Skip to main content
Erschienen in: BMC Pregnancy and Childbirth 1/2021

Open Access 01.12.2021 | Case report

Two fetuses in one family of arterial tortuosity syndrome: prenatal ultrasound diagnosis

verfasst von: Meiling Liang, Huaxuan Wen, Shengli Li

Erschienen in: BMC Pregnancy and Childbirth | Ausgabe 1/2021

Abstract

Background

Arterial tortuosity syndrome (ATS) is a rare autosomal recessive connective tissue disorder chiefly characterized by elongated and tortuosity of the large and medium sized arteries and anomalies of the vascular elastic fibers. Here we reported cases of brother about ATS from the same family on the prenatal ultrasound diagnosis. Reports of this case are rare in antenatally and we draw the vessel simulated diagram to display visually.

Case presentation

Prenatal ultrasound scanning at 29 weeks of gestation of the first fetus showed obvious tortuous and elongated of the aortic arch, ductus arteriosus, left and right pulmonary arteries, carotid and subclavian arteries. Three months after delivery, Contrast-enhanced computed tomography images (CTA) were performed to clearly display vascular abnormalities consistent with prenatal diagnosis of ultrasound. Whole exome sequencing (WES) was performed eight months after birth, two heterozygous variants of SLC2A10 gene was detected in newborn and their father and mother, respectively. Prenatal ultrasound scan at 22 weeks of gestation of the second fetus showed similar cardiovascular imaging. After birth the siblings have facial characteristic features gradually as aging. No surgical intervention was performed in the siblings follow up 19 months.

Conclusions

The key points of prenatal ultrasound diagnosis of ATS are the elongation and tortuosity of the large and medium sized arteries. Genetic counseling is the process of providing individuals and families with information on the nature, inheritance, and implications of genetic disorders to help them make informed medical and personal decisions.
Begleitmaterial
Additional file 1. Fetus echocardiography showing the tortuous process of tracing the course and connecting about the great vessels include AAO, Arch, LPA, RPA, DA.
Additional file 2. Spatiotemporal image correlation (STIC) showing the correct vascular connection of the tortuous and elongated great vessels about the first fetus in the 22 weeks.
Additional file 3. Spatiotemporal image correlation (STIC) showing another view rotate the STIC images 180 degree to observe the backside about the first fetus in the 22 weeks.
Additional file 4. Sonogram showing the the tortuous process of tracing the course and connecting about the great vessels include AAO, Arch, LPA, RPA and DA about the second fetus in the 29 weeks.
Hinweise

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12884-021-03960-w.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
ATS
Arterial tortuosity syndrome
WES
Whole exome sequencing
CTA
Contrast-enhanced computed tomography images
AAO
Ascending aorta
RSA
Right subclavian artery
DAO
Descending aorta
DA
Ductus arteriosus
MPA
Main pulmonary artery
Arch
Aortic arch
RPA
Right pulmonary artery
LPA
Left pulmonary artery
IA
Innominate artery
LCA
Left common carotid artery
LSA
Left subclavian artery
T
Trachea
LB
Left bronchus
RB
Right bronchus

Background

Arterial tortuosity syndrome (ATS) is a rare autosomal recessive connective tissue disorder chiefly characterized by elongation and tortuosity of the large and medium sized arteries and anomalies of the vascular elastic fibers, and a propensity for arterial and aortic aneurysm formation with vascular dissection, caused by mutations in SLC2A10 [1, 2]. The first few years of life seem to be the most critical for potentially life-threatening events, particularly acute respiratory insufficiency and other complications related to pulmonary artery stenosis. Here we reported two cases of brothers about ATS from the same family on the prenatal ultrasound diagnosis.

