Skip to main content
Erschienen in: Lasers in Medical Science 8/2022

28.07.2022 | Original Article

Theoretical and in vivo experimental investigation of laser hyperthermia for vascular dermatology mediated by liposome@Au core–shell nanoparticles

verfasst von: Dong Li, Qianqian Zhang, Linzhuang Xing, Bin Chen

Erschienen in: Lasers in Medical Science | Ausgabe 8/2022

Einloggen, um Zugang zu erhalten

Abstract

The 1064 nm Nd:YAG laser shows a good prospect for the treatment of port-wine stain (PWS), but it is necessary to enhance the blood absorption to laser energy by exogenous chromophore. Owing to the conjunction effect of local surface plasmon resonance (LSPR) by gold nanoparticle and drug delivery as well as lumen blockage abilities by liposome, liposome@Au core–shell nanoparticles are used as exogenous chromophore, and the efficiency of photothermal therapy is studied systematically. In this work, theoretical simulations were conducted to investigate the electric field and solid heat conduction of liposome@Au core–shell nanoparticles with various size and particles distance, aiming to achieve maximum photothermal conversion efficiency during the laser irradiation. Thereafter, liposome@Au core–shell nanoparticles with optimal size and structure were prepared, and in vivo experiments were conducted to evaluate the thermal damage of blood vessels enhanced by liposome@Au core–shell nanoparticles. Theoretical results imply that maximum temperature rise (167 K) is obtained when radius is 45 nm and shell thickness is 5 nm with distance of 4 nm. Liposome@Au core–shell nanoparticles were prepared with diameter of 101 nm and shell thickness of 5 nm according to the finite element simulation of electric field and solid heat conduction. When the molar ratio of chloroauric acid to phospholipid is 2.25, the LSPR absorption peak is about 981 nm, which is close to the wavelength of Nd:YAG laser. In vivo experiments show that injecting liposome@Au core–shell nanoparticles into the blood vessels can effectively reduce the number of laser pulses and the corresponding energy density required for obvious vasoconstriction.
Literatur
1.
Zurück zum Zitat Liu L, Zhou L, Zhao Q, Li X, Yang L, Li E, Wei D, Jiang X (2022) Histological analysis of different types of port-wine stains to guide clinical decision making: a retrospective study. Indian J Dermatol Venereol Leprology 1–9. Liu L, Zhou L, Zhao Q, Li X, Yang L, Li E, Wei D, Jiang X (2022) Histological analysis of different types of port-wine stains to guide clinical decision making: a retrospective study. Indian J Dermatol Venereol Leprology 1–9.
2.
Zurück zum Zitat Lister T, Wright PA, Chappell PH (2012) Simulating light transport through skin for color prediction of port wine stain lesions: a review. J Biomed Opt 17(11):110901CrossRef Lister T, Wright PA, Chappell PH (2012) Simulating light transport through skin for color prediction of port wine stain lesions: a review. J Biomed Opt 17(11):110901CrossRef
3.
Zurück zum Zitat Eerola I, Boon LM, Watanabe S, Grynberg H, Mulliken JB, Vikkula M (2002) Locus for susceptibility for familial capillary malformation (‘port-wine stain’) maps to 5q. Eur J Hum Genet 10(6):375–380CrossRef Eerola I, Boon LM, Watanabe S, Grynberg H, Mulliken JB, Vikkula M (2002) Locus for susceptibility for familial capillary malformation (‘port-wine stain’) maps to 5q. Eur J Hum Genet 10(6):375–380CrossRef
4.
Zurück zum Zitat Michael KS (1978) Toward an interdisciplinary psychology of appearances. Psychiatry 41(3):243–253CrossRef Michael KS (1978) Toward an interdisciplinary psychology of appearances. Psychiatry 41(3):243–253CrossRef
5.
Zurück zum Zitat Griffin TD Jr, Foshee JP, Finney R, Saedi N (2016) Port wine stain treated with a combination of pulsed dye laser and topical rapamycin ointment. Lasers Surg Med 48(2):193–196CrossRef Griffin TD Jr, Foshee JP, Finney R, Saedi N (2016) Port wine stain treated with a combination of pulsed dye laser and topical rapamycin ointment. Lasers Surg Med 48(2):193–196CrossRef
