Skip to main content
Erschienen in: European Journal of Applied Physiology 1/2021

03.10.2020 | Original Article

The scaling of human basal and resting metabolic rates

verfasst von: Heather M. Bowes, Catriona A. Burdon, Nigel A. S. Taylor

Erschienen in: European Journal of Applied Physiology | Ausgabe 1/2021

Einloggen, um Zugang zu erhalten

Abstract

Purpose

In tachymetabolic species, metabolic rate increases disproportionately with body mass, and that inter-specific relationship is typically modelled allometrically. However, intra-specific analyses are less common, particularly for healthy humans, so the possibility that human metabolism would also scale allometrically was investigated.

Methods

Basal metabolic rate was determined (respirometry) for 68 males (18–40 years; 56.0–117.1 kg), recruited across five body-mass classes. Data were collected during supine, normothermic rest from well-rested, well-hydrated and post-absorptive participants. Linear and allometric regressions were applied, and three scaling methods were assessed. Data from an historical database were also analysed (2.7–108.9 kg, 4811 males; 2.0–96.4 kg, 2364 females).

Results

Both linear and allometric functions satisfied the statistical requirements, but not the biological pre-requisite of an origin intercept. Mass-independent basal metabolic data beyond the experimental mass range were not achieved using linear regression, which yielded biologically impossible predictions as body mass approached zero. Conversely, allometric regression provided a biologically valid, powerful and statistically significant model: metabolic rate = 0.739 * body mass0.547 (P < 0.05). Allometric analysis of the historical male data yielded an equivalent, and similarly powerful model: metabolic rate = 0.873 * body mass0.497 (P < 0.05).

