Skip to main content
Erschienen in: Journal of Medical Systems 1/2024

01.12.2024 | Original Paper

Use of Artificial Intelligence to Improve the Calculation of Percent Adhesion for Transdermal and Topical Delivery Systems

verfasst von: Chao Wang, Caroline Strasinger, Yu-Ting Weng, Xutong Zhao

Erschienen in: Journal of Medical Systems | Ausgabe 1/2024

Einloggen, um Zugang zu erhalten

Abstract

Adhesion is a critical quality attribute and performance characteristic for transdermal and topical delivery systems (TDS). Regulatory agencies recommend in vivo skin adhesion studies to support the approval of TDS in both new drug applications and abbreviated new drug applications. The current assessment approach in such studies is based on the visual observation of the percent adhesion, defined as the ratio of the area of TDS attached to the skin to the total area of the TDS. Visually estimated percent adhesion by trained clinicians or trial participants creates variability and bias. In addition, trial participants are typically confined to clinical centers during the entire product wear period, which may lead to challenges when translating adhesion performance to the real world setting. In this work we propose to use artificial intelligence and mobile technologies to aid and automate the collection of photographic evidence and estimation of percent adhesion. We trained state-of-art deep learning models with advanced techniques and in-house curated data. Results indicate good performance from the trained models and the potential use of such models in clinical practice is further explored.
Fußnoten
1
Topical systems, which target the local and surrounding tissue, must be applied to the site of action, as such these systems may require alternative assumptions when applied to areas with significant curvatures (e.g., a sprained ankle or wrist).
 