6.
Zurück zum Zitat Kono T, Frederick Groff W, Chan HH, Sakurai H, Yamaki T (2009) Long-pulsed neodymium:yttrium-aluminum-garnet laser treatment for hypertrophic port-wine stains on the lips. J Cosmet Laser Ther 11(1):11–13CrossRef Kono T, Frederick Groff W, Chan HH, Sakurai H, Yamaki T (2009) Long-pulsed neodymium:yttrium-aluminum-garnet laser treatment for hypertrophic port-wine stains on the lips. J Cosmet Laser Ther 11(1):11–13CrossRef
7.
Zurück zum Zitat Jasim ZF, Handley JM (2007) Treatment of pulsed dye laser-resistant port wine stain birthmarks. J Am Acad Dermatol 57(4):677–682CrossRef Jasim ZF, Handley JM (2007) Treatment of pulsed dye laser-resistant port wine stain birthmarks. J Am Acad Dermatol 57(4):677–682CrossRef
8.
Zurück zum Zitat Landthaler M, Hohenleutner U (2006) Laser therapy of vascular lesions. Photodermatol Photo 22(6):324–332CrossRef Landthaler M, Hohenleutner U (2006) Laser therapy of vascular lesions. Photodermatol Photo 22(6):324–332CrossRef
9.
Zurück zum Zitat Ghosh SK, Pal T (2007) Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem Rev 107(11):4797–4862CrossRef Ghosh SK, Pal T (2007) Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem Rev 107(11):4797–4862CrossRef
10.
Zurück zum Zitat Xing L, Chen B, Li D, Wu W, Ying Z (2018) Gold nanospheres enhanced photothermal therapy in a rat model. Lasers Surg Med 50(6):669–679CrossRef Xing L, Chen B, Li D, Wu W, Ying Z (2018) Gold nanospheres enhanced photothermal therapy in a rat model. Lasers Surg Med 50(6):669–679CrossRef
11.
Zurück zum Zitat Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer-Verlag, Berlin Heidelberg, Springer, Berlin, HeidelbergCrossRef Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer-Verlag, Berlin Heidelberg, Springer, Berlin, HeidelbergCrossRef
12.
Zurück zum Zitat Brongersma ML (2003) Nanoshells: gifts in a gold wrapper. Nat Mater 2(5):296–297CrossRef Brongersma ML (2003) Nanoshells: gifts in a gold wrapper. Nat Mater 2(5):296–297CrossRef
13.
Zurück zum Zitat Yang L, Hu B, Liu A-H, Zhang Y (2020) A hollow-structured nanohybrid: intelligent and visible drug delivery and photothermal therapy for cancer. Talanta 215:120893CrossRef Yang L, Hu B, Liu A-H, Zhang Y (2020) A hollow-structured nanohybrid: intelligent and visible drug delivery and photothermal therapy for cancer. Talanta 215:120893CrossRef
14.
Zurück zum Zitat Bangham AD, Standish MM, Watkins JC (1965) Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 13(1):238–252CrossRef Bangham AD, Standish MM, Watkins JC (1965) Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 13(1):238–252CrossRef
15.
Zurück zum Zitat Xu D, Xie J, Feng X, Zhang X, Ren Z, Zheng Y, Yang J (2020) Preparation and evaluation of a Rubropunctatin-loaded liposome anticancer drug carrier. RSC Adv 10(17):10352–10360CrossRef Xu D, Xie J, Feng X, Zhang X, Ren Z, Zheng Y, Yang J (2020) Preparation and evaluation of a Rubropunctatin-loaded liposome anticancer drug carrier. RSC Adv 10(17):10352–10360CrossRef
16.
Zurück zum Zitat Kobayashi T, Tsukagoshi S, Sakurai Y (1975) Enhancement of the cancer chemotherapeutic effect of cytosine arabinoside entrapped in liposomes on mouse leukemia L-1210. Gan 66(6):719–720PubMed Kobayashi T, Tsukagoshi S, Sakurai Y (1975) Enhancement of the cancer chemotherapeutic effect of cytosine arabinoside entrapped in liposomes on mouse leukemia L-1210. Gan 66(6):719–720PubMed
17.
Zurück zum Zitat Klibanov AL, Maruyama K, Torchilin VP, Huang L (1990) Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. Febs Lett 268(1):235–237CrossRef Klibanov AL, Maruyama K, Torchilin VP, Huang L (1990) Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. Febs Lett 268(1):235–237CrossRef
18.
Zurück zum Zitat Hayashi H, Kono K, Takagishi T (1998) Temperature-dependent associating property of liposomes modified with a thermosensitive polymer. Bioconjugate Chem 9(3):382–389CrossRef Hayashi H, Kono K, Takagishi T (1998) Temperature-dependent associating property of liposomes modified with a thermosensitive polymer. Bioconjugate Chem 9(3):382–389CrossRef