Conclusion

It was established that basal and resting metabolic rates scale allometrically with body mass in humans from 10–117 kg, with an exponent of 0.50–0.55. It was also demonstrated that ratiometric scaling yielded invalid metabolic predictions, even within the relatively narrow experimental mass range. Those outcomes have significant physiological implications, with applications to exercising states, modelling, nutrition and metabolism-dependent pharmacological prescriptions.
Literatur
Zurück zum Zitat Albrecht GH, Gelvin BR, Hartman SE (1993) Ratios as a size adjustment in morphometrics. Am J Phys Anthropol 91:441–468PubMedCrossRef Albrecht GH, Gelvin BR, Hartman SE (1993) Ratios as a size adjustment in morphometrics. Am J Phys Anthropol 91:441–468PubMedCrossRef
Zurück zum Zitat Arciero PJ, Goran MI, Poehlman ET (1993) Resting metabolic rate is lower in women than in men. J Appl Physiol 75:2514–2520PubMedCrossRef Arciero PJ, Goran MI, Poehlman ET (1993) Resting metabolic rate is lower in women than in men. J Appl Physiol 75:2514–2520PubMedCrossRef
Zurück zum Zitat Batterham AM, Jackson AS (2003) Validity of the allometric cascade model at submaximal and maximal metabolic rates in exercising men. Respir Physiol Neurobiol 135:103–106PubMedCrossRef Batterham AM, Jackson AS (2003) Validity of the allometric cascade model at submaximal and maximal metabolic rates in exercising men. Respir Physiol Neurobiol 135:103–106PubMedCrossRef
Zurück zum Zitat Boothby WM, Sandiford I (1922) Summary of the basal metabolism data on 8,614 subjects with especial reference to the normal standards for the estimation of the basal metabolic rate. J Biol Chem 54:783–803CrossRef Boothby WM, Sandiford I (1922) Summary of the basal metabolism data on 8,614 subjects with especial reference to the normal standards for the estimation of the basal metabolic rate. J Biol Chem 54:783–803CrossRef
Zurück zum Zitat Bowes HM, Burdon CA, Taylor NAS (2015) The scaling of human basal metabolic rate in adult males. Proc Austr Physiol Soc 46:54P Bowes HM, Burdon CA, Taylor NAS (2015) The scaling of human basal metabolic rate in adult males. Proc Austr Physiol Soc 46:54P
Zurück zum Zitat Bowes HM, Burdon CA, Taylor NAS (2017) A contribution to understanding the impact of variations in body mass on fractionating the metabolic burden of military load carriage. J Sci Med Sports 20:S75–S76CrossRef Bowes HM, Burdon CA, Taylor NAS (2017) A contribution to understanding the impact of variations in body mass on fractionating the metabolic burden of military load carriage. J Sci Med Sports 20:S75–S76CrossRef
Zurück zum Zitat Brody S (1945) Bioenergetics and growth: with special reference to the efficiency complex in domestic animals. Reinhold Publishing Corporation, New York Brody S (1945) Bioenergetics and growth: with special reference to the efficiency complex in domestic animals. Reinhold Publishing Corporation, New York
Zurück zum Zitat Buchholz AC, Rafii M, Pencharz PB (2001) Is resting metabolic rate different between men and women? Br J Nutr 86:641–646PubMedCrossRef Buchholz AC, Rafii M, Pencharz PB (2001) Is resting metabolic rate different between men and women? Br J Nutr 86:641–646PubMedCrossRef
Zurück zum Zitat Cole TJ, Henry CJK (2005) The Oxford Brookes basal metabolic rate database—a reanalysis. Public Health Nutr 8:1202–1212PubMedCrossRef Cole TJ, Henry CJK (2005) The Oxford Brookes basal metabolic rate database—a reanalysis. Public Health Nutr 8:1202–1212PubMedCrossRef
Zurück zum Zitat Darveau CA, Suarez RK, Andrews RD, Hochachka PW (2002) Allometric cascade as a unifying principle of body mass effects on metabolism. Nature 417:166–170PubMedCrossRef Darveau CA, Suarez RK, Andrews RD, Hochachka PW (2002) Allometric cascade as a unifying principle of body mass effects on metabolism. Nature 417:166–170PubMedCrossRef
Zurück zum Zitat Durbin J, Watson GS (1950) Testing for serial correlation in least squares regression: I. Biometrika. 37:409–428PubMed Durbin J, Watson GS (1950) Testing for serial correlation in least squares regression: I. Biometrika. 37:409–428PubMed