Case presentation

A 29 weeks fetus suspected fetal heart abnormality was referred to our center for the detailed prenatal ultrasound scanning. Routine scanning demonstrated that the fetus was in good status without any extra-cardiac abnormalities. Echocardiography showed (Fig. 1) obviously tortuous and elongated of the great arteries include Arch, DA, LPA, RPA, LCA, RCA, LSA and RSA. An additional movie files show this in more detail. (See Additional files 1, 2 and 3: Video) Given the echocardiographic findings suggestive of a connective tissue disorder, genetic diagnosis was recommended but the gravida refuse all the invasive examination.
The newborn presented with respiratory distress after birth. Umbilical cord blood was performed chromosome microarray detection at the time of delivery in the first neonate, indicating no abnormalities of sex chromosome and autosomes with definite clinical significance. Postpartum CT diagnosis: pulmonary hypertension, left and right ventricular wall thickening, the aorta, PA and cervical artery were tortuous, and clinically suspected Marfan syndrome.
Three months after delivery in the first neonate, CTA was performed to clearly display vascular abnormalities. The MPA send out RPA and LPA, LPA distinctly tortuous and elongated through the front of the trachea. The aortic arch arises from the ascending aorta and pass backward to the left of the trachea and esophagus to join the descending aorta which lies farther than normal aortic arch system of man [3]. A left aortic arch which gives rise to the IA, LCA and LSA in that order, but they are all tortuous exactly (Fig. 2). Whole exome sequencing(WES)was performed 8 months after birth in the first baby, two heterozygous variants of SLC2A10 gene c.1057_1058delCT (p. L353Tfs*8) and c.912 T > G (p.C304W) were detected (Table 1) and sequencing data showed that the two mutations were inherited from the mother and father (both heterozygous). P. L353TFS *8 is a rare code shift mutation predicts that protein synthesis may lead to premature termination of amino acids. P.c304w is a rare missense variation, and the variation region is an important part of this protein. Neither mutation has been reported in the associated clinical cases. So far, these two variants are relatively infrequent in our reference population gene database. In summary, according to the American Guidelines for classification of ACMG variants (PMID: 25,741,868), the two variants were classified as likely pathogenic variant and uncertain significance respectively, in combination with the clinical manifestation and pedigree analysis of the examinees.
Table 1
Exon detection report
Genes
Location of the HG19
Transcript
Changes of Nucleotide and amino acid
Frequency
ACMG variation
Related disease
Origin
SLC2A10
Chr20:45,354,728
NM_030777
c.1057_1058delCT (p.L353Tfs*8)
 < 0.001
Likely pathogenic
Arterial tortuosity syndrome
Mother (Carriers)
SLC2A10
Chr20:45,354,587
NM_030777
c.912 T > G (p.C304W)
 < 0.001
Variant of uncertain significance
Arterial tortuosity syndrome
Father (Carriers)
Targeted exome sequencing that included 5,177 genes
The first baby followed up to 19 months, with normal growth and development and had been hospitalized for several times due to severe pneumonia and occasionally cough with dyspnea. Facial characteristic features gradually as aging, such as blepharophimosis or periorbital fullness, downslanted palpebral fissures, micrognathia, large ears, long face and cutis laxa. Echocardiography in child showed the Arch and PA were still tortuous. These extensive tortuous and elongated vessels would be difficult to handle in the operation according to the consultation of pediatric cardiac surgery experts. It has been reported that severe pulmonary stenosis usually requires surgery and/or transcatheter treatment, but aortic arch abnormality does not require intervention in most cases of ATS [4].
Prenatal ultrasound scanning at 22 weeks of gestation of the second fetus showed (Fig. 3) similar echocardiography with tortuous and elongated great arteries. An additional movie files show this in more detail. (See Additional file 4: Video) Parents who continue the pregnancy after prenatal consultation and are fully aware that both parents are carriers have a 25% chance of having the disease in their next child. Doctor suggested a genetic test for the second fetus, and the parents refused to do amniocentesis and also refused to do after birth.

