Skip to main content
Erschienen in: BMC Neurology 1/2022

Open Access 01.12.2022 | Research

The prognostic value of the Charlson comorbidity index in aged patients with intracerebral hemorrhage

verfasst von: Tianjie Zhang, Ruiqi Chen, Dingke Wen, Xing Wang, Lu Ma

Erschienen in: BMC Neurology | Ausgabe 1/2022

Abstract

Background

Comorbidities are common in aged intracerebral hemorrhage patients. The purpose of this study was to assess whether the Charlson Comorbidity Index (CCI) was associated with in-hospital death and short-term functional outcome in elderly patients (age ≥ 70) with intracerebral hemorrhage (ICH).

Methods

This was a retrospective cohort of aged ICH patients (≥70 years old) admitted within 24 hours of ICH onset. The CCI was derived using hospital discharge ICD-9 CM codes and patient history obtained from standardized case report forms. Multivariable logistic regression was used to determine the independent effect of the CCI score on clinical outcomes.

Results

In this cohort of 248 aged ICH patients, comorbid conditions were common, with CCI scores ranging from 2 to 12. Logistic regression showed that the CCI score was independently predictive of 1-month functional outcome (OR = 1.642, P < 0.001) and in-hospital death (OR = 1.480, P = 0.003). Neither ICH volume nor the presence of IVH was an independent predictive factor for 1-month functional outcome or in-hospital mortality (P < 0.05).

Conclusion

Comorbid medical conditions as assessed by the CCI independently influence short-term outcomes in aged ICH patients. The characteristics of the hematoma itself, such as ICH volume and the presence of IVH, seem to have a reduced effect on it.
Hinweise
Tianjie Zhang and Ruiqi Chen should be considered as joint first authors.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

Intracerebral hemorrhage (ICH) accounts for 6.5 to 19.6% of all strokes [1, 2], and it is significantly more common in the elderly population [3], accounting for approximately 25% of all strokes [4]. As the population continues to age, the prevalence of ICH in increasingly aged patients will increase accordingly [5]. Despite numerous advances in stroke management and neurocritical care, ICH remains the most devastating cerebrovascular disease subtype with significant rates of disability and mortality. The 1-year survival from ICH is approximately 40%, and older age is associated with an increased risk of 30-day death [3, 6].
Over the past few decades, great advances have been made in neurocritical care that may help improve the outcome of cerebral hemorrhage. For these aged ICH patients, stratification is of great necessity to appropriately allocate limited medical resources and counsel both patients and their families in goals of cure. However, considering the high morbidity and mortality of ICH in the elderly population and the heavy burden it may impose on families and society, it is vital that these decisions are based on accurate and repeatable information. Therefore, it is essential to reevaluate previously validated scores, such as the Charlson Comorbidity Index (CCI), to assess whether their prognostic ability can improve with medical advances [7].
Comorbidities are common in ICH patients, especially in elderly individuals, [5, 8] and they are widely considered as one of the factors affecting the outcomes of stroke [913], but few studies have focused on hemorrhagic stroke. The CCI accounts for multiple comorbidities by creating a sum score weighted according to the presence of various conditions, which was originally developed against 1-year death, and its validity as a predictor of other outcome measures, either in the short term or in-hospital death, has not been tested in ICH. Therefore, the aim of this study was to determine whether a patient’s prehemorrhage medical comorbidities, as assessed by the CCI, affect ICH short-term outcomes. The results of this study may be helpful to obtain a better understanding of ICH in the elderly age group and to assist in the choice of best clinical decision making.

Methods

Materials and patients

We performed a retrospective chart review of aged ICH patients (≥70 years old) admitted to the Department of Neurosurgery, West China Hospital (WCH), from December 2018 to December 2020. The study was approved by the Institutional Review Board (IRB) of WCH for retrospective chart review without the need for patient consent. The inclusion criteria were as follows: (1) over 70 years of age; (2) admitted to our department within 24 hours of ICH onset; (3) admission diagnosis of ICH based on brain CT scans; (4) available clinical data, including medical history and baseline information; and (5) neuroimaging to evaluate the characteristics of the hematoma. The exclusion criteria were as follows: (1) secondary ICH (aneurysm, vascular malformation, or tumor); (2) unavailability of outcome data; and (3) patients who declined to participate.

