Skip to main content
Erschienen in: BMC Ophthalmology 1/2024

Open Access 01.12.2024 | Research

A systematic review of inherited retinal dystrophies in Pakistan: updates from 1999 to April 2023

verfasst von: Asad Munir, Salma Afsar, Atta Ur Rehman

Erschienen in: BMC Ophthalmology | Ausgabe 1/2024

Abstract

Background

Inherited retinal degenerations (IRDs) are a group of rare genetic conditions affecting retina of the eye that range in prevalence from 1 in 2000 to 1 in 4000 people globally. This review is based on a retrospective analysis of research articles reporting IRDs associated genetic findings in Pakistani families between 1999 and April 2023.

Methods

Articles were retrieved through survey of online sources, notably, PubMed, Google Scholar, and Web of Science. Following a stringent selection criterion, a total of 126 research articles and conference abstracts were considered. All reported variants were cross-checked and validated for their correct genomic nomenclature using different online resources/databases, and their pathogenicity scores were explained as per ACMG guidelines.

Results

A total of 277 unique sequence variants in 87 distinct genes, previously known to cause IRDs, were uncovered. In around 70% cases, parents of the index patient were consanguineously married, and approximately 88.81% of the detected variants were found in a homozygous state. Overall, more than 95% of the IRDs cases were recessively inherited. Missense variants were predominant (41.88%), followed by Indels/frameshift (26.35%), nonsense (19.13%), splice site (12.27%) and synonymous change (0.36%). Non-syndromic IRDs were significantly higher than syndromic IRDs (77.32% vs. 22.68%). Retinitis pigmentosa (RP) was the most frequently observed IRD followed by Leber’s congenital amaurosis (LCA). Altogether, mutations in PDE6A gene was the leading cause of IRDs in Pakistani families followed by mutations in TULP1 gene.

Conclusion

In summary, Pakistani families are notable in expressing recessively inherited monogenic disorders including IRDs likely due to the highest prevalence of consanguinity in the country that leads to expression of rare pathogenic variants in homozygous state.
Hinweise

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12886-024-03319-7.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
ACMG
The American College of Medical Genetics and Genomics
adRP
Autosomal Dominant Retinitis Pigmentosa
arRP
Autosomal Recessive Retinitis Pigmentosa
AS
Alström syndrome
BBS
Bardet-Biedl syndrome
CADD
Combined Annotation Dependent Depletion
CD/CRD
Cone dystrophy or Cone rod dystrophy
CHM
Choroideremia
COH
Cohen syndrome
CSNB
Congenital Stationary Night Blindness
EORD
Early onset retinal dystrophy
FA
Fundus Albipunctatus
gnomAD
Genome aggregation database
HGMD
Human Gene Mutation Database
HJMD
Hypotrichosis juvenile macular dystrophy
IRDs
Inherited retinal degenerations
JBTS
Joubert syndrome
LCA
Leber’s congenital amaurosis
MD
Macular degeneration
MKS
Meckel Syndrome
RDMVID
Retinal dystrophy with microvillus inclusion disease
RP
Retinitis pigmentosa
RPA
Retinitis punctata albescens
RS
Retinoschisis
SIFT
Sorting Intolerant from Tolerant
SLS
Senior-Loken syndrome
STGD
Stargardt disease
USH
Usher Syndrome, and
ZS
Zellweger syndrome

Introduction

Inherited retinal dystrophies (IRDs) are a group of clinically and genetically diverse eye disorders ranging in prevalence from 1 in 2000 to 1 in 4000 people globally [1, 2]. IRDs are broadly divided into two categories (i) non-syndromic, and (ii) syndromic types depending upon absence or presence of extra-ocular manifestations, respectively. Major clinical symptoms of non-syndromic IRDs include, but not limited to, night blindness or nyctalopia, color vision deficiency, photophobia, nystagmus, reduced visual acuity, day vision loss as well as central or peripheral vision loss. Syndromic IRDs, on the other hand, are known for systemic findings such as obesity, polydactyly, renal abnormalities, deafness, speech, and intellectual disability together with ocular symptoms [36]. Globally, mutations in over 300 distinct genes have thus far been associated with all forms of IRDs [3]. IRDs follow all modes of Mendelian inheritance such as autosomal recessive [7], autosomal dominant [8], X-linked [9], mitochondrial [10] as well as digenic [11] and oligogenic patterns [12]. Accordingly, IRDs are classified into various subtypes depending upon disease onset, mode of inheritance, rate of disease progression, clinical presentation, part of retina affected (rods, cones, retinal pigment epithelium, inner retina and choroid), and/or involvement of extra ocular phenotypes [13]. Non-syndromic and syndromic IRDs are briefly explained in the following sections.

