Skip to main content
Erschienen in: BMC Cancer 1/2020

Open Access 01.12.2020 | Research article

The prognostic value of IDO expression in solid tumors: a systematic review and meta-analysis

verfasst von: Sen Wang, Jia Wu, Han Shen, Junjun Wang

Erschienen in: BMC Cancer | Ausgabe 1/2020

Abstract

Background

Indoleamine 2,3-dioxygenase (IDO) is a rate-limiting enzyme in the metabolism of tryptophan into kynurenine. It is considered to be an immunosuppressive molecule that plays an important role in the development of tumors. However, the association between IDO and solid tumor prognosis remains unclear. Herein, we retrieved relevant published literature and analyzed the association between IDO expression and prognosis in solid tumors.

Methods

Studies related to IDO expression and tumor prognosis were retrieved using PMC, EMbase and web of science database. Overall survival (OS), time to tumor progression (TTP) and other data in each study were extracted. Hazard ratio (HR) was used for analysis and calculation, while heterogeneity and publication bias between studies were also analyzed.

Results

A total of 31 studies were included in this meta-analysis. Overall, high expression of IDO was significantly associated with poor OS (HR 1.92, 95% CI 1.52–2.43, P < 0.001) and TTP (HR 2.25 95% CI 1.58–3.22, P < 0.001). However, there was significant heterogeneity between studies on OS (I2 = 81.1%, P < 0.001) and TTP (I2 = 54.8%, P = 0.007). Subgroup analysis showed lower heterogeneity among prospective studies, studies of the same tumor type, and studies with follow-up periods longer than 45 months.

Conclusions

The high expression of IDO was significantly associated with the poor prognosis of solid tumors, suggesting that it can be used as a biomarker for tumor prognosis and as a potential target for tumor therapy.
Hinweise
Sen Wang and Jia Wu contributed equally to this work.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
IDO
Indoleamine 2,3-dioxygenase
OS
Overall survival
TTP
Time to progression
HR
Hazard ratio
CI
Confidence interval
Tregs
Regulatory T-cells
1-MT
1-methyltryptophan
DSS
Disease-specific survival
RFS
Relapse-free survival
DFS
Disease-free survival
TTR
Time to recurrence
NOS
Newcastle-Ottawa Scale

Background

Indoleamine 2,3-dioxygenase (IDO) is an intracellular and immunosuppressive rate-limiting enzyme in metabolism of tryptophan to kynurenine [1]. Tryptophan is an essential amino acid in protein synthesis and many important metabolic processes and cannot be synthesized in vivo. The main metabolic pathway for tryptophan in mammals is the kynurenine pathway, and this pathway requires participation of members from the IDO family. The IDO family of genes includes IDO1 and IDO2. IDO1 has higher catalytic efficiency than IDO2 and is more abundant in tissues [2]. In this systematic review and meta-analysis, the term ‘IDO’ will refer to IDO1.
IDO can exert immunosuppressive effects through a variety of mechanisms. The high expression and activity of IDO leads to a large consumption of tryptophan in the cell microenvironment, which makes the cells in a “tryptophan starvation” state. Depletion of tryptophan causes T cells arrest in the G1 phase of cell cycle, thereby inhibiting T cell proliferation. The main metabolite of tryptophan degradation, kynurenine, also has a direct toxic effect on T cells and induces T cell apoptosis. Kynurenine is also a natural ligand for aryl hydrocarbon receptors. By activating aryl hydrocarbon receptors, kynurenine can regulate the differentiation direction of Th17/Treg cells, thereby promoting the balanced differentiation of Th17/Treg to Treg cells [35].
IDO plays an important role in a variety of disease processes such as chronic inflammatory diseases, infection, and cancer [4, 68]. Increased expression of IDO is observed in many types of tumors, including colorectal, hepatocellular, ovarian and melanomas [5]. Tumors with high expression of IDO tend to increase metastatic invasion and have a poor clinical outcome in cancer patients. IDO is considered to be a new target for tumor therapy, and inhibition of IDO activity by using IDO inhibitors can increase patient survival [911].
Although IDO-targeted tumor therapy strategies are currently being developed, the association between expression level of IDO in tumor tissues and prognosis of patients remains unclear. Therefore, we constructed this meta-analysis to explore the correlation between IDO expression and tumor prognosis.

Methods

Search strategy

The present systematic review and meta-analysis was conducted and reported according to the standards of quality detailed in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement [12]. Comprehensive and systematic search of published literature using the following database, such as PMC, Embase, and Web of Science (up to May 31, 2019). We used keyword such as: (“IDO” or Indoleamine 2,3-dioxygenase) AND (cancer or carcinoma or tumor or neoplasms) AND prognosis to search in the database. The retrieved information of relevant literature was downloaded and imported into the literature management software for further browsing and screening.

Inclusion criteria

Studies included in this meta-analysis needed to meet the following inclusion criteria: 1) The included literature needed to provide appropriate prognostic indicators in evaluating the expression of IDO and prognosis of solid tumors, such as overall survival (OS), progression-free survival (PFS), disease-free survival (DFS) or relapse-free survival (RFS). 2) The included literature needed to provide hazard ratios (HRs) with 95% confidence intervals (CIs). 3) The included literature needed to provide criteria for defining IDO expression as positive and negative, or strong and weak expression.

Exclusion criteria

This meta-analysis had the following exclusion criteria: 1) The type of literature was not a research article but the following types:reviews, case reports, letters, editorials, and meeting abstracts; 2) Animal experiments or in vitro experiments rather than patient-based clinical studies; 3) HRs and 95% CI were not directly provided in the study; 4) Research was not published in English; 5) Sample size was too small, less than 50; 6) IDO expression was not detected in tumor tissues.

Data extraction

The data extraction included in the studies were independently completed by two researchers according to the same criteria, and if there was inconsistency, a group discussion was conducted. This meta-analysis used two outcome endpoints: OS (overall survival) and TTP (time to tumor progression). Since PFS, DFS and RFS are similar outcome endpoints, we in this meta-analysis used the same prognostic parameter TTP to represent them. We extracted the following information from each study: first author’s name, publication year, country, cancer type, case number, study type, IDO detection method, cut off values for IDO expression, endpoints and HR. When the study provided HR for both univariate and multivariate analyses, we preferred results from multivariate analysis. The main features for these eligible studies are summarized in Fig. 1. Quality assessment for the included studies using the Newcastle-Ottawa Scale (NOS) [13]. According to the NOS system, the quality judgment for the studies were based on three parts: selection of study groups (4 points), comparability of study groups (2points), and outcome assessment (3 points). Studies with NOS scores above 5 were considered to have higher quality.