CCI

The CCI incorporates the use of 19 separate health conditions on a 1- to 6-point scale (minimum score 0, maximum score 37) to develop a composite score [14]. For example, “diabetes with end-organ damage” and “hemiplegia” are each assigned 2 points within the CCI scoring system. The specific content of CCI score is based on ICD-9 code [15]. Variables in the CCI were retrospectively collected from the hospital information system (HIS) of WCH. The CCI was retrospectively calculated at admission on the basis of International Classification of Diseases, Ninth Revision, Clinical Modification codes. Two experienced, uninformed researchers independently scored and took the final average. More diseases appeared during hospitalization, except for cerebrovascular disease and hemiplegia secondary to ICH.

Data collection and grouping

For every patient, the variables collected included age, sex, height, weight, clinical record, previous medical history, anticoagulant (AC) use, baseline CT imaging characteristics and admission Glasgow Coma Scale (GCS). All initial computed tomography (CT) scans of the head were reviewed for the location and presence of IVH, subarachnoid hemorrhage (SAH) and finger-like projection. ICH volume was calculated using the ABC/2 method [16]. All the data were obtained from the hospital information system (HIS) of WCH except for the CCI scores, which were assessed and calculated by an experienced neurosurgeon. In addition, research assistants collected the outcomes of every patient for the follow-up period, including the 30-day modified Rankin scale (mRS) score and in-hospital death.

Outcome measures

Patients were grouped according to the modified Rankin Scale (mRS) score at 30 days from onset. The mRS was measured at the outpatient visit or by telephone using a structured interview [17]. Patients with a 30-day mRS score ≥ 3 points were divided into the poor-outcome group, and patients with a 30-day mRS score < 3 points were divided into the favorable-outcome group. We first compared the differences in the CCI and other indicators between the two groups by univariate analysis. After that, the results with P < 0.1 and other possible indicators associated with 30-day prognosis and death were included in a multivariate analysis to explore independent factors associated with poor prognosis and in-hospital death in elderly ICH patients. Finally, the integrity and completeness of all data were regularly checked by another experienced researcher.

Statistical analyses

All statistical analyses were performed by SPSS statistical software (version 22.0; SPSS Inc., Chicago, Illinois, USA) and MedCalc statistical software (version 15.2; MedCalc Software, Mariakerke, Ostend, Belgium). Continuous data are expressed as the mean ± standard deviation (SD). Categorical parameters are reported as frequencies and percentages. First, the correlation between variables was analyzed by univariate analysis. Chi-square test is performed on categorical and binary data, and Student’s t test is used for continuous variables. The relationship between the unadjusted CCI score and 1-month functional status after the event as well as in-hospital death were determined. Finally, the independent effect of CCI score on each outcome was then determined by multivariable logistic regression, and sex, IVH, ICH location admission GCS and ICH volume were controlled. Two-tailed p < 0.05 was considered significant.