Zurück zum Zitat Durbin J, Watson GS (1951) Testing for serial correlation in least squares regression: II. Biometrika. 38:159–177PubMedCrossRef Durbin J, Watson GS (1951) Testing for serial correlation in least squares regression: II. Biometrika. 38:159–177PubMedCrossRef
Zurück zum Zitat Durnin JVGA (1959) The use of surface area and of body-weight as standards of reference in studies on human energy expenditure. Br J Nutr 13:68–71PubMedCrossRef Durnin JVGA (1959) The use of surface area and of body-weight as standards of reference in studies on human energy expenditure. Br J Nutr 13:68–71PubMedCrossRef
Zurück zum Zitat Elia M (1992) Organ and tissue contribution to metabolic rate. In: Kinney JM, Tucker HN (eds) Energy metabolism: tissue determinants and cellular corollaries. Raven Press, New York, pp 61–80 Elia M (1992) Organ and tissue contribution to metabolic rate. In: Kinney JM, Tucker HN (eds) Energy metabolism: tissue determinants and cellular corollaries. Raven Press, New York, pp 61–80
Zurück zum Zitat Garn SM, Clark LC, Harper RV (1953) The sex difference in the basal metabolic rate. Child Dev 24:215–222PubMedCrossRef Garn SM, Clark LC, Harper RV (1953) The sex difference in the basal metabolic rate. Child Dev 24:215–222PubMedCrossRef
Zurück zum Zitat Gould SJ (1966) Allometry and size in ontegeny and phylogeny. Biol Rev Camb Philos Soc 41:587–640PubMedCrossRef Gould SJ (1966) Allometry and size in ontegeny and phylogeny. Biol Rev Camb Philos Soc 41:587–640PubMedCrossRef
Zurück zum Zitat Green SB (1991) How many subjects does it take to do a regression analysis. Multivar Behav Res 26:499–510CrossRef Green SB (1991) How many subjects does it take to do a regression analysis. Multivar Behav Res 26:499–510CrossRef
Zurück zum Zitat Hall C, Figueroa A, Fernhall B, Kanaley JA (2004) Energy expenditure of walking and running: comparison with prediction equations. Med Sci Sport Exerc 36:2128–2134CrossRef Hall C, Figueroa A, Fernhall B, Kanaley JA (2004) Energy expenditure of walking and running: comparison with prediction equations. Med Sci Sport Exerc 36:2128–2134CrossRef
Zurück zum Zitat Harris JA, Benedict FG (1919) A biometric study of basal metabolism in man. In: Carnegie Institution of Washington, Washington. Publication number 279. Harris JA, Benedict FG (1919) A biometric study of basal metabolism in man. In: Carnegie Institution of Washington, Washington. Publication number 279.
Zurück zum Zitat Heusner AA (1982a) Energy metabolism and body size. I. Is the 0.75 mass exponent of Kleiber’s equations a statistical artifact? Respir Physiol 48:1–12PubMedCrossRef Heusner AA (1982a) Energy metabolism and body size. I. Is the 0.75 mass exponent of Kleiber’s equations a statistical artifact? Respir Physiol 48:1–12PubMedCrossRef
Zurück zum Zitat Heusner AA (1982b) Energy metabolism and body size. II. Dimensional analysis and energetic non-similarity. Respir Physiol 48:13–25PubMedCrossRef Heusner AA (1982b) Energy metabolism and body size. II. Dimensional analysis and energetic non-similarity. Respir Physiol 48:13–25PubMedCrossRef
Zurück zum Zitat Holliday MA (1971) Metabolic rate and organ size during growth from infancy to maturity and during late gestation and early infancy. Pediatrics 47:169–179CrossRef Holliday MA (1971) Metabolic rate and organ size during growth from infancy to maturity and during late gestation and early infancy. Pediatrics 47:169–179CrossRef
Zurück zum Zitat Holliday MA, Potter D, Jarrah A, Bearg S (1967) The relation of metabolic rate to body weight and organ size. Pediatr Res 1:185–195PubMedCrossRef Holliday MA, Potter D, Jarrah A, Bearg S (1967) The relation of metabolic rate to body weight and organ size. Pediatr Res 1:185–195PubMedCrossRef
