Skip to main content
Erschienen in: BMC Neurology 1/2022

Open Access 01.12.2022 | Case report

The pathogenesis and treatment of posterior reversible encephalopathy syndrome after neuromyelitis optica spectrum disorder: a case report and literature review

verfasst von: Bo Yang, Lei Guo, Xu Yang, Nengwei Yu

Erschienen in: BMC Neurology | Ausgabe 1/2022

Abstract

Background

Posterior reversible encephalopathy syndrome (PRES) is a rare disease characterized by reversible subcortical vasogenic brain edema. Neuromyelitis optica spectrum disorder (NMOSD) is a frequent neurological autoimmune disease that is rarely reported to complicate PRES.

Case presentation

Here, we report a case of neuromyelitis optica (NMO) concurrent with PRES. A 50-year-old woman presented with severe impairment of her health visual acuity, with significantly worsening of the motor weakness in both lower limbs during methylprednisolone therapy after her diagnosis of NMO. MRI showed new-onset brain edematous lesions of the bilateral frontal, occipital, and parietal lobes. PRES was considered. Her vision impairment and weakness of the extremities were alleviated after antihypertensive treatment and dehydration. The edema lesions detected by MRI also completely disappeared.

Conclusions

We reviewed 14 cases of NMO with PRES and concluded that the etiology of NMOSD concurrent PRES may be multifactorial, involving pathogenic IgGs against aquaporin-4 (AQP-4) and immunotherapy treatment. Different underlying pathogeneses require different treatment approaches.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
PRES
Posterior reversible encephalopathy syndrome
NMOSD
Neuromyelitis optica spectrum disorders
NMO
Neuromyelitis opticapathogenic
AQP-4
Aquaporin-4

Background

Posterior reversible encephalopathy syndrome (PRES) is an acute neurological disease with high reversibility and a good clinical prognosis. It is currently believed to be closely related to factors such as cytotoxic drug use, hypertension, renal dysfunction, and the presence of autoimmune diseases [1]. Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune disorder of the central nervous system in which autoantibodies characteristically attack both the optic nerve and spinal cord [2]. Until now few cases of NMOSD concurrent with PRES have been reported, and the pathogenesis remains unclear. Here, we report such a case of PRES following an NMOSD diagnosis and review previous case reports.

Case presentation

The 50-year-old woman in question was diagnosed with optic neuritis in March 2021, presenting with progressive impairment of visual acuity isolated to the right eye, and despite opportune methylpred-nisolone treatment, still had deteriorating vision as determined by a finger-counting test. In September 2021, both fluctuant bilateral limb numbness and unstable gait successively occurred within 1 week, with accompanying palpitations and nausea. In February 2022, the above symptoms were aggravated and spasms were occurring in the left leg. During the course of the disease, the face of the woman was always swelling and her weight was reduced by 7 kg. She was then admitted to our hospital on April 18, 2022. Upon examinations conducted at admission, her blood pressure was 129/91 mmHg; she retained normal left vision and pupillary light reflex, but right pupil light reflex decreased; neurological examinations showed grade 4 muscle strength of the limbs, hypermyotonia of the limb and neck muscles, limb and gait ataxia, and bilateral hyperreflexia with the Babinski sign.
Excluding the abnormally high values for triglycerides, total cholesterol, and low-density lipoprotein, the patient’s blood tests were otherwise normal (including routine, biochemistry, coagulation function tests, anti-neutrophil cytoplasmic antibodies (ANCA), anti-nuclear antibody (ANA), and thyroid function). Abdominal ultrasonography found suspicious uterine fibroids and gallbladder polyps. Electrocardiogram and chest CT were normal. MRI showed T2 hyperintensity of the dorsal pons near the right surface of the fourth ventricle and spinal cord of the C4-C6 vertebrae (Fig. 1). The cerebrospinal fluid (CSF) showed a raised WBC count (8*106/L) and elevated protein (0.528 g/L). Serum and CSF antibodies to AQP4 were positive. Accordingly, the patient was diagnosed with neuromyelitis optica spectrum disorder (NMOSD).
She was started on IV methylprednisolone (1 g per day) on April 22, 2022, and a combination of baclofen and clonazepam were used to improve the spasms. During the Initial treatment, her facial swelling exacerbated and blood pressure values indicated hypertension (155/65–175/75 mmHg). On the morning of 27 April 2022, her left vision had markedly deteriorated based on the finger-counting test, and her lower limb muscle strength was reduced. Immediate MRI reexamination indicated new-onset brain edematous lesions of the bilateral frontal, occipital, and parietal lobes (Fig. 2a). No abnormal hematological rechecks were found. Considering diagnosis of PRES, dehydration and hypertension-controlling measures were applied. The patient’s left vision and muscle strength improved on the next day and recovered to the status of admission after 5 days. With subsequent MRI examination on May 10, 2022, the edematous lesions had disappeared (Fig. 2b).