Results

A total of 248 patients were analyzed in the study. Table 1 shows the frequency of CCI categories in our ICH cohort. All our samples are older than 70 years old, of which 28.2% are over 80 years old. The most frequent comorbidities were pulmonary disease found in 80.6% of patients, followed by cerebrovascular disease (62.5%) and diabetes (15.7%, without complications in 13.7%). Other frequent conditions were congestive heart failure (6.5%), ulcer disease (5.6%), and hemiplegia (5.6%).
Table 1
Frequency of Charlson Comorbidity Index categories in the intracerebral hemorrhage cohort (n = 248)
Condition
Frequency, N (%)
Age
 70-79 (%)
178 (71.8)
 80-89 (%)
64 (25.8)
 90-95 (%)
6 (2.4)
Pulmonary disease (%)
200 (80.6)
Cerebrovascular disease (%)
155 (62.5)
Diabetes without end-organ damage (%)
34 (13.7)
Congestive heart failure (%)
16 (6.5)
Ulcer disease (%)
14 (5.6)
Hemiplegia (%)
14 (5.6)
Dementia (%)
11 (4.4)
Any tumor (%)
8 (3.2)
Mild liver disease (%)
5 (2.0)
Moderate or severe renal disease (%)
5 (2.0)
Diabetes with end-organ damage (%)
5 (2.0)
Moderate or severe liver disease (%)
5 (2.0)
Peripheral vascular disease (%)
4 (1.6)
Myocardial infarction (%)
3 (1.2)
Connective tissue disease (%)
2 (0.8)
Metastatic solid tumor (%)
2 (0.8)
Leukemia (%)
1 (0.4)
Lymphoma (%)
0 (0.0)
AIDS (%)
0 (0.0)
Figure 1 gives the distribution of CCI scores. The mean CCI score was 4.41 (standard deviation 1.54), with a median of 4 (25th to 75th percentile: 3-5). The range was 2-12.
Overall, 17 patients (8%) died during hospitalization, and 127 patients (51.2%) had a poor outcome after 30 days of ICH. Table 2 shows the distribution of the demographic and clinical characteristics of the study participants who were grouped into poor or favorable outcomes based on the 30-day mRS score. The poor outcome group included higher CCI scores [(4.93 ± 1.57) vs (3.92 ± 1.33), p < 0.001], lower admission GCS [(8.23 ± 3.32) vs. (13.48 ± 1.68), p < 0.001], higher ICH volume [(58.62 ± 47.20) vs. (24.32 ± 21.52), p < 0.001], and a higher proportion of IVH (72.7 vs. 34.6%, p < 0.001). SAH (41.5 vs. 22.2%, p = 0.032) and finger-like projection (64.2 vs. 24.1%, p < 0.001) rates were higher in the poor outcome group in aged lobar hemorrhage patients.
Table 2
Demographic and clinical characteristics of elderly SICH patients
 
Total
(n = 248)
Poor Outcome
(n = 121)
Favorable Outcome
(n = 127)
P
Men (%)
152 (61.3)
68 (56.2)
84 (66.1)
0.171
Weight, kg (mean ± SD)
59.14 ± 10.78
58.03 ± 11.42
60.05 ± 10.21
0.287
Hight, cm (mean ± SD)
161.52 ± 8.02
160.67 ± 7.45
162.26 ± 8.46
0.233
Smoke (%)
41 (16.5)
17 (14.0)
24 (18.9)
0.304
Alcohol (%)
33 (13.3)
13 (10.7)
20 (15.7)
0.246
Anticoagulant agent used (%)
8 (3.2)
5 (4.1)
3 (2.4)
0.430
Hypertension (%)
199 (80.2)
99 (81.8)
100 (78.7)
0.543
CCI, (mean ± SD)
4.42 ± 1.54
4.93 ± 1.57
3.92 ± 1.33
< 0.001
Admission GCS, (mean ± SD)
10.92 ± 3.70
8.23 ± 3.32
13.48 ± 1.68
< 0.001
Hematoma Location
 Infratentorial (%)
34 (13.7)
19 (15.7)
15 (11.8)
0.373
 Supratentorial (%)
214 (86.3)
102 (84.3)
112 (88.2)
 Lobar (%)
107 (43.1)
53 (43.8)
54 (42.5)
0.839
  SAH, % (n)
34 (31.8)
22 (41.5)
12 (22.2)
0.032
  Finger-like Projections (%)
47 (43.9)
34 (64.2)
13 (24.1)
< 0.001
ICH Volume, cm3, (mean ± SD)
41.06 ± 40.16
58.62 ± 47.20
24.32 ± 21.52
< 0.001
IVH (%)
132 (53.2)
88 (72.7)
44 (34.6)
< 0.001
In multivariate analysis, as shown in Table 3, the CCI score (odds ratio (OR) 1.642, 95% CI 1.254 ~ 2.150, P < 0.001), admission GCS (OR 0.505, 95% CI 0.408 ~ 0.626, P < 0.001), and ICH location in infratentorial region (OR 3.492, 95% CI 1.489 ~ 5.690, P = 0.002) independently predicted 30-day mRS outcome. The CCI score (OR 1.408, 95% CI 1.147 ~ 1.910, P = 0.003), admission GCS score (OR 0.818, 95% CI 0.720 ~ 0.930, P = 0.002) and ICH location in infratentorial region (OR 5.058, 95% CI 1.200 ~ 10.305, P = 0.022) independently predicted in-hospital mortality.
Table 3
Multivariate analysis of 30-days functional outcome and in-hospital mortality
  