Zurück zum Zitat Jetté M, Sidney K, Blümchen G (1990) Metabolic equivalents (METS) in exercise testing, exercise prescription, and evaluation of functional capacity. Clin Cardiol 13:555–565PubMedCrossRef Jetté M, Sidney K, Blümchen G (1990) Metabolic equivalents (METS) in exercise testing, exercise prescription, and evaluation of functional capacity. Clin Cardiol 13:555–565PubMedCrossRef
Zurück zum Zitat Johnstone AM, Murison SD, Duncan JS, Rance KA, Speakman JR (2005) Factors influencing variation in basal metabolic rate include fat-free mass, fat mass, age, and circulating thyroxine but not sex, circulating leptin, or triiodothyronine. Am J Clin Nutr 82:941–948PubMedCrossRef Johnstone AM, Murison SD, Duncan JS, Rance KA, Speakman JR (2005) Factors influencing variation in basal metabolic rate include fat-free mass, fat mass, age, and circulating thyroxine but not sex, circulating leptin, or triiodothyronine. Am J Clin Nutr 82:941–948PubMedCrossRef
Zurück zum Zitat Kim H-Y (2013) Statistical notes for clinical researchers: assessing normal distribution (2) using skewness and kurtosis. Restorat Dentistry Endodontics 38:52–54CrossRef Kim H-Y (2013) Statistical notes for clinical researchers: assessing normal distribution (2) using skewness and kurtosis. Restorat Dentistry Endodontics 38:52–54CrossRef
Zurück zum Zitat Kleiber M (1950) Physiological meaning of regression equations. J Appl Physiol 2:417–423CrossRef Kleiber M (1950) Physiological meaning of regression equations. J Appl Physiol 2:417–423CrossRef
Zurück zum Zitat Kleiber M (1961) The fire of life: an introduction to animal energetics. Wiley, London Kleiber M (1961) The fire of life: an introduction to animal energetics. Wiley, London
Zurück zum Zitat Krogh A (1916) The respiratory exchange of animals and man. Longmans, Green and Company, LondonCrossRef Krogh A (1916) The respiratory exchange of animals and man. Longmans, Green and Company, LondonCrossRef
Zurück zum Zitat Kvist A, Lindström Å (2001) Basal metabolic rate in migratory waders: intra-individual, intraspecific, interspecific and seasonal variation. Funct Ecol 15:465–473CrossRef Kvist A, Lindström Å (2001) Basal metabolic rate in migratory waders: intra-individual, intraspecific, interspecific and seasonal variation. Funct Ecol 15:465–473CrossRef
Zurück zum Zitat Mansell PI, Macdonald IA (1990) Reappraisal of the Weir equation for calculation of metabolic rate. Am J Physiol 258:R1347–R1354PubMed Mansell PI, Macdonald IA (1990) Reappraisal of the Weir equation for calculation of metabolic rate. Am J Physiol 258:R1347–R1354PubMed
Zurück zum Zitat Markovic G, Vucetic V, Nevill AM (2007) Scaling behaviour of O2 in athletes and untrained individuals. Ann Hum Biol 34:315–328PubMedCrossRef Markovic G, Vucetic V, Nevill AM (2007) Scaling behaviour of O2 in athletes and untrained individuals. Ann Hum Biol 34:315–328PubMedCrossRef
Zurück zum Zitat McClave SA, Lowen CC, Kleber MJ, McConnell JW, Jung LY, Goldsmith LJ (2003) Clinical use of the respiratory quotient obtained from indirect calorimetry. J Parent Enteral Nutr 27:21–26CrossRef McClave SA, Lowen CC, Kleber MJ, McConnell JW, Jung LY, Goldsmith LJ (2003) Clinical use of the respiratory quotient obtained from indirect calorimetry. J Parent Enteral Nutr 27:21–26CrossRef
Zurück zum Zitat Motulsky HJ, Ransnas LA (1987) Fitting curves to data using nonlinear regression: a practical and nonmathematical review. FASEB J 1:365–374PubMedCrossRef Motulsky HJ, Ransnas LA (1987) Fitting curves to data using nonlinear regression: a practical and nonmathematical review. FASEB J 1:365–374PubMedCrossRef
Zurück zum Zitat Müller MJ, Langermann D, Gehrke I, Later W, Heller M, Glüer CC, Heymsfield SB, Bosy-Westphal A (2011) Effect of constitution on mass of individual organs and their association with metabolic rate in humans—a detailed view on allometric scaling. PLoS ONE 6:e22721CrossRef Müller MJ, Langermann D, Gehrke I, Later W, Heller M, Glüer CC, Heymsfield SB, Bosy-Westphal A (2011) Effect of constitution on mass of individual organs and their association with metabolic rate in humans—a detailed view on allometric scaling. PLoS ONE 6:e22721CrossRef