Discussion and conclusion

We searched for case reports on NMOSD with PRES published before July 2022 using the databases of Pubmed, Embase, Sinomed, CNKI, and Wanfang. The search terms were as follows: posterior reversible encephalopathy syndrome; posterior reversible leukoencephalopathy syndrome; optic neuritis; neuromyelitis optica and neuromyelitis optica spectrum disorders. We found 14 cases of NMOSD with PRES across 10 papers. The clinical details are summarized in Table 1.
Table 1
Epidemiological, clinical and imaging datas of previous cases of NMOSD with PRES
Year
Age/sex
Diagnosis
Symptoms of PRES
NMO duration (y)
NMO attack preceding PRES (interval to PRES,d)
Blood pressure at time of PRES,(mmHg)
Inducing factor (interval to PRES,d)
Treatment for PRES
PRES lesion locations
PRES lesion symmetry
Time(d) and degree of MRI lesions resolution
References
2009
56/F
rLETM
Coma,Nystagmus, Diplopia
2
Yes(9)
80/60
PLEX/1d
No
F,P,O,C,Corpus callosum, Thalamus
Yes
23d,Complete
[3]
2009
46/F
rLETM
Delirium, Cortical blindness
6
Yes(13)
146/86
IVIg/7d
PLEX
F,P,O,C
Yes
10d,Complete
[3]
2009
57/F
NMO
Sleepiness, Delirium,Coma
24
No
220/140
No
IVMP,AH
F,P,O,C,Corpus callosum
Yes
4d,Partial
[3]
2009
48/F
NMO
Sleepiness,Diplopia
8
No
120/74
IVMP/1d
No
P,O
No
6d,Partial
[3]
2009
12/F
NMO
Aphasia,Delirium,Coma
0.25
Yes(U)
U
No
IVMP,IVIg
F,P,O,Corpus callosum
No
300d,Partial
[3]
2010
53/F
ON
Headache,Giddiness
U
U
U
IVMP/5d
U
P,O,T
Yes
U
[4]
2010
35/F
NMO
Sleepiness,Delirium, Visual impairment
3
Yes(30)
U (normal)
IVMP,IVIg,PLEX, Rituximab /Ud
U
T
Yes
120d,Partial
[5]
2013
U
NMO
Delirium
U
U
U (rising)
U
AH
O
U
U
[6]
2014
42/F
NMO
Limb weakness, Visual impairment
10
No
124/78
Sjogrena and Felty syndrome, Rituximab/Ud
Methotrexate
P,O
Yes
120d,Partial
[7]
2015
27/F
NMO
Headache, Visual impairment, Walking instability
3
U
176/100
PLEX/Ud
AH
P
Yes
U
[8]
2015
48/F
NMO
Epilepsy,Visual impairment
0.9
Yes(3)
U
IVMP/6d
Reducing IVMP
O,T, Centrum semiovale
Yes
U
[9]
2019
51/F
NMO
Headache
16
Yes(3)
202/127
IVMP/Ud
AH、PLEX
Brain stem
No
3d,Complete
[10]
2020
57/F
NMO
Epilepsy
4
Yes(1)
110/70–130/80
PLEX/Ud
AE
F,P,C
No
U
[11]
2020
25/F
NMO
Epilepsy
U
No
127/97
Sjogrena syndrome /Ud
IVMP
O,P,C, Brain stem, Cervical spinal cord
No
3d,Partial
[12]
PRES posterior reversible encephalopathy syndrome; rLETM recurrent longitudinally extensive transverse myelitis; NMO neuromyelitis optica; ON optic neuritis; PLEX plasma exchange; IVIg IV immunoglobulin; IVMP IV methylprednisolone; AH anti-hypertension; U unavailable; O Occipital lobe; P parietal lobe; F frontal lobe; T temporal lobe; C cerebellum
All cases were female, including 3 Asians and 11 Europeans, with a mean age of 42.85 years old (ranging from 12 to 57 years). All cases were diagnosed with NMOSD, and there were 2 cases of recurrent longitudinally extensive transverse myelitis (rLETM), 1 case of optic neuritis (ON), and 11 cases of NMO. The mean disease course was 7.01 years (ranging from 0.25 to 24 years). The attack interval between NMOSD and PRES was 9.83 days (ranging from 1 to 30 days). Consciousness or vision disorders occurred in more than half of the cases. Headache, epilepsy, and limb weakness were also common. It was found that 7 of the 14 patients appeared to have varying degrees of hypertension (146/86 to 220/140 mmHg). The bilateral temporal, occipital, and parietal lobes were the most common lesion locations. Of 14 patients, 10 received intravenous immunoglobulin, glucocorticoids, plasma exchange, or cytotoxic drugs, respectively. Although all the patients received symptomatic treatment (including measures to control dehydration and blood pressure), there was heterogeneity in the administration of immunotherapy treatment following the occurrence of PRES: 6 patients had enhanced or replaced immunotherapy regimens, 1 patient had reduced glucocorticoids, and other patients continued the original treatment. Significant differences existed among the cases for their regression time and degree of PRES lesions.