30-day mRS outcome
In-hospital mortality
  
OR (95% CI)
P Value
OR (95% CI)
P Value
CCI
 
1.642 (1.254 ~ 2.150)
< 0.001
1.480 (1.147 ~ 1.910)
0.003
ICH Volume
 
1.118 (0.904 ~ 1.533)
0.215
1.008 (0.997 ~ 1.018)
0.146
Admission GCS
 
0.505 (0.408 ~ 0.626)
< 0.001
0.818 (0.720 ~ 0.930)
0.002
ICH location
Supratentorial
Ref
 
Ref
 
 
Infratentorial
3.492 (1.489 ~ 5.690)
0.002
5.058 (1.200 ~ 10.305)
0.022
IVH
No
Ref
 
Ref
 
 
Yes
1.269 (0.558 ~ 2.885)
0.569
1.689 (0.623 ~ 4.579)
0.303
Sex
Male
Ref
 
Ref
 
 
Female
0.901 (0.386 ~ 2.102)
0.809
1.770 (0.779 ~ 4.022)
0.173

Discussion

In our study, 248 elderly ICH patients aged over 70 years were retrospectively enrolled, and the results showed that the CCI score was independently associated with poorer short-term functional outcome and higher in-hospital mortality after adjusting for the components of the ICH score and sex.
Comorbidities, as measured by the CCI, are widely considered one of the factors affecting the outcomes of stroke [912], but few studies have focused on hemorrhagic stroke. Bar et al. found that comorbid medical conditions, as measured by the CCI, independently affect functional outcomes at 12 months after ICH [12]. However, Bar et al. investigated the age of patients over a wide range instead of a limited range. The comorbidity pattern in older ICH patients can be very different from that in younger patients, both in terms of the number and type of conditions. Compared with previous studies, we found that the incidence of pulmonary disease (80.6% vs. 11.1%) and cerebrovascular disease (62.5% vs. 23.5%) was particularly high in the elderly population. In addition, pulmonary [1820] and cerebrovascular [21, 22] diseases have been proven to play an important role in the prognosis of ICH patients. A previous study focused on functional outcome after 1 year of ICH [12], and our study demonstrates that CCI, as a sum score weighted according to the presence of various comorbidities, also has an impact on the short-term prognosis of elderly ICH patients. Therefore, we consider that more intensive care and medical resources might be needed to improve the prognosis of elderly patients with higher CCI scores.
At the same time, our study found that neither IVH nor hematoma volume was an independent factor affecting the prognosis of elderly ICH patients. However, as components of the ICH score, ICH volume and IVH have been demonstrated to be independent predictors of prognosis in ICH patients [23, 24]. One possible explanation is that brain atrophy is more common in elderly individuals, which leaves more room for compensation in the brain (Fig. 2). Neither hematoma volume nor IVH has a significant impact on intracranial pressure in elderly patients and thus has a small impact on patient prognosis. At the same time, as a result of “immunosenescence”, elderly patients will experience an overall decline in the protective immune response [25], and secondary brain damage from hematoma may also be reduced. In addition, lobar intracerebral hemorrhage in elderly patients is most often caused by cerebral amyloid angiopathy (CAA) [26]. In our study, the proportion of patients with lobar hemorrhage was 43.1%. According to the Edinburgh criteria, 22.4% of them were high-risk CAA-related ICH patients, and 30.8% were moderate risk [27]. CAA is a common small vascular disease of the brain caused by progressive deposition of amyloid beta protein in the pia meningeal and cortical arterial walls and cortical capillaries. Patients with CAA-related ICH have a lower mortality rate than those with cerebral hemorrhage from other causes [28]. In previous clinical studies on the prognosis of ICH, CAA-related ICH has not been distinguished from hypertension-related intracerebral hemorrhage. As CAA-related ICH accounts for a high proportion in elderly patients, the prognostic factors traditionally associated with ICH may not be applicable to our elderly CAA-related ICH.
Our study has several limitations. First, as a retrospective study, a potential source of selection bias lies within the patient population itself. Second, several CCI factors, such as peripheral vascular disease and ulcer disease, may have been omitted, as they may not be routinely collected in the emergent setting and are difficult to assess in the routine daily medical exam. In addition, it is significant that subconscious bias towards elderly sicker patients may lead to less aggressive care. For ICH patients with high CCI scores, families may have lower treatment expectations and physicians may be more conservative in their treatment.