Zurück zum Zitat Müller MJ, Wang Z, Heymsfield SB, Schautz B, Bosy-Westphal A (2013) Advances in the understanding of specific metabolic rates of major organs and tissues in humans. Curr Opin Clin Nutr Metabolic Care 16:501–508 Müller MJ, Wang Z, Heymsfield SB, Schautz B, Bosy-Westphal A (2013) Advances in the understanding of specific metabolic rates of major organs and tissues in humans. Curr Opin Clin Nutr Metabolic Care 16:501–508
Zurück zum Zitat Müller MJ, Geisler C, Hübers M, Pourhassan M, Braun W, Bosy-Westphal A (2018) Normalizing resting energy expenditure across the life course in humans: challenges and hopes. Eur J Clin Nutr 72:628–637PubMedCrossRef Müller MJ, Geisler C, Hübers M, Pourhassan M, Braun W, Bosy-Westphal A (2018) Normalizing resting energy expenditure across the life course in humans: challenges and hopes. Eur J Clin Nutr 72:628–637PubMedCrossRef
Zurück zum Zitat Nevill AM, Ramsbottom R, Williams C (1992) Scaling physiological measurements for individuals of different body size. Eur J Appl Physiol 65:110–117CrossRef Nevill AM, Ramsbottom R, Williams C (1992) Scaling physiological measurements for individuals of different body size. Eur J Appl Physiol 65:110–117CrossRef
Zurück zum Zitat Noblet J, Fortune H, Shi XS, Dubois S (1994) Prediction of net energy value of feeds for growing pigs. J Anim Sci 72:344–354PubMedCrossRef Noblet J, Fortune H, Shi XS, Dubois S (1994) Prediction of net energy value of feeds for growing pigs. J Anim Sci 72:344–354PubMedCrossRef
Zurück zum Zitat Notley SR, Park J, Tagami K, Ohnishi N, Taylor NAS (2016) Morphological dependency of cutaneous blood flow and sweating during compensable heat stress when heat-loss requirements are matched across participants. J Appl Physiol 121:25–35PubMedPubMedCentralCrossRef Notley SR, Park J, Tagami K, Ohnishi N, Taylor NAS (2016) Morphological dependency of cutaneous blood flow and sweating during compensable heat stress when heat-loss requirements are matched across participants. J Appl Physiol 121:25–35PubMedPubMedCentralCrossRef
Zurück zum Zitat Notley SR, Park J, Tagami K, Ohnishi N, Taylor NAS (2017) Variations in body morphology explain sex differences in thermoeffector function during compensable heat stress. Exp Physiol 102:545–562PubMedCrossRef Notley SR, Park J, Tagami K, Ohnishi N, Taylor NAS (2017) Variations in body morphology explain sex differences in thermoeffector function during compensable heat stress. Exp Physiol 102:545–562PubMedCrossRef
Zurück zum Zitat Owen OE, Holup JL, D’Alessio DA, Craig ES, Polansky M, Smalley KJ, Kavle EC, Bushman MC, Owen LR, Mozzoli MA, Kendrick ZV, Boden GH (1987) A reappraisal of the caloric requirements of men. Am J Clin Nutr 46:875–885PubMedCrossRef Owen OE, Holup JL, D’Alessio DA, Craig ES, Polansky M, Smalley KJ, Kavle EC, Bushman MC, Owen LR, Mozzoli MA, Kendrick ZV, Boden GH (1987) A reappraisal of the caloric requirements of men. Am J Clin Nutr 46:875–885PubMedCrossRef
Zurück zum Zitat Packard GC, Boardman TJ (1988) The misuse of ratios, indices, and percentages in ecophysiological research. Physiol Zool 61:1–9CrossRef Packard GC, Boardman TJ (1988) The misuse of ratios, indices, and percentages in ecophysiological research. Physiol Zool 61:1–9CrossRef
Zurück zum Zitat Packard GC, Boardman TJ (1999) The use of percentages and size-specific indices to normalize physiological data for variation in body size: wasted time, wasted effort? Comp Biochem Physiol A: Mol Integr Physiol 122:37–44CrossRef Packard GC, Boardman TJ (1999) The use of percentages and size-specific indices to normalize physiological data for variation in body size: wasted time, wasted effort? Comp Biochem Physiol A: Mol Integr Physiol 122:37–44CrossRef
Zurück zum Zitat Packard GC, Birchard GF, Boardman TJ (2011) Fitting statistical models in bivariate allometry. Biol Rev 86:549–563PubMedCrossRef Packard GC, Birchard GF, Boardman TJ (2011) Fitting statistical models in bivariate allometry. Biol Rev 86:549–563PubMedCrossRef