NMOSD is an autoimmune disease related to ON and rLETM, and is due to the action of IgGs against aquaporin-4 (AQP-4). AQP-4 is an aquaporin (AQP) ubiquitous in the central nervous system and is expressed in the perivascular end-foot of astrocytes which constitute the blood-brain barrier (BBB) together with vascular endothelial cells and astrocytes. AQP-4 plays an important role in regulating water homeostasis across the BBB [13]. AQP-4 IgGs attack the optic nerve, spinal cord, brainstem, area postrema, and cerebrum in NMOSD, according to the distribution of AQP-4 [14]. Hence, NMOSD is usually defined as AQP-4 IgG-induced immune inflammation in the central nervous system [15].
PRES is characterized by symmetrically-distributed vasogenic edema in the white matter of the bilateral frontal, parietal, occipital, temporal, and subcortical regions [16]. Asymmetries or lesions of the cerebellum, brainstem, basal ganglia, and spinal cord are rare [17]. Increased cerebrovascular exfiltration (caused by hypertension or cerebral hyperperfusion and vascular endothelial cell dysfunction) can induce PRES. Its various neurological symptoms include headache, impairment of consciousness, seizures, visual abnormalities, and focal neurological deficits.
Magana et al. speculated that vasogenic edema caused by AQP-4 IgGs in NMOSD might sometimes present as PRES [3]. Other reports have also supported this hypothesis, and one even presumed that a diagnosis of NMOSD should be considered on the basis of ON with PRES imaging [4, 5, 10]. However, PRES was also interpreted as a complication of NMOSD due to cytotoxic drug exposure, blood pressure fluctuations, etc. [11]. In conducting an analysis of the previous case reports, we found some patients’ NMOSD and PRES to have had simultaneous onsets of attack and lacked inducing factors in the prodromal stage [3, 7, 12]. Additionally, the asymmetric distribution, atypical location, and non-regression of some PRES lesions [3, 5, 7, 10, 12] all suggest that PRES may be a special manifestation of NMOSD. On the contrary, definite inducing factors and characteristic lesions support PRES as a complication of immunotherapy in the treatment of NMOSD [3, 4, 6, 9]. Thus, the reason of NMOSD concurrent with PRES is uncertain.
No standard treatment strategy has been proposed for PRES following NMOSD at present. Based on PRES, controlling a hypertension crisis and maintaining the stability of blood pressure is essential [18]. In case of seizures anti-epileptic treatment is important due to the fact that frequent seizures will worsen the brain edema [19]. Eliminating PRES-inducing factors, including AQP4-IgG and immunotherapy, will improve the prognosis in the early stage of PRES [20]. There is a question of whether NMOSD immunotherapy should be enhanced or attenuated during PRES onset,and no definite conclusion can yet be reached for it. A previous retrospective study suggested that for patients of stem cell transplantation experiencing PRES after receiving tacrolimus, there were no differences in mortality among maintaining the same dose, suspension, and replacement of tacrolimus [21]. For some immune diseases like systemic lupus erythematosus (SLE) leading to PRES, strengthening immunization is feasible [22]. Based on the above, we recommend dialectical treatment, and that should be enhanced when AQP-4 IgGs are pathogenic factors, but immunotherapy should be suspended or weakened when doubt exists on whether immunotherapy is an evoking factor. For unexplained PRES, changing or maintaining the existing immunotherapy treatment may be worth trying.
In this case, We found this woman facial swelling exacerbated significantly during the initial treatment of methylprednisolone. This might suggest that the patient’s high sensitivity for glucocorticoid,and the vascular endothelial cell dysfunction causing PRES might be more inclined to happen to her.
Overall, the etiology of PRES following NMOSD is not entirely understood. AQP-4 IgGs, unstable blood pressure, and immunotherapy might all be underlying causative factors. Unclear mechanisms lead to inconsistent treatment, and existing immunotherapy can be suspended, weakened, enhanced, replaced, or maintained according to different PRES predisposing factors.