Statistical analysis

Combined HR and 95% CI were used to assess the effect of IDO expression on tumor prognosis. HR > 1 and 95% CI did not overlap 1 indicating that overexpression of IDO had a negative impact on tumor prognosis. Heterogeneity analysis using the Q test, and P < 0.1 was considered statistically significant. The heterogeneity was evaluated according to I2. When I2 was 0–50%, it showed no or moderate heterogeneity, and when I2 > 50%, it showed significant heterogeneity. According to the I2 and P values, different effect models were used. When I2 > 50%, or P < 0.1, a random effects model was used. Otherwise we used a fixed effect model when the heterogeneity was low or there was no heterogeneity. Begg’s test and Egger’s test were used to determine if there was a potential publication bias in the selected studies. Sensitivity analysis was used to assesse the stability of results by excluding one study at a time. All statistical analysis and data generation were done using STATA software (StataMP 14, USA).

Results

Description of selected studies

Figure 1 shows our literature search and screening strategy. After removing 613 duplicate studies, a total of 4739 studies were further explored for the title and abstract. A total of 4657 studies were excluded due to non-conformity or irrelevant topics. 82 studies conducted further full-text evaluations, 35 of which were excluded due to lack of HR information on HR and 95% Cl, 16 studies were excluded because of detected IDO levels in the serum. Therefore, the final 31 studies included a total of 3939 patients for meta-analysis to analyze the association between IDO expression and prognosis in solid tumor patients [1444].
The 31 studies included in this meta-analysis were derived from 10 countries, 6 studies originating from Europe (respectively from Belgium, Netherlands, Poland, Croatia and Germany), 18 from Asia (10 from China; and 8 from Japan), 2 from Africa (Tunisia), 3 from USA, 2 from Australia. All of these studies were published between 2006 and 2019. As for the cancer types, among the studies, esophageal cancer was the most common type of cancer (n = 4), followed by endometrial cancer, colorectal cancer, melanoma, and vulvar squamous cell carcinoma (n = 2). Other tumor types were involved in one study each. Since PFS, DFS and RFS are similar outcome endpoints, we used TTP to represent them in this meta-analysis. In these studies, 3 studies used polymerase chain reaction (qRT-PCR) to detect IDO expression in tumor tissues, while the other 28 studies used immunohistochemistry (IHC) staining to detect IDO expression. 28 datasets had information on OS, and 14 had information on TTP (PFS /DFS). According to NOS tool, we systematically evaluated the quality of the included studies, and all of these studies had high quality and the NOS scores were between 6 and 9 points. (Table 1).
Table 1
Characteristics of the patients included in the meta-analysis
Study
Year
Country
Cancer type
Case (n)
Age (Median/Mean, years)
Tumor stage
(I/II/III/IV)
Follow-up (Median/Mean, months)
Study type
Method
Cut off value
Endpoints
NOS
Gerald. et al
2006
Austria
Colorectal cancer
143
NA
29/24/78/12
51.8a
Retrospective
IHC
High expression: score (5–12)
Low expression: score (0–4)
OS
8
K. et al
2006
Japan
Endometrial cancer
80
57.2a
54/10/10/6
71.6b
Retrospective
IHC
High expression: score (4–6)
Low expression: score (0–3)
OS, PFS
8
Rainer. et al
2007
Japan
Renal cell carcinoma
55
NA
22/33
NA
Retrospective
qPCR
High expression: Above the 80th percentile
OS
6
Ke. et al
2008
China
Hepatocellular carcinoma
138
NA
NA
NA
Retrospective
IHC
High expression: score (5–9)
Low expression: score (0–4)
OS
8
Kazuhiko. et al
2008
Japan
Endometrial Cancer
65
57.7a
44/6/9/6
72b
Retrospective
IHC
High expression: score (4–5)
Low expression: score (0–3)
OS, PFS
8
Hiroshi. et al
2009
Japan
Osteosarcoma
47
15b
0/47/0/0
67.4b
Retrospective
IHC
High expression: score (4)
Low expression: score (0–3)
OS
7
Tomoko. et al
2010
Japan
Cervical cancer
112
NA
67/45/0/0
NA
Retrospective
IHC
High expression: > 50% of tumor cells were stained
OS, PFS
7
Jacek. et al
2011
Poland
Vulvar squamous cell carcinoma
76
69.5b
NA
51.23b
Retrospective
IHC
> 50% of tumor cells were stained with clusters of higher intensity of expression
OS
8
Reinhart. et al
2011
Belgium
Melanoma
116
52b
NA
71b
Prospective
IHC
Almost none/weak versus strong IDO expression
OS, PFS
9
Renske. et al
2012
Netherland
Endometrial carcinoma
355
64b
196/58/77/44
63.6b
Prospective
IHC
High expression: score (4–6)
Low expression: score (0–3)
DFS
8
Jin. et al
2013
China
Laryngeal squamous cell carcinoma
187
52.4b
20/58/88/21
48.56a
Retrospective
IHC
High expression: score (3–4)
Low expression: score (0–2)
OS, DFS
9
Yunlong. et al
2015
China
Esophageal squamous cell cancer
196
54b
113(I–II)/83(III–IV)
NA
Prospective
IHC
High expression: score (5–12)
Low expression: score (0–4)
OS
8
Maciej. et al
2015
Poland
Melanoma
48
56.9b
NA
30.3b
Retrospective
IHC
High expression: score > 47.39 Low expression: score ≤ 47.39
OS
6
Ahlem. et al
2016
Tunisia
Nasopharyngeal carcinoma
71
NA
10(I–II)/53(III–IV)
30b
Prospective
IHC
High expression: score (4–5)
Low expression: score (0–3)
OS, PFS
7
Hao. et al
2016
China
Gastric adenocarcinoma
357
60.3a
80/79/198/0
41b
Retrospective
IHC
With the X-tile software, the cut-off point was 282, 51% patients were separated into the IDO high expression subgroup
OS
7
Tao. et al
2017
China
Pancreatic cancer
80
NA
10(I–II)/53(III–IV)
40b
Prospective
IHC
High expression: score (> 4)
Low expression: score (≤4)
OS
8
Tvrtko. et al
2017
Croatia
Bladder carcinomas
74
65.3a
NA
NA
Prospective
qPCR
IDO-positive group, in which expression of IDO gene was detected, regardless of the level of expression.
OS
7
Daniel. et al
2017
USA
Breast cancer
362
NA
278(I–II)/63(III–IV)
NA
Retrospective
IHC
Median cut-point was used to stratify IDO1 scores in low and high statuses.
OS
8
Lijie. et al
2017
USA
Glioblastoma
148
NA
NA
NA
Prospective
qPCR
IDO1 mRNA levels were stratified into IDO1- low and -high expressing groups based on the determined cutoff values.
OS
8
Wenjuan. et al
2018
China
Colorectal cancer
95
NA
NA
NA
Retrospective
IHC
High expression: score (2–3)
Low expression: score (0–1)
OS
7
Yufeng. et al
2018
Taiwan (China)
Thymic carcinoma
69
54a
1/3/45/20
46b
Retrospective
IHC
High expression: score (2–3)
Low expression: score (0–1)
OS, PFS
8
Hiroto. et al
2018
Japan
Esophageal cancer
182
66.5a
69/63/41/9
NA
Retrospective
IHC
High expression: score (2–3)
Low expression: score (0–1)
RFS
7
Yuki. et al
2018
Japan
Esophageal Cancer
305
66a
123/80/102/0
44.4b
Prospective
IHC
(0; no expression, 1; weak expression, 2; moderate expression or 3; strong expression)
OS
9
Masaaki. et al
2018
Japan
Gastric Cancer
60
67.8a
0/0/60/0
41a
Retrospective
IHC
A total score of greater than 4+ was defined as IDO positive expression
OS, DFS
8
Tamkin. et al
2019
Australia
Malignant pleural mesothelioma
67
65b
NA
NA
Retrospective
IHC
Negative
Positive (>  0%)
OS
7
Wenjuan. et al
2019
China
Adenosquamous Lung Carcinoma
183
58b
52/41/71/19
NA
Retrospective
IHC
High- and low-expression based on the determined cutoff values.
OS
8
Devarati. et al
2019
USA
Anal cancer
63
61b
7/24/9/21 (2 unknown)
35b
Retrospective
IHC
Positive (> 50% IDO1 expression)
OS
8
Julia. et al
2019
Germany
Rectal cancer
91
64b
NA
NA
Retrospective
IHC
High expression: score (3–6)
Low expression: score (0–2)
OS, DFS
8
Nadia. et al
2019
Tunisia
Vulvar squamous cell carcinoma
61
65.61a
29/4/26/2
NA
Retrospective
IHC
High expression: score (3)
Low expression: score (0–2)
OS, DFS
7
Sha. et al
2019
China
Esophageal squamous cell carcinoma
158
56b
0/34/124/0
40.2b
Retrospective
IHC
Positive (> 50% IDO1 expression)
RFS
8
Yuhshyan. et al
2019
Taiwan (China)
Bladder cancer
108
68a
45/43/19/1
45b
Retrospective
IHC
Strongly Positive (> 25% IDO1 expression)
OS, PFS
8
Abbreviations: IHC Immunohistochemistry, qPCR Quantitative Real Time Polymerase Chain Reaction, NOS Newcastle-Ottawa Scale, OS overall survival, DFS disease free survival, PFS progression free survival. a Mean, b Median. NA: Not Available