Zurück zum Zitat Quenouille MH, Boyne AW, Fisher WB, Leitch I (1951) Statistical studies of recorded energy expenditure of man. In: Part I. Basal metabolism related to sex, stature, age, climate and race. Commonwealth Bureau of Animal Nutrition, Technical Communication No.17. Commonwealth Agricultural Bureau, Aberdeen, Scotland Quenouille MH, Boyne AW, Fisher WB, Leitch I (1951) Statistical studies of recorded energy expenditure of man. In: Part I. Basal metabolism related to sex, stature, age, climate and race. Commonwealth Bureau of Animal Nutrition, Technical Communication No.17. Commonwealth Agricultural Bureau, Aberdeen, Scotland
Zurück zum Zitat Refinetti R (1989) Body size and metabolic rate in the laboratory rat. Exp Biol 48:291–294PubMed Refinetti R (1989) Body size and metabolic rate in the laboratory rat. Exp Biol 48:291–294PubMed
Zurück zum Zitat Rogers DM, Olson BL, Wilmore JH (1995) Scaling for the O2-to-body size relationship among children and adults. J Appl Physiol 79:958–967PubMedCrossRef Rogers DM, Olson BL, Wilmore JH (1995) Scaling for the O2-to-body size relationship among children and adults. J Appl Physiol 79:958–967PubMedCrossRef
Zurück zum Zitat Ross WD, Marfell-Jones MJ (1991) Kinanthropometry. In: MacDougall JD, Wenger HA, Green HJ (eds) Physiological testing of the high-performance athlete. Human Kinetics, Champaign, pp 223–308 Ross WD, Marfell-Jones MJ (1991) Kinanthropometry. In: MacDougall JD, Wenger HA, Green HJ (eds) Physiological testing of the high-performance athlete. Human Kinetics, Champaign, pp 223–308
Zurück zum Zitat Ross WD, Wilson NC (1974) A strategem for proportional growth assessment. Acta Paediatr Belgica 28:169 Ross WD, Wilson NC (1974) A strategem for proportional growth assessment. Acta Paediatr Belgica 28:169
Zurück zum Zitat Rubner M (1883) Ueber den Einfluss der Köpergrösse auf Stoff- und Kraftwechsel. Zeitschr für Biol 19:535–562 Rubner M (1883) Ueber den Einfluss der Köpergrösse auf Stoff- und Kraftwechsel. Zeitschr für Biol 19:535–562
Zurück zum Zitat Sarrus F, Rameaux J (1838) Rapport sur un mémoire adressé à l’Académie Royale de Médecine. Bull l’Acad R Méd 3:1094–1100 Sarrus F, Rameaux J (1838) Rapport sur un mémoire adressé à l’Académie Royale de Médecine. Bull l’Acad R Méd 3:1094–1100
Zurück zum Zitat Schmidt-Nielsen K (1984) Scaling: why is animal size so important?. Cambridge University Press, CambridgeCrossRef Schmidt-Nielsen K (1984) Scaling: why is animal size so important?. Cambridge University Press, CambridgeCrossRef
Zurück zum Zitat Schofield WN (1985) Predicting basal metabolic rate, new standards and review of previous work. Hum Nutr Clin Nutr 39:5–41PubMed Schofield WN (1985) Predicting basal metabolic rate, new standards and review of previous work. Hum Nutr Clin Nutr 39:5–41PubMed
Zurück zum Zitat Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52:591–611CrossRef Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52:591–611CrossRef
Zurück zum Zitat Shephard RJ (2017) Open-circuit respirometry: a brief historical review of the use of Douglas bags and chemical analyzers. Eur J Appl Physiol 117:381–387PubMedCrossRef Shephard RJ (2017) Open-circuit respirometry: a brief historical review of the use of Douglas bags and chemical analyzers. Eur J Appl Physiol 117:381–387PubMedCrossRef
Zurück zum Zitat Sholl D (1948) The quantitative investigation of the vertebrate brain and the applicability of allometric formulae to its study. Proc R Soc Lond B 135:243–258CrossRef Sholl D (1948) The quantitative investigation of the vertebrate brain and the applicability of allometric formulae to its study. Proc R Soc Lond B 135:243–258CrossRef
Zurück zum Zitat Sieg AE, O’Connor MP, McNair JN, Grant BW, Agosta SJ, Dunham AE (2009) Mammalian metabolic allometry: do intraspecific variation, phylogeny, and regression models matter? Am Nat 174:720–733PubMedCrossRef Sieg AE, O’Connor MP, McNair JN, Grant BW, Agosta SJ, Dunham AE (2009) Mammalian metabolic allometry: do intraspecific variation, phylogeny, and regression models matter? Am Nat 174:720–733PubMedCrossRef
