134–42.
16.
Zurück zum Zitat Lutsey PL, Steffen LM, Stevens J. Dietary intake and the development of the metabolic syndrome: the atherosclerosis risk in communities study. Circulation. 2008;117:754–61.CrossRef Lutsey PL, Steffen LM, Stevens J. Dietary intake and the development of the metabolic syndrome: the atherosclerosis risk in communities study. Circulation. 2008;117:754–61.CrossRef
17.
Zurück zum Zitat Park JK, Ahn SV, Kim MK, Lee KS, Koh SB, Bong YS. The association between carbon and nitrogen stable isotope ratios of human hair and metabolic syndrome. Clin Chim Acta. 2015;450:72–7.CrossRef Park JK, Ahn SV, Kim MK, Lee KS, Koh SB, Bong YS. The association between carbon and nitrogen stable isotope ratios of human hair and metabolic syndrome. Clin Chim Acta. 2015;450:72–7.CrossRef
18.
Zurück zum Zitat Ahn SV, Koh SB, Lee KS, Bong YS, Park JK. Association between nitrogen stable isotope ratios in human hair and serum levels of leptin. Tohoku J Exp Med. 2017;243:133–9.CrossRef Ahn SV, Koh SB, Lee KS, Bong YS, Park JK. Association between nitrogen stable isotope ratios in human hair and serum levels of leptin. Tohoku J Exp Med. 2017;243:133–9.CrossRef
19.
Zurück zum Zitat Kim JY, Ahn SV, Yoon JH, Koh SB, Yoon J, Yoo BS, et al. Prospective study of serum adiponectin and incident metabolic syndrome: the ARIRANG study. Diabetes Care. 2013;36:1547–53.CrossRef Kim JY, Ahn SV, Yoon JH, Koh SB, Yoon J, Yoo BS, et al. Prospective study of serum adiponectin and incident metabolic syndrome: the ARIRANG study. Diabetes Care. 2013;36:1547–53.CrossRef
20.
Zurück zum Zitat Echouffo-Tcheugui JB, Dieffenbach SD, Kengne AP. Added value of novel circulating and genetic biomarkers in type 2 diabetes prediction: a systematic review. Diabetes Res Clin Pract. 2013;101:255–69.CrossRef Echouffo-Tcheugui JB, Dieffenbach SD, Kengne AP. Added value of novel circulating and genetic biomarkers in type 2 diabetes prediction: a systematic review. Diabetes Res Clin Pract. 2013;101:255–69.CrossRef
21.
Zurück zum Zitat Volpe M, Battistoni A, Tocci G, Rosei EA, Catapano AL, Coppo R, et al. Cardiovascular risk assessment beyond systemic coronary risk estimation: a role for organ damage markers. J Hypertens. 2012;30:1056–64.CrossRef Volpe M, Battistoni A, Tocci G, Rosei EA, Catapano AL, Coppo R, et al. Cardiovascular risk assessment beyond systemic coronary risk estimation: a role for organ damage markers. J Hypertens. 2012;30:1056–64.CrossRef
22.
Zurück zum Zitat Kim HC, Ihm SH, Kim GH, Kim JH, Kim KI, Lee HY, et al. 2018 Korean Society of Hypertension guidelines for the management of hypertension: part I-epidemiology of hypertension. Clin Hypertens. 2019;25:16.CrossRef Kim HC, Ihm SH, Kim GH, Kim JH, Kim KI, Lee HY, et al. 2018 Korean Society of Hypertension guidelines for the management of hypertension: part I-epidemiology of hypertension. Clin Hypertens. 2019;25:16.CrossRef
23.
Zurück zum Zitat Ahn Y, Kwon E, Shim JE, Park MK, Joo Y, Kimm K, et al. Validation and reproducibility of food frequency questionnaire for Korean genome epidemiologic study. Eur J Clin Nutr. 2007;61:1435–41.CrossRef Ahn Y, Kwon E, Shim JE, Park MK, Joo Y, Kimm K, et al. Validation and reproducibility of food frequency questionnaire for Korean genome epidemiologic study. Eur J Clin Nutr. 2007;61:1435–41.CrossRef
24.
Zurück zum Zitat Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–9.CrossRef Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–9.CrossRef
25.
Zurück zum Zitat Fuller BT, Fuller JL, Sage NE, Harris DA, O’Connell TC, Hedges RE. Nitrogen balance and delta15N: why you're not what you eat during nutritional stress. Rapid Commun Mass Spectrom. 2005;19:2497–506.CrossRef Fuller BT, Fuller JL, Sage NE, Harris DA, O’Connell TC, Hedges RE. Nitrogen balance and delta15N: why you're not what you eat during nutritional stress. Rapid Commun Mass Spectrom. 2005;19:2497–506.CrossRef
26.
Zurück zum Zitat Bong YS, Shin WJ, Lee AR, Kim YS, Kim K, Lee KS. Tracing the geographical origin of beefs being circulated in Korean markets based on stable isotopes. Rapid Commun Mass Spectrom. 2010;24:155–9.CrossRef Bong YS, Shin WJ, Lee AR, Kim YS, Kim K, Lee KS. Tracing the geographical origin of beefs being circulated in Korean markets based on stable isotopes. Rapid Commun Mass Spectrom. 2010;24:155–9.CrossRef
27.