Literatur
6.
Zurück zum Zitat Shorten C, Khoshgoftaar TM: A survey on image data augmentation for deep learning. J Big data, 6(1):1–48, 2019CrossRef Shorten C, Khoshgoftaar TM: A survey on image data augmentation for deep learning. J Big data, 6(1):1–48, 2019CrossRef
7.
Zurück zum Zitat Buslaev A, Parinov A, Khvedchenya E, Iglovikov V, Kalinin A: Albumentations: fast and flexible image augmentations. ArXiv e-prints, 1809.06839, 2018 Buslaev A, Parinov A, Khvedchenya E, Iglovikov V, Kalinin A: Albumentations: fast and flexible image augmentations. ArXiv e-prints, 1809.06839, 2018
9.
Zurück zum Zitat Moshkov N, Mathe B, Kertesz-Farkas A, Hollandi R, Horvath P: Test-time augmentation for deep learning-based cell segmentation on microscopy images. Sci Rep, 10(1):1–7, 2020CrossRef Moshkov N, Mathe B, Kertesz-Farkas A, Hollandi R, Horvath P: Test-time augmentation for deep learning-based cell segmentation on microscopy images. Sci Rep, 10(1):1–7, 2020CrossRef
10.
Zurück zum Zitat Wang G, Li W, Aertsen M, Deprest J, Ourselin S, Vercauteren T: Aleatoric uncertainty estimation with test-time augmentation for medical image segmentation with convolutional neural networks. Neurocomputing, 338:34–45, 2019CrossRef Wang G, Li W, Aertsen M, Deprest J, Ourselin S, Vercauteren T: Aleatoric uncertainty estimation with test-time augmentation for medical image segmentation with convolutional neural networks. Neurocomputing, 338:34–45, 2019CrossRef
12.
Zurück zum Zitat Minaee S, Boykov Y, Porikli F, Plaza A, Kehtarnavaz N, Terzopoulos D: Image segmentation using deep learning: A survey. IEEE transactions on pattern analysis and machine intelligence, 44(7):3523–3542, 2021 Minaee S, Boykov Y, Porikli F, Plaza A, Kehtarnavaz N, Terzopoulos D: Image segmentation using deep learning: A survey. IEEE transactions on pattern analysis and machine intelligence, 44(7):3523–3542, 2021
13.
Zurück zum Zitat Long J, Shelhamer E, Darrell T: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3431–3440, 2015 Long J, Shelhamer E, Darrell T: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3431–3440, 2015
14.
Zurück zum Zitat He K, Zhang X, Ren S, Sun J: Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778, 2016 He K, Zhang X, Ren S, Sun J: Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778, 2016
15.
Zurück zum Zitat Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, et al: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems, 32, 2019 Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, et al: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems, 32, 2019
16.
Zurück zum Zitat Ronneberger O, Fischer P, Brox T: U-net: Convolutional networks for biomedical image segmentation. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18, Springer, pp 234–241, 2015 Ronneberger O, Fischer P, Brox T: U-net: Convolutional networks for biomedical image segmentation. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18, Springer, pp 234–241, 2015
18.
Zurück zum Zitat Zhou Z, Siddiquee MMR, Tajbakhsh N, Liang J: Unet++: Redesigning skip connections to exploit multiscale features in image segmentation. IEEE transactions on medical imaging, 39(6):1856–1867, 2019CrossRefPubMedPubMedCentral Zhou Z, Siddiquee MMR, Tajbakhsh N, Liang J: Unet++: Redesigning skip connections to exploit multiscale features in image segmentation. IEEE transactions on medical imaging, 39(6):1856–1867, 2019CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Chen LC, Zhu Y, Papandreou G, Schroff F, Adam H: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European conference on computer vision (ECCV), pp 801–818, 2018 Chen LC, Zhu Y, Papandreou G, Schroff F, Adam H: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European conference on computer vision (ECCV), pp 801–818, 2018
20.
Zurück zum Zitat Jadon S: A survey of loss functions for semantic segmentation. In: 2020 IEEE conference on computational intelligence in bioinformatics and computational biology (CIBCB), IEEE, pp 1–7, 2020 Jadon S: A survey of loss functions for semantic segmentation. In: 2020 IEEE conference on computational intelligence in bioinformatics and computational biology (CIBCB), IEEE, pp 1–7, 2020
21.
Zurück zum Zitat Lin TY, Goyal P, Girshick R, He K, Dollár P: Focal loss for dense object detection. In: Proceedings of the IEEE international conference on computer vision, pp 2980–2988, 2017 Lin TY, Goyal P, Girshick R, He K, Dollár P: Focal loss for dense object detection. In: Proceedings of the IEEE international conference on computer vision, pp 2980–2988, 2017
22.
Zurück zum Zitat Abraham N, Khan NM: A novel focal tversky loss function with improved attention u-net for lesion segmentation. In: 2019 IEEE 16th international symposium on biomedical imaging (ISBI 2019), IEEE, pp 683–687, 2019 Abraham N, Khan NM: A novel focal tversky loss function with improved attention u-net for lesion segmentation. In: 2019 IEEE 16th international symposium on biomedical imaging (ISBI 2019), IEEE, pp 683–687, 2019
23.
Zurück zum Zitat Salehi SSM, Erdogmus D, Gholipour A: Tversky loss function for image segmentation using 3d fully convolutional deep networks. In: Machine Learning in Medical Imaging: 8th International Workshop, MLMI 2017, Held in Conjunction with MICCAI 2017, Quebec City, QC, Canada, September 10, 2017, Proceedings 8, Springer, pp 379–387, 2017 Salehi SSM, Erdogmus D, Gholipour A: Tversky loss function for image segmentation using 3d fully convolutional deep networks. In: Machine Learning in Medical Imaging: 8th International Workshop, MLMI 2017, Held in Conjunction with MICCAI 2017, Quebec City, QC, Canada, September 10, 2017, Proceedings 8, Springer, pp 379–387, 2017
24.
Zurück zum Zitat Deng J, Dong W, Socher R, Li LJ, Li K, Li FF: Imagenet: A large-scale hierarchical image database. In: 2009 IEEE conference on computer vision and pattern recognition, IEEE, pp 248–255, 2009 Deng J, Dong W, Socher R, Li LJ, Li K, Li FF: Imagenet: A large-scale hierarchical image database. In: 2009 IEEE conference on computer vision and pattern recognition, IEEE, pp 248–255, 2009
25.
Zurück zum Zitat Smith LN, Topin N: Super-convergence: Very fast training of neural networks using large learning rates. In: Artificial intelligence and machine learning for multi-domain operations applications, SPIE, vol 11006, pp 369–386, 2019 Smith LN, Topin N: Super-convergence: Very fast training of neural networks using large learning rates. In: Artificial intelligence and machine learning for multi-domain operations applications, SPIE, vol 11006, pp 369–386, 2019
26.
Zurück zum Zitat Li T, Sahu AK, Talwalkar A, Smith V: Federated learning: Challenges, methods, and future directions. IEEE signal processing magazine, 37(3):50–60, 2020CrossRef Li T, Sahu AK, Talwalkar A, Smith V: Federated learning: Challenges, methods, and future directions. IEEE signal processing magazine, 37(3):50–60, 2020CrossRef
27.
Zurück zum Zitat McMahan B, Moore E, Ramage D, Hampson S, y Arcas BA: Communication-efficient learning of deep networks from decentralized data. In: Artificial intelligence and statistics, PMLR, pp 1273–1282, 2017 McMahan B, Moore E, Ramage D, Hampson S, y Arcas BA: Communication-efficient learning of deep networks from decentralized data. In: Artificial intelligence and statistics, PMLR, pp 1273–1282, 2017
28.
Zurück zum Zitat Rieke N, Hancox J, Li W, Milletari F, Roth HR, Albarqouni S, Bakas S, Galtier MN, Landman BA, Maier-Hein K, et al: The future of digital health with federated learning. NPJ digital medicine, 3(1):119, 2020CrossRefPubMedPubMedCentral Rieke N, Hancox J, Li W, Milletari F, Roth HR, Albarqouni S, Bakas S, Galtier MN, Landman BA, Maier-Hein K, et al: The future of digital health with federated learning. NPJ digital medicine, 3(1):119, 2020CrossRefPubMedPubMedCentral
Metadaten
Titel
Use of Artificial Intelligence to Improve the Calculation of Percent Adhesion for Transdermal and Topical Delivery Systems
verfasst von
Chao Wang
Caroline Strasinger
Yu-Ting Weng
Xutong Zhao
Publikationsdatum
01.12.2024
Verlag
Springer US
Erschienen in
Journal of Medical Systems / Ausgabe 1/2024
Print ISSN: 0148-5598
Elektronische ISSN: 1573-689X
DOI
https://doi.org/10.1007/s10916-023-02027-x

Weitere Artikel der Ausgabe 1/2024

Journal of Medical Systems 1/2024 Zur Ausgabe