Acknowledgements

We appreciate EditorBar for language editing service.

Declarations

No ethics approval is needed for this case report after reviewed by the local Ethics Committee of Sichuan Provincial People’s Hospital. Written informed consent was obtained from the patient.
Written informed consent was obtained from the patient for publication of this case report and any accompanying images. And the consent form is available for reviewing by the editor when needed.

Competing interests

The authors declare that there is no confict of interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
4.
Zurück zum Zitat Park J S , Hah J G , Lim. Steroid pulse therapy-induced posterior reversible encephalopathy syndrome in optic neuritis suggesting neuromyelitis optica spectrum disorder [C]// Conference on Pan-asian Committee for Treatment & Research in Multiple. 2010.10. https://doi.org/10.1177/1352458510383202 Park J S , Hah J G , Lim. Steroid pulse therapy-induced posterior reversible encephalopathy syndrome in optic neuritis suggesting neuromyelitis optica spectrum disorder [C]// Conference on Pan-asian Committee for Treatment & Research in Multiple. 2010.10. https://​doi.​org/​10.​1177/​1352458510383202​
6.
Zurück zum Zitat Hao FC,Wang HB,Zhou H,Zhang XF. A case of optic neuritis combined with reversible posterior leukoencephalopathy syndrome [C]//Shandong Academy of Neurology and China Neuroimmune Conference 2013. http://kns%2D%2Dcnki%2D%2Dnet%2D%2Dhttps.cnki.scrm.scsycy.vip:2222/kcms/detail/detail.aspx?FileName=SDKX201309001294&DbName=CPFD2014. Hao FC,Wang HB,Zhou H,Zhang XF. A case of optic neuritis combined with reversible posterior leukoencephalopathy syndrome [C]//Shandong Academy of Neurology and China Neuroimmune Conference 2013. http://​kns%2D%2Dcnki%2D%2Dnet%2D%2Dhttps.cnki.scrm.scsycy.vip:2222/kcms/detail/detail.aspx?FileName=SDKX201309001294&DbName=CPFD2014.
13.
Zurück zum Zitat Yuan M, Ge M, Yin J, et al. Isoflurane post-conditioning down-regulates expression of aquaporin 4 in rats with cerebral ischemia/reperfusion injury and is possibly related to bone morphogenetic protein 4/Smad1/5/8 signaling pathway. Biomed Pharmacother 2018;97:429–438.https://doi.org/10.1016/j.biopha.2017.10.082 Yuan M, Ge M, Yin J, et al. Isoflurane post-conditioning down-regulates expression of aquaporin 4 in rats with cerebral ischemia/reperfusion injury and is possibly related to bone morphogenetic protein 4/Smad1/5/8 signaling pathway. Biomed Pharmacother 2018;97:429–438.https://​doi.​org/​10.​1016/​j.​biopha.​2017.​10.​082