Zurück zum Zitat Petzke KJ, Lemke S. Hair protein and amino acid 13C and 15N abundances take more than 4 weeks to clearly prove influences of animal protein intake in young women with a habitual daily protein consumption of more than 1 g per kg body weight. Rapid Commun Mass Spectrom. 2009;23:2411–20.CrossRef Petzke KJ, Lemke S. Hair protein and amino acid 13C and 15N abundances take more than 4 weeks to clearly prove influences of animal protein intake in young women with a habitual daily protein consumption of more than 1 g per kg body weight. Rapid Commun Mass Spectrom. 2009;23:2411–20.CrossRef
28.
Zurück zum Zitat Patel PS, Cooper AJ, O’Connell TC, Kuhnle GG, Kneale CK, Mulligan AM, et al. Serum carbon and nitrogen stable isotopes as potential biomarkers of dietary intake and their relation with incident type 2 diabetes: the EPIC-Norfolk study. Am J Clin Nutr. 2014;100:708–18.CrossRef Patel PS, Cooper AJ, O’Connell TC, Kuhnle GG, Kneale CK, Mulligan AM, et al. Serum carbon and nitrogen stable isotopes as potential biomarkers of dietary intake and their relation with incident type 2 diabetes: the EPIC-Norfolk study. Am J Clin Nutr. 2014;100:708–18.CrossRef
29.
Zurück zum Zitat Zhang Y, Zhang DZ. Red meat, poultry, and egg consumption with the risk of hypertension: a meta-analysis of prospective cohort studies. J Hum Hypertens. 2018;32:507–17.CrossRef Zhang Y, Zhang DZ. Red meat, poultry, and egg consumption with the risk of hypertension: a meta-analysis of prospective cohort studies. J Hum Hypertens. 2018;32:507–17.CrossRef
30.
Zurück zum Zitat Xu J, White AJ, Niehoff NM, O’Brien KM, Sandler DP. Airborne metals exposure and risk of hypertension in the sister study. Environ Res. 2020;191:110144.CrossRef Xu J, White AJ, Niehoff NM, O’Brien KM, Sandler DP. Airborne metals exposure and risk of hypertension in the sister study. Environ Res. 2020;191:110144.CrossRef
31.
Zurück zum Zitat Valera B, Jørgensen ME, Jeppesen C, Bjerregaard P. Exposure to persistent organic pollutants and risk of hypertension among Inuit from Greenland. Environ Res. 2013;122:65–73.CrossRef Valera B, Jørgensen ME, Jeppesen C, Bjerregaard P. Exposure to persistent organic pollutants and risk of hypertension among Inuit from Greenland. Environ Res. 2013;122:65–73.CrossRef
32.
Zurück zum Zitat Park SH, Lim JE, Park H, Jee SH. Body burden of persistent organic pollutants on hypertension: a meta-analysis. Environ Sci Pollut Res Int. 2016;23:14284–93.CrossRef Park SH, Lim JE, Park H, Jee SH. Body burden of persistent organic pollutants on hypertension: a meta-analysis. Environ Sci Pollut Res Int. 2016;23:14284–93.CrossRef
33.
Zurück zum Zitat Berntssen MH, Maage A, Julshamn K, Oeye BE, Lundebye AK. Carry-over of dietary organochlorine pesticides, PCDD/Fs, PCBs, and brominated flame retardants to Atlantic salmon (Salmo salar L.) fillets. Chemosphere. 2011;83:95–103.CrossRef Berntssen MH, Maage A, Julshamn K, Oeye BE, Lundebye AK. Carry-over of dietary organochlorine pesticides, PCDD/Fs, PCBs, and brominated flame retardants to Atlantic salmon (Salmo salar L.) fillets. Chemosphere. 2011;83:95–103.CrossRef
34.
Zurück zum Zitat Lee DH, Lee IK, Song K, Steffes M, Toscano W, Baker BA, et al. A strong dose-response relation between serum concentrations of persistent organic pollutants and diabetes: results from the National Health and examination survey 1999-2002. Diabetes Care. 2006;29:1638–44.CrossRef Lee DH, Lee IK, Song K, Steffes M, Toscano W, Baker BA, et al. A strong dose-response relation between serum concentrations of persistent organic pollutants and diabetes: results from the National Health and examination survey 1999-2002. Diabetes Care. 2006;29:1638–44.CrossRef
35.
Zurück zum Zitat Dempson JB, Braithwaite VA, Doherty D, Power M. Stable isotope analysis of marine feeding signatures of Atlantic salmon in the North Atlantic. ICES J Mar Sci. 2010;67:52–61.CrossRef Dempson JB, Braithwaite VA, Doherty D, Power M. Stable isotope analysis of marine feeding signatures of Atlantic salmon in the North Atlantic. ICES J Mar Sci. 2010;67:52–61.CrossRef
36.
Zurück zum Zitat Yoshinaga J, Suzuki T, Hongo T, Minagawa M, Ohtsuka R, Kawabe T, et al. Mercury concentration correlates with the nitrogen stable isotope ratio in the animal food of Papuans. Ecotoxicol Environ Saf. 1992;24:37–45.CrossRef Yoshinaga J, Suzuki T, Hongo T, Minagawa M, Ohtsuka R, Kawabe T, et al. Mercury concentration correlates with the nitrogen stable isotope ratio in the animal food of Papuans. Ecotoxicol Environ Saf. 1992;24:37–45.CrossRef
37.