Discussion

ATS was first described by Ertugul in 1967 [5] and Beuren et al. in 1968 [6]. ATS has no reliable estimate of prevalence. Some authors suggest that it may be more frequent than estimated [7]. However prenatal ultrasound diagnosis of ATS is very rare. Despite few reports of prenatal suspicion of ATS antenatally at 28,29,30 weeks but not have been confirmed after birth [8]. Recently has been reported a case confirmed homozygous for p.S81R pathogenic variant in the SCL2A gene diagnosis of ATS antenatally at 29 weeks and mother was the same variant, the baby appeared well after birth. 11 months of age revealed progressive and severe PA stenosis and taken up for an operation. At 18 months had obviously appearance like our sibling cases [9]. The literature affected the vessels about MPA and their branches and aorta, it’s similar with our cases just elongated and tortuous there was no stenosis noted.
Due to the high suspicion of ATS in prenatal ultrasound and genetic confirmation, we summarized our experience and drew a simulated diagram to facilitate understanding and learning (Fig. 4). Both of our cases presented the same ultrasound appearance on prenatal ultrasound scanning. Fetal echocardiography revealed elongation and tortuosity of the large and medium sized arteries, postpartum CT showed the aorta is tortuous, dilated and elongated with large span, CTA cross-sectional section showed the tortuous and dilated LPA in front of the bifurcated left and right bronchi. The CTA longitudinal section about the first case showed the arch and three branches were abnormally zigzag.
Major clinical findings mainly divided into cardiovascular involvement, craniofacial involvement, skin and connective tissue disorder. In terms of cardiovascular disease, it could happen aneurysms [7, 1012], pulmonary hypertension [11], large-vein dilation, valvular regurgitation and mitral valve prolapse [13, 14]. The risk is also increased at any age for ischemic vascular events involving cerebrovascular circulation (resulting in non-hemorrhagic stroke) and the abdominal arteries (resulting in infarctions of abdominal organs). Characteristic features including blepharophimosis or periorbital fullness, downslanted palpebral fissures, convex nasal ridge, midface retrusion, micrognathia, large ears, long face, high palate, and dental crowding are often present and become more prominent with aging in the craniofacial involvement. The patients might be present loose skin folds and redundancy as seen in cutis laxa syndromes [7]. Other evidence of a generalized connective tissue disorder includes skeletal manifestations; inguinal and abdominal wall hernias; sliding hiatal or diaphragmatic hernia; hypotonia; myopia; and/or keratoconus [7]. Diaphragmatic hernia and sliding hiatal hernias are reported in up to 50% of affected individuals [15]. Although early reports mentioned 40% mortality before age four years [11], larger series of individuals with a molecularly confirmed diagnosis indicate a milder disease spectrum [7]. The earlier literature may also have been biased toward reporting the more severe end of the phenotypic spectrum. Abdulmohsen et al. published 7 patients at a mean follow up at 17.6 months remaining asymptomatic [16]. The diagnosis of ATS is established in a proband with generalized arterial tortuosity and biallelic (homozygous or compound heterozygous) pathogenic variants in SLC2A10.
ATS should be differentiated from EFEMP2-related cutis laxa, Loeys-Dietz syndrome [17, 18], Ehlers-Danlos syndrome, FBLN5-related cutis laxa, LTBP4-related cutis laxa and Occipital horn syndrome. And also differentiated from pulmonary artery sling antenatally, the cross-sectional view at the level of three vessels which includes both PA branches is useful to detect and color and power doppler may be helpful as well. The difference is that the ATS is only PA tortuous and does not bypass the trachea, but the PA sling is the LPA originated from the RPA, originating initially to the right side of the trachea, and turning sharply to course between the trachea and esophagus prior to joining the left hilum [19]. In conclusion, the cases that both parents were carriers, each sib has a 25% chance of being affected, a 50% chance of being an asymptomatic carrier, and a 25% chance of being unaffected and not a carrier. The first case confirmed ATS and although genetic tests were not performed in the second case, ATS was highly suspected based on sonographic findings, facial features and the two cases from the same parents. Timely diagnostic work-up in patients with ATS is necessary to plan eventual intervention, and hopefully to prevent complications related to the abnormal vasculature [20]. Regular cardiovascular follow up with echocardiography, and MRI-angiography or CT scan with 3D reconstructions from head to pelvis starting at birth or at the time of diagnosis. Under stable conditions, echocardiography could be performed on a yearly basis and MRI angiography or CT scan at least every three years in older children and adults. Avoid the contact sports, competitive sports, isometric exercise, scuba diving, the tobacco and sun tanning [21]. Preconception counseling should include possible pregnancy-associated risks to the mother and medication-associated risks to the fetus. Genetic counseling is the process of providing individuals and families with information on the nature, inheritance, and implications of genetic disorders to help them make informed medical and personal decisions. It is appropriate to offer genetic counseling (including discussion of potential risks to offspring and reproductive options) to young adults who are affected, are carriers, or are at risk of being carriers.