Conclusion

Overall, for elderly patients with ICH, the CCI score, reflecting the presence of various comorbidities, might be an independent factor related to the patients’ short-term outcomes in terms of in-hospital mortality and 30-day prognosis, while the characteristics of the hematoma itself, such as ICH volume and presence of IVH, seem to have a reduced effect on patient short-term outcomes.

Acknowledgements

Not applicable.

Declarations

The authors confirm that all methods were carried out in accordance with The Code of Ethics of the World Medical Association (Declaration of Helsinki). The study was approved by the Institutional Review Board (IRB) of West China Hospital (WCH) for retrospective chart review. The need for informed consent was waived by the Institutional Review Board because all personal identifiers were removed beforehand.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Feigin VL, Lawes CM, Bennett DA, Anderson CS. Stroke epidemiology: a review of population-based studies of incidence, prevalence, and case-fatality in the late 20th century. Lancet Neurol. 2003;2(1):43–53.CrossRefPubMed Feigin VL, Lawes CM, Bennett DA, Anderson CS. Stroke epidemiology: a review of population-based studies of incidence, prevalence, and case-fatality in the late 20th century. Lancet Neurol. 2003;2(1):43–53.CrossRefPubMed
2.
Zurück zum Zitat O'Donnell MJ, Xavier D, Liu L, Zhang H, Chin SL, Rao-Melacini P, et al. Risk factors for ischaemic and intracerebral haemorrhagic stroke in 22 countries (the INTERSTROKE study): a case-control study. Lancet (London, England). 2010;376(9735):112–23.CrossRefPubMed O'Donnell MJ, Xavier D, Liu L, Zhang H, Chin SL, Rao-Melacini P, et al. Risk factors for ischaemic and intracerebral haemorrhagic stroke in 22 countries (the INTERSTROKE study): a case-control study. Lancet (London, England). 2010;376(9735):112–23.CrossRefPubMed
3.
Zurück zum Zitat van Asch CJ, Luitse MJ, Rinkel GJ, van der Tweel I, Algra A, Klijn CJ. Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: a systematic review and meta-analysis. Lancet Neurol. 2010;9(2):167–76.CrossRefPubMed van Asch CJ, Luitse MJ, Rinkel GJ, van der Tweel I, Algra A, Klijn CJ. Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: a systematic review and meta-analysis. Lancet Neurol. 2010;9(2):167–76.CrossRefPubMed
4.
Zurück zum Zitat Li W, Gao J, Wei S, Wang D. Application values of clinical nursing pathway in patients with acute cerebral hemorrhage. Exp Ther Med. 2016;11(2):490–4.CrossRefPubMed Li W, Gao J, Wei S, Wang D. Application values of clinical nursing pathway in patients with acute cerebral hemorrhage. Exp Ther Med. 2016;11(2):490–4.CrossRefPubMed
5.
Zurück zum Zitat Inoue Y, Miyashita F, Minematsu K, Toyoda K. Clinical characteristics and outcomes of intracerebral hemorrhage in very elderly. J Stroke Cerebrovasc Dis. 2018;27(1):97–102.CrossRefPubMed Inoue Y, Miyashita F, Minematsu K, Toyoda K. Clinical characteristics and outcomes of intracerebral hemorrhage in very elderly. J Stroke Cerebrovasc Dis. 2018;27(1):97–102.CrossRefPubMed
6.
Zurück zum Zitat Sacco S, Marini C, Toni D, Olivieri L, Carolei A. Incidence and 10-year survival of intracerebral hemorrhage in a population-based registry. Stroke. 2009;40(2):394–9.CrossRefPubMed Sacco S, Marini C, Toni D, Olivieri L, Carolei A. Incidence and 10-year survival of intracerebral hemorrhage in a population-based registry. Stroke. 2009;40(2):394–9.CrossRefPubMed
7.
Zurück zum Zitat Kim MG, Gandhi C, Azizkhanian I, Epstein B, Mittal A, Lee N, et al. Frailty and spontaneous intracerebral hemorrhage: does the modified frailty index predict mortality? Clin Neurol Neurosurg. 2020;194:105816.CrossRefPubMed Kim MG, Gandhi C, Azizkhanian I, Epstein B, Mittal A, Lee N, et al. Frailty and spontaneous intracerebral hemorrhage: does the modified frailty index predict mortality? Clin Neurol Neurosurg. 2020;194:105816.CrossRefPubMed
8.
Zurück zum Zitat Andaluz N, Zuccarello M. Recent trends in the treatment of spontaneous intracerebral hemorrhage: analysis of a nationwide inpatient database. J Neurosurg. 2009;110(3):403–10.CrossRefPubMed Andaluz N, Zuccarello M. Recent trends in the treatment of spontaneous intracerebral hemorrhage: analysis of a nationwide inpatient database. J Neurosurg. 2009;110(3):403–10.CrossRefPubMed