Zurück zum Zitat Hu XF, Singh K, Chan HM. Mercury exposure, blood pressure, and hypertension: a systematic review and dose-response meta-analysis. Environ Health Perspect. 2018;126:076002.CrossRef Hu XF, Singh K, Chan HM. Mercury exposure, blood pressure, and hypertension: a systematic review and dose-response meta-analysis. Environ Health Perspect. 2018;126:076002.CrossRef
38.
Zurück zum Zitat Kuhnle GG, Joosen AM, Kneale CJ, O’Connell TC. Carbon and nitrogen isotopic ratios of urine and faeces as novel nutritional biomarkers of meat and fish intake. Eur J Nutr. 2013;52:389–95.CrossRef Kuhnle GG, Joosen AM, Kneale CJ, O’Connell TC. Carbon and nitrogen isotopic ratios of urine and faeces as novel nutritional biomarkers of meat and fish intake. Eur J Nutr. 2013;52:389–95.CrossRef
39.
Zurück zum Zitat Williams JH, O’Connell TC. Differential relations between cognition and 15N isotopic content of hair in elderly people with dementia and controls. J Gerontol A Biol Sci Med Sci. 2002;57:M797–802.CrossRef Williams JH, O’Connell TC. Differential relations between cognition and 15N isotopic content of hair in elderly people with dementia and controls. J Gerontol A Biol Sci Med Sci. 2002;57:M797–802.CrossRef
40.
Zurück zum Zitat Halperin RO, Sesso HD, Ma J, Buring JE, Stampfer MJ, Gaziano JM. Dyslipidemia and the risk of incident hypertension in men. Hypertension. 2006;47:45–50.CrossRef Halperin RO, Sesso HD, Ma J, Buring JE, Stampfer MJ, Gaziano JM. Dyslipidemia and the risk of incident hypertension in men. Hypertension. 2006;47:45–50.CrossRef
41.
Zurück zum Zitat Jafar TH, Gandhi M, Jehan I, Naheed A, de Silva HA, Shahab H, et al. Determinants of uncontrolled hypertension in rural communities in South Asia-Bangladesh, Pakistan, and Sri Lanka. Am J Hypertens. 2018;31:1205–14.CrossRef Jafar TH, Gandhi M, Jehan I, Naheed A, de Silva HA, Shahab H, et al. Determinants of uncontrolled hypertension in rural communities in South Asia-Bangladesh, Pakistan, and Sri Lanka. Am J Hypertens. 2018;31:1205–14.CrossRef
42.
Zurück zum Zitat Prejbisz A, Klocek M, Gąsowski J, Topor-Mądry R, Leśniak W, Kabat M, et al. Factors associated with resistant hypertension in a large cohort of hypertensive patients: the pol-Fokus study. Pol Arch Med Wewn. 2015;125:249–59. Prejbisz A, Klocek M, Gąsowski J, Topor-Mądry R, Leśniak W, Kabat M, et al. Factors associated with resistant hypertension in a large cohort of hypertensive patients: the pol-Fokus study. Pol Arch Med Wewn. 2015;125:249–59.
43.
Zurück zum Zitat Sung JH, Lee JE, Lee JY. Biomarker differences between controlled and uncontrolled hypertension among US adults: National Health and nutrition examination survey 2005-2010. Int J Adv Res Sci Eng Technol. 2018;5:6790–7. Sung JH, Lee JE, Lee JY. Biomarker differences between controlled and uncontrolled hypertension among US adults: National Health and nutrition examination survey 2005-2010. Int J Adv Res Sci Eng Technol. 2018;5:6790–7.
44.
Zurück zum Zitat Jahren AH, Saudek C, Yeung EH, Kao WH, Kraft RA, Caballero B. An isotopic method for quantifying sweeteners derived from corn and sugar cane. Am J Clin Nutr. 2006;84:1380–4.CrossRef Jahren AH, Saudek C, Yeung EH, Kao WH, Kraft RA, Caballero B. An isotopic method for quantifying sweeteners derived from corn and sugar cane. Am J Clin Nutr. 2006;84:1380–4.CrossRef
45.
Zurück zum Zitat Li Q, Liu C, Zhang S, Li R, Zhang Y, He P, et al. Dietary carbohydrate intake and new-onset hypertension: a nationwide cohort study in China. Hypertension. 2021;78:422–30.CrossRef Li Q, Liu C, Zhang S, Li R, Zhang Y, He P, et al. Dietary carbohydrate intake and new-onset hypertension: a nationwide cohort study in China. Hypertension. 2021;78:422–30.CrossRef
46.
Zurück zum Zitat Patel PS, Sharp SJ, Luben RN, Khaw KT, Bingham SA, Wareham NJ, et al. Association between type of dietary fish and seafood intake and the risk of incident type 2 diabetes: the European prospective investigation of cancer (EPIC)-Norfolk cohort study. Diabetes Care. 2009;32:1857–63.CrossRef Patel PS, Sharp SJ, Luben RN, Khaw KT, Bingham SA, Wareham NJ, et al. Association between type of dietary fish and seafood intake and the risk of incident type 2 diabetes: the European prospective investigation of cancer (EPIC)-Norfolk cohort study. Diabetes Care. 2009;32:1857–63.CrossRef
Metadaten
Titel
The association between carbon and nitrogen stable isotope ratios of human hair and hypertension
verfasst von
Song Vogue Ahn
Jong-Ku Park
Publikationsdatum
01.12.2023
Verlag
BioMed Central
Erschienen in
Clinical Hypertension / Ausgabe 1/2023
Elektronische ISSN: 2056-5909
DOI
https://doi.org/10.1186/s40885-022-00228-z