Impact of IDO expression on cancer prognosis

In the included studies, a total of 28 studies analyzed the association between IDO expression and OS. Of these 28 studies, 3 studies with HR < 1 [38, 39, 41], and 18 studies with HR > 2 [1416, 1822, 24, 27, 29, 30, 33, 34, 37, 4244]. We performed a meta-analysis of 28 studies. Since I2 values was 81.1%, the random effects model was used to calculate the pooled HR and 95% CI. The combined analysis of 28 datasets indicated that compared with IDO negative/low expression, IDO positivity/high expression was highly correlated with poor prognosis in cancer patients (pooled HR 1.92, 95% CI 1.52–2.43, P < 0.001) (Fig. 2). A total of 14 studies were used to assess the association between IDO expression and TTP. We calculated the pooled HR using a random effects model, because the heterogeneity test indicated an I2 value of 54.8% and a P value of 0.007. The results indicated that high expression of IDO was highly correlated with poor prognosis of TTP (pooled HR = 2.25, 95% CI 1.58–3.22, P < 0.001) (Fig. 3).

Subgroup analysis

Since the results from the meta-analysis indicated significant heterogeneity, we performed heterogeneity analysis in order to identify potential factors that may cause heterogeneity. We classified the included studies and performed heterogeneity analysis based on study location, detection method, sample size, study type, cancer type, age, follow-up periods and study quality. Subgroup analysis showed that the high expression of IDO was highly correlated with poor OS and TTP, but the heterogeneity was not significantly reduced according to different study locations, detection method, sample size grouping, average age and study quality. However, in a prospective study group, we found that high expression of IDO was highly correlated with poor OS prognosis (HR1.98, 95% CI 1.57–2.49, P < 0.001) and there was no heterogeneity (I2 = 0%, P = 0.6) (Table 2). Subgroup analysis showed that there was no heterogeneity among bladder cancer, colorectal cancer, endometrial cancer and esophageal cancer studies. Heterogeneity was also significantly reduced among studies of the same type of tumor, such as digestive system tumors and reproductive system tumors (Table 2). In addition, there was no significant heterogeneity (HR 3.41, 95% CI 2.41–4.83, P < 0.001. I2 = 0%, P = 0.97) between studies with an average follow-up period of more than 45 months (Table 2).
Table 2
Hazard ratio for the association between IDO overexpression and solid tumors prognosis
Stratified analysis
Effect size
NO. of study
Cases
HR
Heterogeneity
Pooled HR (95% CI)
P value
I2 (%)
p value
All studies
 OS
OS
28
3457
1.92 (1.52–2.43)
< 0.001
81.1
< 0.001
 TTP
TTP
14
1815
2.25 (1.58–3.22)
< 0.001
54.8
0.007
Study location
 Asia
OS
16
2137
2.12 (1.54–2.92)
< 0.001
68.5
< 0.001
TTP
9
1121
2.48 (1.74–3.55)
< 0.001
11.4
0.342
 Other countries
OS
12
1320
1.66 (1.17–2.37)
0.005
82.2
< 0.001
TTP
5
694
1.99 (1.32–2.98)
0.001
14.3
0.323
Detection method
 IHC
OS
25
3180
1.86 (1.46–2.38)
< 0.001
81.3
< 0.001
TTP
14
1815
2.25 (1.58–3.22)
< 0.001
54.8
0.007
 qPCR
OS
3
277
2.11 (1.42–3.13)
< 0.001
17.7
0.297
Sample size
  < 70
OS
9
535
2.25 (1.31–3.88)
0.003
75.5
< 0.001
TTP
4
255
2.49 (1.51–4.10)
< 0.001
0.0
0.72
 70–120
OS
10
903
2.37 (1.42–3.95)
0.001
55.9
0.02
TTP
6
578
2.43 (1.09–5.44)
0.03
72.8
0.003
  > 140
OS
9
2019
1.60 (1.18–2.18)
0.003
75.8
< 0.001
TTP
4
882
1.98 (1.12–3.51)
0.019
63.2
0.043
Study type
 Retrospective
OS
21
2807
1.82 (1.39–2.40)
< 0.001
81.5
< 0.001
TTP
11
1273
2.32 (1.50–3.60)
< 0.001
57.9
0.008
 Prospective
OS
7
650
1.98 (1.57–2.49)
< 0.001
0
0.6
TTP
3
542
2.09 (1.03–4.23)
0.04
56.2
0.102
Cancer type
 Digestive system tumor
OS
10
1528
1.79 (1.38–2.31)
< 0.001
40.8
0.085
 Reproductive system tumor
OS
6
756
2.39 (1.53–3.72)
< 0.001
34.9
0.175
 Bladder cancer
OS
2
182
2.90 (1.32–6.15)
0.006
0.0
0.521
 Colorectal cancer
OS
2
238
2.32 (1.22–4.42)
0.01
0.0
0.655
 Endometrial cancer
OS
2
145
6.64 (1.41–31.27)
0.017
0.0
0.99
 Esophageal cancer
OS
2
501
1.76 (1.28–2.43)
0.001
0.0
0.79
 Esophageal cancer
TTP
2
340
2.23 (0.91–5.49)
0.081
77.9
0.033
 Gastric Cancer
OS
2
417
1.68 (1.22–2.32)
0.001
1.5
0.314
 Melanoma
OS
2
164
1.95 (0.45–8.49)
0.376
84.8
0.01
 Vulvar squamous cell carcinoma
OS
2
137
2.92 (1.69–5.04)
< 0.001
0.0
0.69
Age (Mean/Median)
  < 60 years
OS
9
991
2.02 (1.22–3.36)
0.007
83.6
< 0.001
  > 60 years
OS
10
1262
1.76 (1.16–2.67)
0.008
68.8
0.001
Follow-up (Median/Mean)
  ≤ 45 months
OS
8
1092
1.90 (1.29–2.78)
0.001
79.4
< 0.001
  > 45 months
OS
8
783
3.41 (2.41–4.83)
< 0.001
0.0
0.97
Study quality
 NOS score > 7
OS
18
2825
2.00 (1.48–2.69)
< 0.001
72.6
< 0.001
 NOS score ≤ 7
OS
10
632
1.75 (1.20–1.57)
< 0.001
72.4
< 0.001
Abbreviations: HR hazard ratio, CI confidence interval, OS overall survival, TTP time to tumor progression, IHC Immunohistochemistry, qPCR Quantitative Real Time Polymerase Chain Reaction