9.
Zurück zum Zitat Liu M, Domen K, Chino N. Comorbidity measures for stroke outcome research: a preliminary study. Arch Phys Med Rehabil. 1997;78(2):166–72.CrossRefPubMed Liu M, Domen K, Chino N. Comorbidity measures for stroke outcome research: a preliminary study. Arch Phys Med Rehabil. 1997;78(2):166–72.CrossRefPubMed
10.
Zurück zum Zitat Goldstein LB, Samsa GP, Matchar DB, Horner RD. Charlson index comorbidity adjustment for ischemic stroke outcome studies. Stroke. 2004;35(8):1941–5.CrossRefPubMed Goldstein LB, Samsa GP, Matchar DB, Horner RD. Charlson index comorbidity adjustment for ischemic stroke outcome studies. Stroke. 2004;35(8):1941–5.CrossRefPubMed
11.
Zurück zum Zitat Tessier A, Finch L, Daskalopoulou SS, Mayo NE. Validation of the Charlson comorbidity index for predicting functional outcome of stroke. Arch Phys Med Rehabil. 2008;89(7):1276–83.CrossRefPubMed Tessier A, Finch L, Daskalopoulou SS, Mayo NE. Validation of the Charlson comorbidity index for predicting functional outcome of stroke. Arch Phys Med Rehabil. 2008;89(7):1276–83.CrossRefPubMed
13.
Zurück zum Zitat Jiménez Caballero PE, López Espuela F, Portilla Cuenca JC, Ramírez Moreno JM, Pedrera Zamorano JD, Casado NI. Charlson comorbidity index in ischemic stroke and intracerebral hemorrhage as predictor of mortality and functional outcome after 6 months. J Stroke Cerebrovasc Dis. 2013;22(7):e214–8.CrossRefPubMed Jiménez Caballero PE, López Espuela F, Portilla Cuenca JC, Ramírez Moreno JM, Pedrera Zamorano JD, Casado NI. Charlson comorbidity index in ischemic stroke and intracerebral hemorrhage as predictor of mortality and functional outcome after 6 months. J Stroke Cerebrovasc Dis. 2013;22(7):e214–8.CrossRefPubMed
14.
Zurück zum Zitat Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis. 1987;40(5):373–83.CrossRefPubMed Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis. 1987;40(5):373–83.CrossRefPubMed
15.
Zurück zum Zitat Deyo RA, Cherkin DC, Ciol MA. Adapting a clinical comorbidity index for use with ICD-9-CM administrative databases. J Clin Epidemiol. 1992;45(6):613–9.CrossRefPubMed Deyo RA, Cherkin DC, Ciol MA. Adapting a clinical comorbidity index for use with ICD-9-CM administrative databases. J Clin Epidemiol. 1992;45(6):613–9.CrossRefPubMed
16.
Zurück zum Zitat Kothari RU, Brott T, Broderick JP, Barsan WG, Sauerbeck LR, Zuccarello M, et al. The ABCs of measuring intracerebral hemorrhage volumes. Stroke. 1996;27(8):1304–5.CrossRefPubMed Kothari RU, Brott T, Broderick JP, Barsan WG, Sauerbeck LR, Zuccarello M, et al. The ABCs of measuring intracerebral hemorrhage volumes. Stroke. 1996;27(8):1304–5.CrossRefPubMed
17.
Zurück zum Zitat Wilson JT, Hareendran A, Grant M, Baird T, Schulz UG, Muir KW, et al. Improving the assessment of outcomes in stroke: use of a structured interview to assign grades on the modified Rankin scale. Stroke. 2002;33(9):2243–6.CrossRefPubMed Wilson JT, Hareendran A, Grant M, Baird T, Schulz UG, Muir KW, et al. Improving the assessment of outcomes in stroke: use of a structured interview to assign grades on the modified Rankin scale. Stroke. 2002;33(9):2243–6.CrossRefPubMed
18.
Zurück zum Zitat Yan J, Zhai W, Li Z, Ding L, You J, Zeng J, et al. ICH-LR2S2: a new risk score for predicting stroke-associated pneumonia from spontaneous intracerebral hemorrhage. J Transl Med. 2022;20(1):193.CrossRefPubMedCentralPubMed Yan J, Zhai W, Li Z, Ding L, You J, Zeng J, et al. ICH-LR2S2: a new risk score for predicting stroke-associated pneumonia from spontaneous intracerebral hemorrhage. J Transl Med. 2022;20(1):193.CrossRefPubMedCentralPubMed
19.
Zurück zum Zitat Wilson RD. Mortality and cost of pneumonia after stroke for different risk groups. J Stroke Cerebrovasc Dis. 2012;21(1):61–7.CrossRefPubMed Wilson RD. Mortality and cost of pneumonia after stroke for different risk groups. J Stroke Cerebrovasc Dis. 2012;21(1):61–7.CrossRefPubMed
20.