Weitere Artikel der Ausgabe 1/2023

Clinical Hypertension 1/2023 Zur Ausgabe

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

Erhöhtes Risiko fürs Herz unter Checkpointhemmer-Therapie

28.05.2024 Nebenwirkungen der Krebstherapie Nachrichten

Kardiotoxische Nebenwirkungen einer Therapie mit Immuncheckpointhemmern mögen selten sein – wenn sie aber auftreten, wird es für Patienten oft lebensgefährlich. Voruntersuchung und Monitoring sind daher obligat.

GLP-1-Agonisten können Fortschreiten diabetischer Retinopathie begünstigen

24.05.2024 Diabetische Retinopathie Nachrichten

Möglicherweise hängt es von der Art der Diabetesmedikamente ab, wie hoch das Risiko der Betroffenen ist, dass sich sehkraftgefährdende Komplikationen verschlimmern.

TAVI versus Klappenchirurgie: Neue Vergleichsstudie sorgt für Erstaunen

21.05.2024 TAVI Nachrichten

Bei schwerer Aortenstenose und obstruktiver KHK empfehlen die Leitlinien derzeit eine chirurgische Kombi-Behandlung aus Klappenersatz plus Bypass-OP. Diese Empfehlung wird allerdings jetzt durch eine aktuelle Studie infrage gestellt – mit überraschender Deutlichkeit.

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.