Conclusions

Extra-cardiac abnormalities are difficult to detect, but the great vessel problems are easy to detect prenatally. In summarize, the key points of prenatal ultrasound diagnosis of ATS are the elongation and tortuosity of the large and medium sized arteries. There are great clinical implication of timely diagnostic work-up in patients with unusual appearance of great vessels of the fetal heart during routine morphology examination.

Acknowledgements

We would like to thank Huaxuan Wen drawn the excellent simulated diagram, and thank Shengli Li guide to writing the manuscript.

Declarations

Written informed consent was obtained from the patient for the publication of this case report.
Informed written consent was obtained from the parents for publication of this report and any accompanying images.

Competing interests

The authors declare that there is no competing interest.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Anhänge

Supplementary Information

Additional file 1. Fetus echocardiography showing the tortuous process of tracing the course and connecting about the great vessels include AAO, Arch, LPA, RPA, DA.
Additional file 2. Spatiotemporal image correlation (STIC) showing the correct vascular connection of the tortuous and elongated great vessels about the first fetus in the 22 weeks.
Additional file 3. Spatiotemporal image correlation (STIC) showing another view rotate the STIC images 180 degree to observe the backside about the first fetus in the 22 weeks.
Additional file 4. Sonogram showing the the tortuous process of tracing the course and connecting about the great vessels include AAO, Arch, LPA, RPA and DA about the second fetus in the 29 weeks.
Literatur
2.
Zurück zum Zitat Coucke PJ, Willaert A, Wessels MW, Callewaert B, Zoppi N, De Backer J, Fox JE, Mancini GMS, Kambouris M, Gardella R, Facchetti F, Willems PJ, Forsyth R, Dietz HC, Barlati S, Colombi M, Loeys B, Paepe AD. Mutations in the facilitative glucose transporter GLUT10 alter angiogenesis and cause arterial tortuosity syndrome. Nat Genet. 2006;38(4):452–7. https://doi.org/10.1038/ng1764.CrossRefPubMed Coucke PJ, Willaert A, Wessels MW, Callewaert B, Zoppi N, De Backer J, Fox JE, Mancini GMS, Kambouris M, Gardella R, Facchetti F, Willems PJ, Forsyth R, Dietz HC, Barlati S, Colombi M, Loeys B, Paepe AD. Mutations in the facilitative glucose transporter GLUT10 alter angiogenesis and cause arterial tortuosity syndrome. Nat Genet. 2006;38(4):452–7. https://​doi.​org/​10.​1038/​ng1764.CrossRefPubMed
4.
Zurück zum Zitat Ritelli M, Chiarelli N, Dordoni C, Reffo E, Venturini M, Quinzani S, Monica MD, Scarano G, Santoro G, Russo MG, Calzavara-Pinton P, Milanesi O, Colombi M. Arterial tortuosity syndrome: homozygosity for two novel and one recurrent SLC2A10 missense mutations in three families with severe cardiopulmonary complications in infancy and a literature review. BMC Med Genet. 2014;15:122. https://doi.org/10.1186/s12881-014-0122-5.CrossRefPubMedPubMedCentral Ritelli M, Chiarelli N, Dordoni C, Reffo E, Venturini M, Quinzani S, Monica MD, Scarano G, Santoro G, Russo MG, Calzavara-Pinton P, Milanesi O, Colombi M. Arterial tortuosity syndrome: homozygosity for two novel and one recurrent SLC2A10 missense mutations in three families with severe cardiopulmonary complications in infancy and a literature review. BMC Med Genet. 2014;15:122. https://​doi.​org/​10.​1186/​s12881-014-0122-5.CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Callewaert BL, Willaert A, Kerstjens-Frederikse WS, De Backer J, Devriendt K, Albrecht B, Ramos-Arroyo MA, Doco-Fenzy M, Hennekam RCM, Pyeritz RE, Krogmann ON, Fillessen-Kaesbach G, Wakeling EL, Nik-zainal S, Francannet C, Mauran P, Booth C, Barrow M, Dekens R, Loeys BL, Coucke PJ, Paepe AME. Arterial tortuosity syndrome: clinical and molecular findings in 12 newly identified families. Hum Mutat. 2008;29(1):150–8. https://doi.org/10.1002/humu.20623.CrossRefPubMed Callewaert BL, Willaert A, Kerstjens-Frederikse WS, De Backer J, Devriendt K, Albrecht B, Ramos-Arroyo MA, Doco-Fenzy M, Hennekam RCM, Pyeritz RE, Krogmann ON, Fillessen-Kaesbach G, Wakeling EL, Nik-zainal S, Francannet C, Mauran P, Booth C, Barrow M, Dekens R, Loeys BL, Coucke PJ, Paepe AME. Arterial tortuosity syndrome: clinical and molecular findings in 12 newly identified families. Hum Mutat. 2008;29(1):150–8. https://​doi.​org/​10.​1002/​humu.​20623.CrossRefPubMed