Publication bias and sensitivity analysis

Evaluation of publication bias between studies was done using Begg’s funnel plot and Egger’s test. The shape of the OS and TTP funnel plots were not significantly asymmetrical, and the Egger’s test indicated OS (P = 0.47) and TTP (P = 0.89). These results suggested that there was no significant publication bias in the meta-analysis of IDO expression in relation to OS and TTP prognosis (Fig. 4). Sensitivity analysis refers to the removal of a study each time to analyze the impact of individual studies on the stability of meta-analysis results. Sensitivity analysis showed that no single study had a significant impact on the conclusions of this meta-analysis (Fig. 5).

Discussions

In this study, we systematically assessed IDO expression level and prognostic indicators of 3939 solid tumor patients from 31 different studies. Our results showed that high expression of IDO predicted poor OS and TTP in cancer patients. However, the results from this meta-analysis indicated that there was significant heterogeneity among these studies. The Begg’s funnel plot and Egger’s test showed that there was no significant publication bias in this meta-analysis, and the sensitivity analysis showed that no single study can influence the conclusion of this meta-analysis.
High expression of IDO was highly correlated with poor prognosis of OS and TTP. However, the heterogeneity was also obvious. It was not difficult to understand that there will be heterogeneity in our study. In 31 studies, a total of 10 tumor types were included, and the role of IDO in different tumors may be inconsistent. For example, three studies have concluded to the contrary. In addition, the study type, IDO test method, number of patients included, follow-up period, and study quality were different in each study, all these factors can lead to heterogeneity. To this end, we performed a subgroup analysis to explore the source of heterogeneity. Subgroup analysis showed that the study location, sample size, and age were not sources of heterogeneity. For OS, no heterogeneity in prospective studies and follow-up period over 45 months studies. These results indicate that the type of study and follow-up period were the reasons for the heterogeneity in this meta-analysis. In addition, in the same type of tumor research (such as digestive system tumors and reproductive system tumors), there was no obvious heterogeneity. Subgroup analysis also showed no heterogeneity in bladder cancer, colorectal cancer, endometrial cancer and esophageal cancer, gastric cancer and vulvar squamous cell carcinoma studies. The difference in study quality may also be the cause of heterogeneity. To this end, we used the NOS score to evaluate the quality of each study and performed a subgroup analysis based on the NOS score. We found that the high-scoring study group did not significantly reduce heterogeneity. Therefore, in this meta-analysis, the quality of study is not the main reason for heterogeneity.
Our study further enhanced the view that high expression of IDO has a poor prognosis for cancer patients by performing meta-analysis on a large number of research data. In addition, this meta-analysis also gives hints on several other aspects. First, the high expression of IDO may be a universal prognostic biomarker for solid tumors. We analyzed 10 different types of solid tumors, including colorectal cancer, endometrial cancer, renal cell carcinoma, hepatocellular carcinoma, etc. Secondly, we verified that both Asian patients and other country patients harboring high expression of IDO were highly correlated with poor prognosis in patients with solid tumors, which did not vary because of ethnic differences. Moreover, our results suggested that the IDO expression can be used as a more widely prognostic biomarker. Finally, this study suggested that IDO had the potential to develop into a prognostic biomarker and a therapeutic target for solid tumors.
It should be noted that, there were limitations in this meta-analysis. First, the definitions of IDO positive and high expression were not completely consistent between studies, which may cause heterogeneity between studies. Secondly, due to limitations from the other included studies and large number of tumor types, we were unable to perform a subgroup analysis for each type of tumor. Thirdly, we extracted the HRs data directly from the original literature, and these data were reliable than calculated HRs indirectly deducted from the literature. However, some studies did not provide complete data and were excluded from statistics, hence some missing information might have reduced the power of IDO as a prognostic biomarker in solid tumor patients.

Conclusions

In summary, this meta-analysis clearly demonstrated that the high expression of IDO in tumor tissues was closely related to poor survival of tumor patients. Our study suggested that IDO may be used as a potential tumor prognostic biomarker and tumor treatment target.