Zurück zum Zitat Tanner JM (1949) Fallacy of per-weight and per-surface area standards, and their relation to spurious correlation. J Appl Physiol 2:1–15PubMedCrossRef Tanner JM (1949) Fallacy of per-weight and per-surface area standards, and their relation to spurious correlation. J Appl Physiol 2:1–15PubMedCrossRef
Zurück zum Zitat Taylor NAS, Gordon CJ (2019) The origin, significance and plasticity of the thermoeffector thresholds: extrapolation between humans and laboratory rodents. J Therm Biol 85:102397PubMedCrossRef Taylor NAS, Gordon CJ (2019) The origin, significance and plasticity of the thermoeffector thresholds: extrapolation between humans and laboratory rodents. J Therm Biol 85:102397PubMedCrossRef
Zurück zum Zitat Taylor NAS, Tipton MJ, Kenny GP (2014) Considerations for the measurement of core, skin and mean body temperatures. J Therm Biol 46:72–101PubMedCrossRef Taylor NAS, Tipton MJ, Kenny GP (2014) Considerations for the measurement of core, skin and mean body temperatures. J Therm Biol 46:72–101PubMedCrossRef
Zurück zum Zitat Taylor NAS, Shephard RJ, Lindinger MI (2018) Foundational insights into the estimation of whole-body metabolic rate. Eur J Appl Physiol 118:867–874PubMedCrossRef Taylor NAS, Shephard RJ, Lindinger MI (2018) Foundational insights into the estimation of whole-body metabolic rate. Eur J Appl Physiol 118:867–874PubMedCrossRef
Zurück zum Zitat Todd G, Gordon CJ, Groeller H, Taylor NAS (2014) Does intramuscular thermal feedback modulate eccrine sweating in exercising humans? Acta Physiol 212:86–96CrossRef Todd G, Gordon CJ, Groeller H, Taylor NAS (2014) Does intramuscular thermal feedback modulate eccrine sweating in exercising humans? Acta Physiol 212:86–96CrossRef
Zurück zum Zitat White CR, Kearney MR (2014) Metabolic scaling in animals: methods, empirical results, and theoretical explanations. Comprehen Physiol 4:231–256CrossRef White CR, Kearney MR (2014) Metabolic scaling in animals: methods, empirical results, and theoretical explanations. Comprehen Physiol 4:231–256CrossRef
Zurück zum Zitat White CR, Seymour RS (2005) Sample size and mass range effects on the allometric exponent of basal metabolic rate. Comp Biochem Physiol A Mol Integr Physiol 142:74–78PubMedCrossRef White CR, Seymour RS (2005) Sample size and mass range effects on the allometric exponent of basal metabolic rate. Comp Biochem Physiol A Mol Integr Physiol 142:74–78PubMedCrossRef
Zurück zum Zitat White CR, Blackburn TM, Seymour RS (2009) Phylogenetically informed analysis of the allometry of mammalian basal metabolic rate supports neither geometric nor quarter power scaling. Evol Int J Org Evol 63:2658–2667CrossRef White CR, Blackburn TM, Seymour RS (2009) Phylogenetically informed analysis of the allometry of mammalian basal metabolic rate supports neither geometric nor quarter power scaling. Evol Int J Org Evol 63:2658–2667CrossRef
Zurück zum Zitat White CR, Frappell PB, Chown SL (2012) An information-theoretic approach to evaluating the size and temperature dependence of metabolic rate. Proc R Soc Lond B 279:3616–3621 White CR, Frappell PB, Chown SL (2012) An information-theoretic approach to evaluating the size and temperature dependence of metabolic rate. Proc R Soc Lond B 279:3616–3621
Zurück zum Zitat Xiao X, White EP, Hooten MB, Durham SL (2011) On the use of log transformation vs. nonlinear regression for analyzing biological power laws. Ecology 92:1887–1894PubMedCrossRef Xiao X, White EP, Hooten MB, Durham SL (2011) On the use of log transformation vs. nonlinear regression for analyzing biological power laws. Ecology 92:1887–1894PubMedCrossRef
Metadaten
Titel
The scaling of human basal and resting metabolic rates
verfasst von
Heather M. Bowes
Catriona A. Burdon
Nigel A. S. Taylor
Publikationsdatum
03.10.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
European Journal of Applied Physiology / Ausgabe 1/2021
Print ISSN: 1439-6319
Elektronische ISSN: 1439-6327
DOI
https://doi.org/10.1007/s00421-020-04515-1