Zurück zum Zitat Koennecke HC, Belz W, Berfelde D, Endres M, Fitzek S, Hamilton F, et al. Factors influencing in-hospital mortality and morbidity in patients treated on a stroke unit. Neurology. 2011;77(10):965–72.CrossRefPubMed Koennecke HC, Belz W, Berfelde D, Endres M, Fitzek S, Hamilton F, et al. Factors influencing in-hospital mortality and morbidity in patients treated on a stroke unit. Neurology. 2011;77(10):965–72.CrossRefPubMed
21.
Zurück zum Zitat Wan Y, Guo H, Bi R, Chen S, Shen J, Li M, et al. Clinical and prognostic characteristics of recurrent intracerebral hemorrhage: a contrast to first-ever ICH. Front Aging Neurosci. 2022;14:860571.CrossRefPubMedCentralPubMed Wan Y, Guo H, Bi R, Chen S, Shen J, Li M, et al. Clinical and prognostic characteristics of recurrent intracerebral hemorrhage: a contrast to first-ever ICH. Front Aging Neurosci. 2022;14:860571.CrossRefPubMedCentralPubMed
22.
Zurück zum Zitat Rodrigues MA, ES N, Lerpiniere C, Perry LA, Moullaali TJ, JML J, et al. Association between computed tomographic biomarkers of cerebral small vessel diseases and long-term outcome after spontaneous intracerebral hemorrhage. Ann Neurol. 2021;89(2):266–79.CrossRefPubMed Rodrigues MA, ES N, Lerpiniere C, Perry LA, Moullaali TJ, JML J, et al. Association between computed tomographic biomarkers of cerebral small vessel diseases and long-term outcome after spontaneous intracerebral hemorrhage. Ann Neurol. 2021;89(2):266–79.CrossRefPubMed
23.
Zurück zum Zitat Poon MT, Fonville AF, Al-Shahi SR. Long-term prognosis after intracerebral haemorrhage: systematic review and meta-analysis. J Neurol Neurosurg Psychiatry. 2014;85(6):660–7.CrossRefPubMed Poon MT, Fonville AF, Al-Shahi SR. Long-term prognosis after intracerebral haemorrhage: systematic review and meta-analysis. J Neurol Neurosurg Psychiatry. 2014;85(6):660–7.CrossRefPubMed
24.
Zurück zum Zitat Hemphill JC 3rd, Bonovich DC, Besmertis L, Manley GT, Johnston SC. The ICH score: a simple, reliable grading scale for intracerebral hemorrhage. Stroke. 2001;32(4):891–7.CrossRefPubMed Hemphill JC 3rd, Bonovich DC, Besmertis L, Manley GT, Johnston SC. The ICH score: a simple, reliable grading scale for intracerebral hemorrhage. Stroke. 2001;32(4):891–7.CrossRefPubMed
26.
Zurück zum Zitat van Etten ES, Kaushik K, van Zwet EW, Voigt S, van Walderveen MAA, van Buchem MA, et al. Sensitivity of the Edinburgh criteria for lobar intracerebral hemorrhage in hereditary cerebral amyloid Angiopathy. Stroke. 2020;51(12):3608–12.CrossRefPubMed van Etten ES, Kaushik K, van Zwet EW, Voigt S, van Walderveen MAA, van Buchem MA, et al. Sensitivity of the Edinburgh criteria for lobar intracerebral hemorrhage in hereditary cerebral amyloid Angiopathy. Stroke. 2020;51(12):3608–12.CrossRefPubMed
27.
Zurück zum Zitat Rodrigues MA, Samarasekera N, Lerpiniere C, Humphreys C, McCarron MO, White PM, et al. The Edinburgh CT and genetic diagnostic criteria for lobar intracerebral haemorrhage associated with cerebral amyloid angiopathy: model development and diagnostic test accuracy study. Lancet Neurol. 2018;17(3):232–40.CrossRefPubMedCentralPubMed Rodrigues MA, Samarasekera N, Lerpiniere C, Humphreys C, McCarron MO, White PM, et al. The Edinburgh CT and genetic diagnostic criteria for lobar intracerebral haemorrhage associated with cerebral amyloid angiopathy: model development and diagnostic test accuracy study. Lancet Neurol. 2018;17(3):232–40.CrossRefPubMedCentralPubMed
28.
Zurück zum Zitat Mehndiratta P, Manjila S, Ostergard T, Eisele S, Cohen ML, Sila C, et al. Cerebral amyloid angiopathy-associated intracerebral hemorrhage: pathology and management. Neurosurg Focus. 2012;32(4):E7.CrossRefPubMed Mehndiratta P, Manjila S, Ostergard T, Eisele S, Cohen ML, Sila C, et al. Cerebral amyloid angiopathy-associated intracerebral hemorrhage: pathology and management. Neurosurg Focus. 2012;32(4):E7.CrossRefPubMed
Metadaten
Titel
The prognostic value of the Charlson comorbidity index in aged patients with intracerebral hemorrhage
verfasst von
Tianjie Zhang
Ruiqi Chen
Dingke Wen
Xing Wang
Lu Ma
Publikationsdatum
01.12.2022
Verlag
BioMed Central
Erschienen in
BMC Neurology / Ausgabe 1/2022
Elektronische ISSN: 1471-2377
DOI
https://doi.org/10.1186/s12883-022-02980-z