Acknowledgements

Not applicable.
This research work constitutes a meta-analysis of published data and does not include any studies with human participants or animals performed by any of the authors. Hence, no informed consent was required to perform this study.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Munn DH, Mellor AL. Indoleamine 2,3 dioxygenase and metabolic control of immune responses. Trends Immunol. 2013;34(3):137–43.PubMedCrossRef Munn DH, Mellor AL. Indoleamine 2,3 dioxygenase and metabolic control of immune responses. Trends Immunol. 2013;34(3):137–43.PubMedCrossRef
2.
Zurück zum Zitat Ball HJ, Yuasa HJ, Austin CJ, Weiser S, Hunt NH. Indoleamine 2,3-dioxygenase-2; a new enzyme in the kynurenine pathway. Int J Biochem Cell Biol. 2009;41(3):467–71.PubMedCrossRef Ball HJ, Yuasa HJ, Austin CJ, Weiser S, Hunt NH. Indoleamine 2,3-dioxygenase-2; a new enzyme in the kynurenine pathway. Int J Biochem Cell Biol. 2009;41(3):467–71.PubMedCrossRef
3.
Zurück zum Zitat Mbongue J, Nicholas D, Torrez T, Kim N, Firek A, Langridge W. The role of Indoleamine 2, 3-Dioxygenase in immune suppression and autoimmunity. Vaccines. 2015;3(3):703–29.PubMedPubMedCentralCrossRef Mbongue J, Nicholas D, Torrez T, Kim N, Firek A, Langridge W. The role of Indoleamine 2, 3-Dioxygenase in immune suppression and autoimmunity. Vaccines. 2015;3(3):703–29.PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Nguyen NT, Nakahama T, Le DH, Van Son L, Chu HH, Kishimoto T. Aryl hydrocarbon receptor and Kynurenine: recent advances in autoimmune disease research. Front Immunol. 2014;5:551.PubMedPubMedCentralCrossRef Nguyen NT, Nakahama T, Le DH, Van Son L, Chu HH, Kishimoto T. Aryl hydrocarbon receptor and Kynurenine: recent advances in autoimmune disease research. Front Immunol. 2014;5:551.PubMedPubMedCentralCrossRef
5.
6.
Zurück zum Zitat Boasso A, Herbeuval JP, Hardy AW, Anderson SA, Dolan MJ, Fuchs D, Shearer GM. HIV inhibits CD4+ T-cell proliferation by inducing indoleamine 2,3-dioxygenase in plasmacytoid dendritic cells. BLOOD. 2007;109(8):3351–9.PubMedPubMedCentralCrossRef Boasso A, Herbeuval JP, Hardy AW, Anderson SA, Dolan MJ, Fuchs D, Shearer GM. HIV inhibits CD4+ T-cell proliferation by inducing indoleamine 2,3-dioxygenase in plasmacytoid dendritic cells. BLOOD. 2007;109(8):3351–9.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat von Bubnoff D, Bieber T. The indoleamine 2,3-dioxygenase (IDO) pathway controls allergy. ALLERGY. 2012;67(6):718–25.CrossRef von Bubnoff D, Bieber T. The indoleamine 2,3-dioxygenase (IDO) pathway controls allergy. ALLERGY. 2012;67(6):718–25.CrossRef
9.
Zurück zum Zitat Platten M, von Knebel DN, Oezen I, Wick W, Ochs K. Cancer immunotherapy by targeting IDO1/TDO and their downstream effectors. Front Immunol. 2015;5:673.PubMedPubMedCentralCrossRef Platten M, von Knebel DN, Oezen I, Wick W, Ochs K. Cancer immunotherapy by targeting IDO1/TDO and their downstream effectors. Front Immunol. 2015;5:673.PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Jiang T, Sun Y, Yin Z, Feng S, Sun L, Li Z. Research progress of indoleamine 2,3-dioxygenase inhibitors. Future Med Chem. 2015;7(2):185–201.PubMedCrossRef Jiang T, Sun Y, Yin Z, Feng S, Sun L, Li Z. Research progress of indoleamine 2,3-dioxygenase inhibitors. Future Med Chem. 2015;7(2):185–201.PubMedCrossRef
11.
Zurück zum Zitat Liu X, Newton RC, Friedman SM, Scherle PA. Indoleamine 2,3-dioxygenase, an emerging target for anti-cancer therapy. Curr Cancer Drug Targets. 2009;9(8):938–52.PubMedCrossRef Liu X, Newton RC, Friedman SM, Scherle PA. Indoleamine 2,3-dioxygenase, an emerging target for anti-cancer therapy. Curr Cancer Drug Targets. 2009;9(8):938–52.PubMedCrossRef
12.
Zurück zum Zitat Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg. 2010;8(5):336–41.CrossRefPubMed Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg. 2010;8(5):336–41.CrossRefPubMed
13.
Zurück zum Zitat Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25(9):603–5.CrossRef Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25(9):603–5.CrossRef
14.
Zurück zum Zitat Brandacher G. Prognostic value of Indoleamine 2,3-Dioxygenase expression in colorectal Cancer: effect on tumor-infiltrating T cells. Clin Cancer Res. 2006;12(4):1144–51.PubMedCrossRef Brandacher G. Prognostic value of Indoleamine 2,3-Dioxygenase expression in colorectal Cancer: effect on tumor-infiltrating T cells. Clin Cancer Res. 2006;12(4):1144–51.PubMedCrossRef
15.
Zurück zum Zitat Ino K, Yoshida N, Kajiyama H, Shibata K, Yamamoto E, Kidokoro K, Takahashi N, Terauchi M, Nawa A, Nomura S, et al. Indoleamine 2,3-dioxygenase is a novel prognostic indicator for endometrial cancer. Br J Cancer. 2006;95(11):1555–61.PubMedPubMedCentralCrossRef Ino K, Yoshida N, Kajiyama H, Shibata K, Yamamoto E, Kidokoro K, Takahashi N, Terauchi M, Nawa A, Nomura S, et al. Indoleamine 2,3-dioxygenase is a novel prognostic indicator for endometrial cancer. Br J Cancer. 2006;95(11):1555–61.PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat Riesenberg R, Weiler C, Spring O, Eder M, Buchner A, Popp T, Castro M, Kammerer R, Takikawa O, Hatz RA, et al. Expression of indoleamine 2,3-dioxygenase in tumor endothelial cells correlates with long-term survival of patients with renal cell carcinoma. Clin Cancer Res. 2007;13(23):6993–7002.PubMedCrossRef Riesenberg R, Weiler C, Spring O, Eder M, Buchner A, Popp T, Castro M, Kammerer R, Takikawa O, Hatz RA, et al. Expression of indoleamine 2,3-dioxygenase in tumor endothelial cells correlates with long-term survival of patients with renal cell carcinoma. Clin Cancer Res. 2007;13(23):6993–7002.PubMedCrossRef
17.
Zurück zum Zitat Pan K, Wang H, Chen MS, Zhang HK, Weng DS, Zhou J, Huang W, Li JJ, Song HF, Xia JC. Expression and prognosis role of indoleamine 2,3-dioxygenase in hepatocellular carcinoma. J Cancer Res Clin Oncol. 2008;134(11):1247–53.PubMedCrossRef Pan K, Wang H, Chen MS, Zhang HK, Weng DS, Zhou J, Huang W, Li JJ, Song HF, Xia JC. Expression and prognosis role of indoleamine 2,3-dioxygenase in hepatocellular carcinoma. J Cancer Res Clin Oncol. 2008;134(11):1247–53.PubMedCrossRef
18.
Zurück zum Zitat Ino K, Yamamoto E, Shibata K, Kajiyama H, Yoshida N, Terauchi M, Nawa A, Nagasaka T, Takikawa O, Kikkawa F. Inverse correlation between tumoral indoleamine 2,3-dioxygenase expression and tumor-infiltrating lymphocytes in endometrial cancer: its association with disease progression and survival. Clin Cancer Res. 2008;14(8):2310–7.PubMedCrossRef Ino K, Yamamoto E, Shibata K, Kajiyama H, Yoshida N, Terauchi M, Nawa A, Nagasaka T, Takikawa O, Kikkawa F. Inverse correlation between tumoral indoleamine 2,3-dioxygenase expression and tumor-infiltrating lymphocytes in endometrial cancer: its association with disease progression and survival. Clin Cancer Res. 2008;14(8):2310–7.PubMedCrossRef
19.