8.
Zurück zum Zitat Al-Obaidly S, Kamal R, Al-Musafri F, et al. EP11.13: prenatal arterial tortuosity syndrome: a de facto late diagnosis. Ultrasound Obstet Gynecol. 2018;52:247.CrossRef Al-Obaidly S, Kamal R, Al-Musafri F, et al. EP11.13: prenatal arterial tortuosity syndrome: a de facto late diagnosis. Ultrasound Obstet Gynecol. 2018;52:247.CrossRef
9.
Zurück zum Zitat Vijayashankar SS, Culham J, Moodley S. First antenatally confirmed case of arterial tortuosity syndrome[J]. Cardiol Young. 2020;30(11):1–3. Vijayashankar SS, Culham J, Moodley S. First antenatally confirmed case of arterial tortuosity syndrome[J]. Cardiol Young. 2020;30(11):1–3.
13.
14.
Zurück zum Zitat LindsaySchepersBolarDoyleGalloFert-BoberKempersFishmanChenMyersBjedaOswaldEliasLevyAnderlidYangBongersTimmermansBravermanCanhamMortierBrunnerByersEykLaerDietzLoeys MEDNAJJEJMJEEKYLDGAFHPB-MMHEMHFJACNGRHGPHJVLVHCBL. Loss-of-function mutations in TGFB2 cause a syndromic presentation of thoracic aortic aneurysm. Nat Genet. 2012;44(8):922–7. https://doi.org/10.1038/ng.2349.CrossRef LindsaySchepersBolarDoyleGalloFert-BoberKempersFishmanChenMyersBjedaOswaldEliasLevyAnderlidYangBongersTimmermansBravermanCanhamMortierBrunnerByersEykLaerDietzLoeys MEDNAJJEJMJEEKYLDGAFHPB-MMHEMHFJACNGRHGPHJVLVHCBL. Loss-of-function mutations in TGFB2 cause a syndromic presentation of thoracic aortic aneurysm. Nat Genet. 2012;44(8):922–7. https://​doi.​org/​10.​1038/​ng.​2349.CrossRef
17.
Zurück zum Zitat Loeys BL, Schwarze U, Holm T, Callewaert BL, Thomas GH, Pannu H, Backer JFD, Oswald GL, Symoens S, Manouvrier S, Roberts AE, Faravelli F, Greco MA, Pyeritz RE, Milewicz DM, Coucke PJ, Cameron DE, Braverman AC, Byers PH, Paepe AMD, Dietz HC. Aneurysm syndromes caused by mutations in the TGF-β receptor. N Engl J Med. 2006;355(8):788–98. https://doi.org/10.1056/NEJMoa055695.CrossRefPubMed Loeys BL, Schwarze U, Holm T, Callewaert BL, Thomas GH, Pannu H, Backer JFD, Oswald GL, Symoens S, Manouvrier S, Roberts AE, Faravelli F, Greco MA, Pyeritz RE, Milewicz DM, Coucke PJ, Cameron DE, Braverman AC, Byers PH, Paepe AMD, Dietz HC. Aneurysm syndromes caused by mutations in the TGF-β receptor. N Engl J Med. 2006;355(8):788–98. https://​doi.​org/​10.​1056/​NEJMoa055695.CrossRefPubMed
18.
Zurück zum Zitat Van de Laar IMBH, Oldenburg RA, Pals G, Roos-Hesselink JW, de Graaf BM, Verhagen JMA, Hoedemaekers YM, Willemsen R, Severijene L-A, Venselaar H, Vriend G, Pattynama PM, Collée M, Majoor-Krakauer D, Poldermans D, Frohn-Mulder IME, Micha D, Timmermans J, Hilhorst-Hofstee Y, Bierma-Zeinstra SM, Willems PJ, Kros JM, Oei EHG, Oostra BA, Wessels MW, Bertoli-Avella AM. Mutations in SMAD3 cause a syndromic form of aortic aneurysms and dissections with early-onset osteoarthritis. Nat Genet. 2011;43(2):121–6. https://doi.org/10.1038/ng.744.CrossRefPubMed Van de Laar IMBH, Oldenburg RA, Pals G, Roos-Hesselink JW, de Graaf BM, Verhagen JMA, Hoedemaekers YM, Willemsen R, Severijene L-A, Venselaar H, Vriend G, Pattynama PM, Collée M, Majoor-Krakauer D, Poldermans D, Frohn-Mulder IME, Micha D, Timmermans J, Hilhorst-Hofstee Y, Bierma-Zeinstra SM, Willems PJ, Kros JM, Oei EHG, Oostra BA, Wessels MW, Bertoli-Avella AM. Mutations in SMAD3 cause a syndromic form of aortic aneurysms and dissections with early-onset osteoarthritis. Nat Genet. 2011;43(2):121–6. https://​doi.​org/​10.​1038/​ng.​744.CrossRefPubMed
Metadaten
Titel
Two fetuses in one family of arterial tortuosity syndrome: prenatal ultrasound diagnosis
verfasst von
Meiling Liang
Huaxuan Wen
Shengli Li
Publikationsdatum
01.12.2021
Verlag
BioMed Central
Erschienen in
BMC Pregnancy and Childbirth / Ausgabe 1/2021
Elektronische ISSN: 1471-2393
DOI
https://doi.org/10.1186/s12884-021-03960-w