Weitere Artikel der Ausgabe 1/2021

European Journal of Applied Physiology 1/2021 Zur Ausgabe

Neu im Fachgebiet Arbeitsmedizin

Das Geschlechterparadoxon in der gesundheitlich beeinträchtigten Lebenszeit – Ende eines Mythos?

Beginnend mit den 1920er-Jahren hat sich eine Vorstellung über die Geschlechterdifferenzen in Gesundheit und Mortalität etabliert, die von Lorber und Moore in dem einprägsamen Satz: „Women get sicker, but men die quicker“, zusammengefasst wurde [ 1 …, S. 13]. Tatsächlich erscheinen vor dem Hintergrund der höheren Lebenserwartung der Frauen die Studienergebnisse zu den Geschlechterdifferenzen in der Morbidität überraschend, wonach Frauen im Durchschnitt einen schlechteren Gesundheitszustand aufweisen als Männer [

Gesunde Lebenserwartung: Ein kritischer Blick auf Nutzen und Potenziale des demographischen Gesundheitsindikators

Open Access Leitthema

Die demographische Alterung hat vielfältige gesellschaftliche Konsequenzen, deren Ausmaß wesentlich vom Gesundheitszustand der Bevölkerung abhängt. Um diesen analysieren und bewerten zu können, wurden spezielle Kennziffern entwickelt, die in …

Wie hat sich die Lebenserwartung ohne funktionelle Einschränkungen in Deutschland entwickelt? Eine Analyse mit Daten des Deutschen Alterssurveys (DEAS)

Deutschland erfährt, wie andere Hocheinkommensstaaten, aufgrund kontinuierlich rückläufiger Mortalität und niedriger Geburtenraten tiefgreifende demografische Veränderungen. Der demografische Wandel führt in Deutschland zu einem zunehmend höheren …

Hitzeschutz im Fokus der hessischen Betreuungs- und Pflegeaufsicht

Open Access Klimawandel Übersichtsartikel

Im Sommer 2023 kündigte das Bundesministerium für Gesundheit (BMG) einen nationalen Hitzeschutzplan an und forderte die Länder auf, zu prüfen, „ob die Warnstufen des [Deutschen Wetterdienstes] DWD mit der Durchführung von Akutmaßnahmen …