Zurück zum Zitat Urakawa H, Nishida Y, Nakashima H, Shimoyama Y, Nakamura S, Ishiguro N. Prognostic value of indoleamine 2,3-dioxygenase expression in high grade osteosarcoma. CLIN EXP METASTAS. 2009;26(8):1005–12.CrossRef Urakawa H, Nishida Y, Nakashima H, Shimoyama Y, Nakamura S, Ishiguro N. Prognostic value of indoleamine 2,3-dioxygenase expression in high grade osteosarcoma. CLIN EXP METASTAS. 2009;26(8):1005–12.CrossRef
20.
Zurück zum Zitat Inaba T, Ino K, Kajiyama H, Shibata K, Yamamoto E, Kondo S, Umezu T, Nawa A, Takikawa O, Kikkawa F. Indoleamine 2,3-dioxygenase expression predicts impaired survival of invasive cervical cancer patients treated with radical hysterectomy. Gynecol Oncol. 2010;117(3):423–8.PubMedCrossRef Inaba T, Ino K, Kajiyama H, Shibata K, Yamamoto E, Kondo S, Umezu T, Nawa A, Takikawa O, Kikkawa F. Indoleamine 2,3-dioxygenase expression predicts impaired survival of invasive cervical cancer patients treated with radical hysterectomy. Gynecol Oncol. 2010;117(3):423–8.PubMedCrossRef
21.
Zurück zum Zitat Sznurkowski JJ, Awrocki A, Emerich J, Sznurkowska K, Biernat W. Expression of indoleamine 2,3-dioxygenase predicts shorter survival in patients with vulvar squamous cell carcinoma (vSCC) not influencing on the recruitment of FOXP3-expressing regulatory T cells in cancer nests. Gynecol Oncol. 2011;122(2):307–12.PubMedCrossRef Sznurkowski JJ, Awrocki A, Emerich J, Sznurkowska K, Biernat W. Expression of indoleamine 2,3-dioxygenase predicts shorter survival in patients with vulvar squamous cell carcinoma (vSCC) not influencing on the recruitment of FOXP3-expressing regulatory T cells in cancer nests. Gynecol Oncol. 2011;122(2):307–12.PubMedCrossRef
22.
Zurück zum Zitat Speeckaert R, Vermaelen K, van Geel N, Autier P, Lambert J, Haspeslagh M, van Gele M, Thielemans K, Neyns B, Roche N, et al. Indoleamine 2,3-dioxygenase, a new prognostic marker in sentinel lymph nodes of melanoma patients. Eur J Cancer. 2012;48(13):2004–11.PubMedCrossRef Speeckaert R, Vermaelen K, van Geel N, Autier P, Lambert J, Haspeslagh M, van Gele M, Thielemans K, Neyns B, Roche N, et al. Indoleamine 2,3-dioxygenase, a new prognostic marker in sentinel lymph nodes of melanoma patients. Eur J Cancer. 2012;48(13):2004–11.PubMedCrossRef
23.
Zurück zum Zitat de Jong RA, Kema IP, Boerma A, Boezen HM, van der Want JJ, Gooden MJ, Hollema H, Nijman HW. Prognostic role of indoleamine 2,3-dioxygenase in endometrial carcinoma. Gynecol Oncol. 2012;126(3):474–80.PubMedCrossRef de Jong RA, Kema IP, Boerma A, Boezen HM, van der Want JJ, Gooden MJ, Hollema H, Nijman HW. Prognostic role of indoleamine 2,3-dioxygenase in endometrial carcinoma. Gynecol Oncol. 2012;126(3):474–80.PubMedCrossRef
24.
Zurück zum Zitat Ye J, Liu H, Hu Y, Li P, Zhang G, Li Y. Tumoral indoleamine 2,3-dioxygenase expression predicts poor outcome in laryngeal squamous cell carcinoma. Virchows Arch. 2013;462(1):73–81.PubMedCrossRef Ye J, Liu H, Hu Y, Li P, Zhang G, Li Y. Tumoral indoleamine 2,3-dioxygenase expression predicts poor outcome in laryngeal squamous cell carcinoma. Virchows Arch. 2013;462(1):73–81.PubMedCrossRef
25.
Zurück zum Zitat Jia Y, Wang H, Wang Y, Wang T, Wang M, Ma M, Duan Y, Meng X, Liu L. Low expression of Bin1, along with high expression of IDO in tumor tissue and draining lymph nodes, are predictors of poor prognosis for esophageal squamous cell cancer patients. Int J Cancer. 2015;137(5):1095–106.PubMedCrossRef Jia Y, Wang H, Wang Y, Wang T, Wang M, Ma M, Duan Y, Meng X, Liu L. Low expression of Bin1, along with high expression of IDO in tumor tissue and draining lymph nodes, are predictors of poor prognosis for esophageal squamous cell cancer patients. Int J Cancer. 2015;137(5):1095–106.PubMedCrossRef
26.
Zurück zum Zitat Pelak MJ, Śnietura M, Lange D, Nikiel B, Pecka KM. The prognostic significance of indoleamine-2,3-dioxygenase and the receptors for transforming growth factor β and interferon γ in metastatic lymph nodes in malignant melanoma. Pol J Pathol. 2015;4:376–82.CrossRef Pelak MJ, Śnietura M, Lange D, Nikiel B, Pecka KM. The prognostic significance of indoleamine-2,3-dioxygenase and the receptors for transforming growth factor β and interferon γ in metastatic lymph nodes in malignant melanoma. Pol J Pathol. 2015;4:376–82.CrossRef
27.
Zurück zum Zitat Ben-Haj-Ayed A, Moussa A, Ghedira R, Gabbouj S, Miled S, Bouzid N, Tebra-Mrad S, Bouaouina N, Chouchane L, Zakhama A, et al. Prognostic value of indoleamine 2,3-dioxygenase activity and expression in nasopharyngeal carcinoma. Immunol Lett. 2016;169:23–32.PubMedCrossRef Ben-Haj-Ayed A, Moussa A, Ghedira R, Gabbouj S, Miled S, Bouzid N, Tebra-Mrad S, Bouaouina N, Chouchane L, Zakhama A, et al. Prognostic value of indoleamine 2,3-dioxygenase activity and expression in nasopharyngeal carcinoma. Immunol Lett. 2016;169:23–32.PubMedCrossRef
28.
Zurück zum Zitat Liu H, Shen Z, Wang Z, Wang X, Zhang H, Qin J, Qin X, Xu J, Sun Y. Increased expression of IDO associates with poor postoperative clinical outcome of patients with gastric adenocarcinoma. Sci Rep. 2016;6:21319.PubMedPubMedCentralCrossRef Liu H, Shen Z, Wang Z, Wang X, Zhang H, Qin J, Qin X, Xu J, Sun Y. Increased expression of IDO associates with poor postoperative clinical outcome of patients with gastric adenocarcinoma. Sci Rep. 2016;6:21319.PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat Zhang T, Tan XL, Xu Y, Wang ZZ, Xiao CH, Liu R. Expression and prognostic value of Indoleamine 2,3-dioxygenase in pancreatic Cancer. Chin Med J. 2017;130(6):710–6.PubMedPubMedCentralCrossRef Zhang T, Tan XL, Xu Y, Wang ZZ, Xiao CH, Liu R. Expression and prognostic value of Indoleamine 2,3-dioxygenase in pancreatic Cancer. Chin Med J. 2017;130(6):710–6.PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Hudolin T, Mengus C, Coulot J, Kastelan Z, El-Saleh A, Spagnoli GC. Expression of Indoleamine 2,3-Dioxygenase gene is a feature of poorly differentiated non-muscle-invasive Urothelial cell bladder carcinomas. Anticancer Res. 2017;37(3):1375–80.PubMedCrossRef Hudolin T, Mengus C, Coulot J, Kastelan Z, El-Saleh A, Spagnoli GC. Expression of Indoleamine 2,3-Dioxygenase gene is a feature of poorly differentiated non-muscle-invasive Urothelial cell bladder carcinomas. Anticancer Res. 2017;37(3):1375–80.PubMedCrossRef
31.
Zurück zum Zitat Carvajal-Hausdorf DE, Mani N, Velcheti V, Schalper KA, Rimm DL. Objective measurement and clinical significance of IDO1 protein in hormone receptor-positive breast cancer. J IMMUNOTHER CANCER. 2017;5(1):81.PubMedPubMedCentralCrossRef Carvajal-Hausdorf DE, Mani N, Velcheti V, Schalper KA, Rimm DL. Objective measurement and clinical significance of IDO1 protein in hormone receptor-positive breast cancer. J IMMUNOTHER CANCER. 2017;5(1):81.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Zhai L, Ladomersky E, Lauing KL, Wu M, Genet M, Gritsina G, Gyorffy B, Brastianos PK, Binder DC, Sosman JA, et al. Infiltrating T cells increase IDO1 expression in Glioblastoma and contribute to decreased patient survival. Clin Cancer Res. 2017;23(21):6650–60.PubMedPubMedCentralCrossRef Zhai L, Ladomersky E, Lauing KL, Wu M, Genet M, Gritsina G, Gyorffy B, Brastianos PK, Binder DC, Sosman JA, et al. Infiltrating T cells increase IDO1 expression in Glioblastoma and contribute to decreased patient survival. Clin Cancer Res. 2017;23(21):6650–60.PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Ma W, Wang X, Yan W, Zhou Z, Pan Z, Chen G, Zhang R. Indoleamine-2,3-dioxygenase 1/cyclooxygenase 2 expression prediction for adverse prognosis in colorectal cancer. WORLD J GASTROENTERO. 2018;24(20):2181–90.CrossRef Ma W, Wang X, Yan W, Zhou Z, Pan Z, Chen G, Zhang R. Indoleamine-2,3-dioxygenase 1/cyclooxygenase 2 expression prediction for adverse prognosis in colorectal cancer. WORLD J GASTROENTERO. 2018;24(20):2181–90.CrossRef