Weitere Artikel der Ausgabe 1/2021

BMC Pregnancy and Childbirth 1/2021 Zur Ausgabe

Antikörper-Wirkstoff-Konjugat hält solide Tumoren in Schach

16.05.2024 Zielgerichtete Therapie Nachrichten

Trastuzumab deruxtecan scheint auch jenseits von Lungenkrebs gut gegen solide Tumoren mit HER2-Mutationen zu wirken. Dafür sprechen die Daten einer offenen Pan-Tumor-Studie.

Mammakarzinom: Senken Statine das krebsbedingte Sterberisiko?

15.05.2024 Mammakarzinom Nachrichten

Frauen mit lokalem oder metastasiertem Brustkrebs, die Statine einnehmen, haben eine niedrigere krebsspezifische Mortalität als Patientinnen, die dies nicht tun, legen neue Daten aus den USA nahe.

Neue S3-Leitlinie zur unkomplizierten Zystitis: Auf Antibiotika verzichten?

15.05.2024 Harnwegsinfektionen Nachrichten

Welche Antibiotika darf man bei unkomplizierter Zystitis verwenden und wovon sollte man die Finger lassen? Welche pflanzlichen Präparate können helfen? Was taugt der zugelassene Impfstoff? Antworten vom Koordinator der frisch überarbeiteten S3-Leitlinie, Prof. Florian Wagenlehner.

Gestationsdiabetes: In der zweiten Schwangerschaft folgenreicher als in der ersten

13.05.2024 Gestationsdiabetes Nachrichten

Das Risiko, nach einem Gestationsdiabetes einen Typ-2-Diabetes zu entwickeln, hängt nicht nur von der Zahl, sondern auch von der Reihenfolge der betroffenen Schwangerschaften ab.

Update Gynäkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.