19.
Zurück zum Zitat Jia H, Chen B, Xing LZ, Li D, Ying ZX (2019) In vivo experimental investigation on multi-pulse Nd:YAG laser-induced vesicle embolization of vascular lesions. Opt Laser Technol 116:246–255CrossRef Jia H, Chen B, Xing LZ, Li D, Ying ZX (2019) In vivo experimental investigation on multi-pulse Nd:YAG laser-induced vesicle embolization of vascular lesions. Opt Laser Technol 116:246–255CrossRef
20.
Zurück zum Zitat Leung SJ, Troutman TS, Romanowski M (2009) Plasmon resonant gold-coated liposomes for spectrally coded content release. Proc SPIE-Int Soc Opt Eng 7190. Leung SJ, Troutman TS, Romanowski M (2009) Plasmon resonant gold-coated liposomes for spectrally coded content release. Proc SPIE-Int Soc Opt Eng 7190.
21.
Zurück zum Zitat Rengan AK, Jagtap M, De A, Banerjee R, Srivastava R (2014) Multifunctional gold coated thermo-sensitive liposomes for multimodal imaging and photothermal therapy of breast cancer cells. Nanoscale 6(2):916–923CrossRef Rengan AK, Jagtap M, De A, Banerjee R, Srivastava R (2014) Multifunctional gold coated thermo-sensitive liposomes for multimodal imaging and photothermal therapy of breast cancer cells. Nanoscale 6(2):916–923CrossRef
22.
Zurück zum Zitat Singh SP, Alvi SB, Pemmaraju DB, Singh AD, Manda SV, Srivastava R, Rengan AK (2018) NIR triggered liposome gold nanoparticles entrapping curcumin as in situ adjuvant for photothermal treatment of skin cancer. Int J Biol Macromol 110:375–382CrossRef Singh SP, Alvi SB, Pemmaraju DB, Singh AD, Manda SV, Srivastava R, Rengan AK (2018) NIR triggered liposome gold nanoparticles entrapping curcumin as in situ adjuvant for photothermal treatment of skin cancer. Int J Biol Macromol 110:375–382CrossRef
23.
Zurück zum Zitat Liu Y, Zhang X, Liu Z, Wang L, Luo L, Wang M, Wang Q, Gao D (2017) Gold nanoshell-based betulinic acid liposomes for synergistic chemo-photothermal therapy. Nanomedicine-Nanotechnol Biol Med 13(6):1891–1900CrossRef Liu Y, Zhang X, Liu Z, Wang L, Luo L, Wang M, Wang Q, Gao D (2017) Gold nanoshell-based betulinic acid liposomes for synergistic chemo-photothermal therapy. Nanomedicine-Nanotechnol Biol Med 13(6):1891–1900CrossRef
24.
Zurück zum Zitat Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6(12):4370–4379CrossRef Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6(12):4370–4379CrossRef
25.
Zurück zum Zitat Xing LZ, Chen B, Li D, Wu WJ, Wang GX (2017) Nd:YAG laser combined with gold nanorods for potential application in port-wine stains: an in vivo study. J Biomed Opt 22(11):115005CrossRef Xing LZ, Chen B, Li D, Wu WJ, Wang GX (2017) Nd:YAG laser combined with gold nanorods for potential application in port-wine stains: an in vivo study. J Biomed Opt 22(11):115005CrossRef
26.
Zurück zum Zitat Chen M, He Y, Hu Y, Zhu J (2019) Local heating control of plasmonic nanoparticles for different incident lights and nanoparticles. Plasmonics 14(6):1893–1902CrossRef Chen M, He Y, Hu Y, Zhu J (2019) Local heating control of plasmonic nanoparticles for different incident lights and nanoparticles. Plasmonics 14(6):1893–1902CrossRef
27.
Zurück zum Zitat Siahpoush V, Ahmadi-kandjani S, Nikniazi A (2018) Effect of plasmonic coupling on photothermal behavior of random nanoparticles. Opt Commun 420:52–58CrossRef Siahpoush V, Ahmadi-kandjani S, Nikniazi A (2018) Effect of plasmonic coupling on photothermal behavior of random nanoparticles. Opt Commun 420:52–58CrossRef
Metadaten
Titel
Theoretical and in vivo experimental investigation of laser hyperthermia for vascular dermatology mediated by liposome@Au core–shell nanoparticles
verfasst von
Dong Li
Qianqian Zhang
Linzhuang Xing
Bin Chen
Publikationsdatum
28.07.2022
Verlag
Springer London
Erschienen in
Lasers in Medical Science / Ausgabe 8/2022
Print ISSN: 0268-8921
Elektronische ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-022-03617-w

Weitere Artikel der Ausgabe 8/2022

Lasers in Medical Science 8/2022 Zur Ausgabe