34.
Zurück zum Zitat Wei Y, Chu C, Chang C, Lin S, Su W, Tseng Y, Lin C, Yen Y. Different pattern of PD-L1, IDO, and FOXP3 Tregs expression with survival in thymoma and thymic carcinoma. Lung Cancer. 2018;125:35–42.PubMedCrossRef Wei Y, Chu C, Chang C, Lin S, Su W, Tseng Y, Lin C, Yen Y. Different pattern of PD-L1, IDO, and FOXP3 Tregs expression with survival in thymoma and thymic carcinoma. Lung Cancer. 2018;125:35–42.PubMedCrossRef
35.
Zurück zum Zitat Takeya H, Shiota T, Yagi T, Ohnishi K, Baba Y, Miyasato Y, Kiyozumi Y, Yoshida N, Takeya M, Baba H, et al. High CD169 expression in lymph node macrophages predicts a favorable clinical course in patients with esophageal cancer. Pathol Int. 2018;68(12):685–93.PubMedCrossRef Takeya H, Shiota T, Yagi T, Ohnishi K, Baba Y, Miyasato Y, Kiyozumi Y, Yoshida N, Takeya M, Baba H, et al. High CD169 expression in lymph node macrophages predicts a favorable clinical course in patients with esophageal cancer. Pathol Int. 2018;68(12):685–93.PubMedCrossRef
36.
Zurück zum Zitat Kiyozumi Y, Baba Y, Okadome K, Yagi T, Ishimoto T, Iwatsuki M, Miyamoto Y, Yoshida N, Watanabe M, Komohara Y, et al. IDO1 expression is associated with immune tolerance and poor prognosis in patients with surgically resected esophageal cancer. Ann Surg. 2019;269(6):1101–8.PubMedCrossRef Kiyozumi Y, Baba Y, Okadome K, Yagi T, Ishimoto T, Iwatsuki M, Miyamoto Y, Yoshida N, Watanabe M, Komohara Y, et al. IDO1 expression is associated with immune tolerance and poor prognosis in patients with surgically resected esophageal cancer. Ann Surg. 2019;269(6):1101–8.PubMedCrossRef
37.
Zurück zum Zitat Nishi M, Yoshikawa K, Higashijima J, Tokunaga T, Kashihara H, Takasu C, Ishikawa D, Wada Y, Shimada M. The impact of Indoleamine 2,3-dioxygenase (IDO) expression on stage III gastric Cancer. Anticancer Res. 2018;38(6):3387–92.PubMedCrossRef Nishi M, Yoshikawa K, Higashijima J, Tokunaga T, Kashihara H, Takasu C, Ishikawa D, Wada Y, Shimada M. The impact of Indoleamine 2,3-dioxygenase (IDO) expression on stage III gastric Cancer. Anticancer Res. 2018;38(6):3387–92.PubMedCrossRef
38.
Zurück zum Zitat Ahmadzada T, Lee K, Clarke C, Cooper WA, Linton A, McCaughan B, Asher R, Clarke S, Reid G, Kao S. High BIN1 expression has a favorable prognosis in malignant pleural mesothelioma and is associated with tumor infiltrating lymphocytes. Lung Cancer. 2019;130:35–41.PubMedCrossRef Ahmadzada T, Lee K, Clarke C, Cooper WA, Linton A, McCaughan B, Asher R, Clarke S, Reid G, Kao S. High BIN1 expression has a favorable prognosis in malignant pleural mesothelioma and is associated with tumor infiltrating lymphocytes. Lung Cancer. 2019;130:35–41.PubMedCrossRef
39.
Zurück zum Zitat Ma W, Duan H, Zhang R, Wang X, Xu H, Zhou Q, Zhang L. High expression of Indoleamine 2, 3-Dioxygenase in Adenosquamous lung carcinoma correlates with favorable patient outcome. J Cancer. 2019;10(1):267–76.PubMedPubMedCentralCrossRef Ma W, Duan H, Zhang R, Wang X, Xu H, Zhou Q, Zhang L. High expression of Indoleamine 2, 3-Dioxygenase in Adenosquamous lung carcinoma correlates with favorable patient outcome. J Cancer. 2019;10(1):267–76.PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Mitra D, Horick NK, Brackett DG, Mouw KW, Hornick JL, Ferrone S, Hong TS, Mamon H, Clark JW, Parikh AR, et al. High IDO1 expression is associated with poor outcome in patients with anal cancer treated with definitive chemoradiotherapy. Oncologist. 2019;24(6):e275–e283. Mitra D, Horick NK, Brackett DG, Mouw KW, Hornick JL, Ferrone S, Hong TS, Mamon H, Clark JW, Parikh AR, et al. High IDO1 expression is associated with poor outcome in patients with anal cancer treated with definitive chemoradiotherapy. Oncologist. 2019;24(6):e275–e283.
41.
Zurück zum Zitat Schollbach J, Kircher S, Wiegering A, Seyfried F, Klein I, Rosenwald A, Germer C, Löb S. Prognostic value of tumour-infiltrating CD8+ lymphocytes in rectal cancer after neoadjuvant chemoradiation: is indoleamine-2,3-dioxygenase (IDO1) a friend or foe? Cancer Immunol Immunother. 2019;68(4):563–75.PubMedCrossRef Schollbach J, Kircher S, Wiegering A, Seyfried F, Klein I, Rosenwald A, Germer C, Löb S. Prognostic value of tumour-infiltrating CD8+ lymphocytes in rectal cancer after neoadjuvant chemoradiation: is indoleamine-2,3-dioxygenase (IDO1) a friend or foe? Cancer Immunol Immunother. 2019;68(4):563–75.PubMedCrossRef
42.
Zurück zum Zitat Boujelbene N, Ben Yahia H, Babay W, Gadria S, Zemni I, Azaiez H, Dhouioui S, Zidi N, Mchiri R, Mrad K, et al. HLA-G, HLA-E, and IDO overexpression predicts a worse survival of Tunisian patients with vulvar squamous cell carcinoma. HLA. 2019;94(1):11–24.PubMed Boujelbene N, Ben Yahia H, Babay W, Gadria S, Zemni I, Azaiez H, Dhouioui S, Zidi N, Mchiri R, Mrad K, et al. HLA-G, HLA-E, and IDO overexpression predicts a worse survival of Tunisian patients with vulvar squamous cell carcinoma. HLA. 2019;94(1):11–24.PubMed
43.
Zurück zum Zitat Zhou S, Zhao L, Liang Z, Liu S, Li Y, Liu S, Yang H, Liu M, Xi M. Indoleamine 2,3-dioxygenase 1 and programmed cell death-ligand 1 co-expression predicts poor pathologic response and recurrence in esophageal squamous cell carcinoma after neoadjuvant chemoradiotherapy. Cancers (Basel). 2019;11(2):169.PubMedCentralCrossRef Zhou S, Zhao L, Liang Z, Liu S, Li Y, Liu S, Yang H, Liu M, Xi M. Indoleamine 2,3-dioxygenase 1 and programmed cell death-ligand 1 co-expression predicts poor pathologic response and recurrence in esophageal squamous cell carcinoma after neoadjuvant chemoradiotherapy. Cancers (Basel). 2019;11(2):169.PubMedCentralCrossRef
44.
Zurück zum Zitat Tsai Y, Jou Y, Tsai H, Cheong I, Tzai T. Indoleamine-2,3-dioxygenase-1 expression predicts poorer survival and up-regulates ZEB2 expression in human early stage bladder cancer. Urol Oncol. 2019;37(11):810.e17–27.CrossRef Tsai Y, Jou Y, Tsai H, Cheong I, Tzai T. Indoleamine-2,3-dioxygenase-1 expression predicts poorer survival and up-regulates ZEB2 expression in human early stage bladder cancer. Urol Oncol. 2019;37(11):810.e17–27.CrossRef
Metadaten
Titel
The prognostic value of IDO expression in solid tumors: a systematic review and meta-analysis
verfasst von
Sen Wang
Jia Wu
Han Shen
Junjun Wang
Publikationsdatum
01.12.2020
Verlag
BioMed Central
Erschienen in
BMC Cancer / Ausgabe 1/2020
Elektronische ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-020-06956-5