17.
Zurück zum Zitat McKinney AM, Short J, Truwit CL, McKinney ZJ, Kozak OS,SantaCruz KS, Teksam M Posterior reversible encephalopathy syndrome: incidence of atypical regions of involvement and imaging findings. AJR Am J Roentgenol 189(4):904-912. https:// doi:https://doi.org/10.2214/AJR.07.2024 McKinney AM, Short J, Truwit CL, McKinney ZJ, Kozak OS,SantaCruz KS, Teksam M Posterior reversible encephalopathy syndrome: incidence of atypical regions of involvement and imaging findings. AJR Am J Roentgenol 189(4):904-912. https:// doi:https://​doi.​org/​10.​2214/​AJR.​07.​2024
21.
Metadaten
Titel
The pathogenesis and treatment of posterior reversible encephalopathy syndrome after neuromyelitis optica spectrum disorder: a case report and literature review
verfasst von
Bo Yang
Lei Guo
Xu Yang
Nengwei Yu
Publikationsdatum
01.12.2022
Verlag
BioMed Central
Erschienen in
BMC Neurology / Ausgabe 1/2022
Elektronische ISSN: 1471-2377
DOI
https://doi.org/10.1186/s12883-022-02985-8

Weitere Artikel der Ausgabe 1/2022

BMC Neurology 1/2022 Zur Ausgabe

Neu in den Fachgebieten Neurologie und Psychiatrie

Blutdrucksenkung schon im Rettungswagen bei akutem Schlaganfall?

31.05.2024 Apoplex Nachrichten

Der optimale Ansatz für die Blutdruckkontrolle bei Patientinnen und Patienten mit akutem Schlaganfall ist noch nicht gefunden. Ob sich eine frühzeitige Therapie der Hypertonie noch während des Transports in die Klinik lohnt, hat jetzt eine Studie aus China untersucht.

Nicht Creutzfeldt Jakob, sondern Abführtee-Vergiftung

29.05.2024 Hyponatriämie Nachrichten

Eine ältere Frau trinkt regelmäßig Sennesblättertee gegen ihre Verstopfung. Der scheint plötzlich gut zu wirken. Auf Durchfall und Erbrechen folgt allerdings eine Hyponatriämie. Nach deren Korrektur kommt es plötzlich zu progredienten Kognitions- und Verhaltensstörungen.

Schutz der Synapsen bei Alzheimer

29.05.2024 Morbus Alzheimer Nachrichten

Mit einem Neurotrophin-Rezeptor-Modulator lässt sich möglicherweise eine bestehende Alzheimerdemenz etwas abschwächen: Erste Phase-2-Daten deuten auf einen verbesserten Synapsenschutz.

Hörschwäche erhöht Demenzrisiko unabhängig von Beta-Amyloid

29.05.2024 Hörstörungen Nachrichten

Hört jemand im Alter schlecht, nimmt das Hirn- und Hippocampusvolumen besonders schnell ab, was auch mit einem beschleunigten kognitiven Abbau einhergeht. Und diese Prozesse scheinen sich unabhängig von der Amyloidablagerung zu ereignen.