Weitere Artikel der Ausgabe 1/2022

BMC Neurology 1/2022 Zur Ausgabe

Neu in den Fachgebieten Neurologie und Psychiatrie

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

ADHS-Medikation erhöht das kardiovaskuläre Risiko

16.05.2024 Herzinsuffizienz Nachrichten

Erwachsene, die Medikamente gegen das Aufmerksamkeitsdefizit-Hyperaktivitätssyndrom einnehmen, laufen offenbar erhöhte Gefahr, an Herzschwäche zu erkranken oder einen Schlaganfall zu erleiden. Es scheint eine Dosis-Wirkungs-Beziehung zu bestehen.

Delir bei kritisch Kranken – Antipsychotika versus Placebo

16.05.2024 Delir Nachrichten

Um die Langzeitfolgen eines Delirs bei kritisch Kranken zu mildern, wird vielerorts auf eine Akuttherapie mit Antipsychotika gesetzt. Eine US-amerikanische Forschungsgruppe äußert jetzt erhebliche Vorbehalte gegen dieses Vorgehen. Denn es gibt neue Daten zum Langzeiteffekt von Haloperidol bzw. Ziprasidon versus Placebo.

Schwindelursache: Massagepistole lässt Otholiten tanzen

14.05.2024 Benigner Lagerungsschwindel Nachrichten

Wenn jüngere Menschen über ständig rezidivierenden Lagerungsschwindel klagen, könnte eine Massagepistole der Auslöser sein. In JAMA Otolaryngology warnt ein Team vor der Anwendung hochpotenter Geräte im Bereich des Nackens.