Weitere Artikel der Ausgabe 1/2020

BMC Cancer 1/2020 Zur Ausgabe

CAR-M-Zellen: Warten auf das große Fressen

22.05.2024 Onkologische Immuntherapie Nachrichten

Auch myeloide Immunzellen lassen sich mit chimären Antigenrezeptoren gegen Tumoren ausstatten. Solche CAR-Fresszell-Therapien werden jetzt für solide Tumoren entwickelt. Künftig soll dieser Prozess nicht mehr ex vivo, sondern per mRNA im Körper der Betroffenen erfolgen.

Blutdrucksenkung könnte Uterusmyome verhindern

Frauen mit unbehandelter oder neu auftretender Hypertonie haben ein deutlich erhöhtes Risiko für Uterusmyome. Eine Therapie mit Antihypertensiva geht hingegen mit einer verringerten Inzidenz der gutartigen Tumoren einher.

Alphablocker schützt vor Miktionsproblemen nach der Biopsie

16.05.2024 alpha-1-Rezeptorantagonisten Nachrichten

Nach einer Prostatabiopsie treten häufig Probleme beim Wasserlassen auf. Ob sich das durch den periinterventionellen Einsatz von Alphablockern verhindern lässt, haben australische Mediziner im Zuge einer Metaanalyse untersucht.

Antikörper-Wirkstoff-Konjugat hält solide Tumoren in Schach

16.05.2024 Zielgerichtete Therapie Nachrichten

Trastuzumab deruxtecan scheint auch jenseits von Lungenkrebs gut gegen solide Tumoren mit HER2-Mutationen zu wirken. Dafür sprechen die Daten einer offenen Pan-Tumor-Studie.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.