Non-syndromic IRDs

Cone or cone-rod dystrophy (CD/CRD)

Cone and cone-rod dystrophies (CD/CRD) are a rare form of retinal dystrophies with a worldwide prevalence rate of 1:40,000 [14]. CD/CRD are progressive disorders of cone and rod photoreceptor cells in retina presenting clinical and genetic heterogeneity [4]. Major clinical symptoms of CD include reduced day vision, color vision deficiency, reduced visual acuity, and photophobia [15]. Similarly, CRD is characterized by cone dysfunction at first resulting in progressive loss of day vision. This is followed by rods dysfunction eventually leading to night blindness (nyctalopia). However, symptoms such as photophobia, color vision deficiency, and legal blindness overlap between CD and CRD. The electroretinogram (ERG) shows both cone and rod dysfunction and is non-recordable in advanced case [16]. CD/CRD may transmit as autosomal recessive, autosomal dominant or X-linked entity with mutations in as many as 32 distinct genes identified so far [17]. Gill and colleagues have reported that 62.2% cases of recessively inherited CD/CRD are linked to mutations in ABCA4 gene. Similarly, of the dominantly inherited CD/CRD, 34.6% cases are attributed to mutations in GUCY2D gene. Lastly, of the X-linked inherited CD/CRD, 73.0% cases are due to mutations in RPGR gene [18].

Congenital stationary night blindness (CSNB)

As the name indicate, congenital stationary night blindness (CSNB) is a form of non-progressive inherited retinal dystrophy that appears at birth, however identified in childhood [19]. Visual symptoms include night blindness, nystagmus and reduced visual acuity [20]. ERG findings show normal cone response; however, reduced or abolished rod response is detected on ERG in CSNB. Similarly, fundoscopy mostly remains unremarkable [21]. CSNB is divided into four distinct types namely, Schubert–Borstein type, Riggs type, Oguchi disease, and fundus albipunctatus [22]. Though patients with Schubert–Borstein or Riggs type both have normal fundi, the two types can be distinguished from each other with the help of full-field electroretinography (ff-ERG) [23]. Oguchi disease and fundus albipunctatus shows fundus abnormalities. For instance, Oguchi disease is characterized by a gray-white metallic sheen that disappears after dark adaptation, a feature called the Mizuo–Nakamura phenomenon. Fundus albipunctatus is characterized by small white dots scattered across the posterior pole sparing the fovea. In scotopic settings, Riggs type has flat a-wave in dim flash and reduced a- and b-wave with a strong single flash. In contrast, the Schubert–Bornschein type has normal a-wave and severely reduced b-wave, classically described as an electronegative waveform. In photopic settings, Riggs type has a normal photopic response, the Schubert–Bornschein type has abnormal photopic findings [2325]. To our knowledge, at least 18 genes are known to cause CSNB, including 13 genes for AR-CSNB, 3 genes for AD-CSNB, and 2 genes for XL-CSNB [20].

Leber congenital amaurosis (LCA)

Leber’s congenital amaurosis (LCA) is a rare, and one of the most clinically severe form of IRDs with a worldwide prevalence of 1:80,000 [26]. LCA is, typically, associated with early onset vision loss, nystagmus, and amaurotic pupils [27]. Clinical pattern includes pigmentory retinopathy, reduced or absent ERG response, poor central vision or complete blindness at birth [28]. LCA predominately follows autosomal recessive inheritance pattern except for CRX, IMPDH1, and OTX2 genes that results in autosomal dominant LCA [29]. LCA account for approximately 5% of the total IRDs cases [30], and ~ 20% of childhood blindness [27]. So far, pathogenic variants in 38 genes are known to cause LCA [27]. Some of the frequently mutated genes in LCA include AIPL1, CEP290, CRB1 and GUCY2D [31].

Macular degeneration (MD)

Macular degeneration (MD) is a heterogeneous group of progressive eye disorders that are clinically characterized by bilateral symmetrical macular abnormalities and macular flecks. Visual complaints include, reduced visual acuity, central vision loss, photophobia, slow dark adaptation, and nystagmus [32]. Stargardt disease 1 (STGD1) disease is the most common form of macular dystrophy with a prevalence rate of 1 in 8000–10000 [33]. STGD1 follows an autosomal recessive mode of inheritance with ABCA4 as the leading cause of the disease that accounts for 95% STGD1 cases [34]. Of the total 18 genes known to cause MD, 14 genes are responsible for AD-MD while the remaining 4 genes results in AR-MD [RetNet—Retinal Information Network (uth.edu), accessed on March 6, 2023].

Retinitis pigmentosa (RP)

Retinitis pigmentosa (RP), with a worldwide incidence rate of 1:3000 to 1:4000, appears as the most highly frequent type of IRDs [35]. Though symptoms and onset of RP is largely variable, it usually starts with night blindness during first or second decade of life due to the degeneration of rod photoreceptor cells. This is followed by visual field constriction (tunnel vision) and degeneration of cone photoreceptors, finally leading to complete blindness by late third or early fourth decade of life. Auxiliary symptoms may include photophobia, nystagmus and reduced visual acuity [35]. Around 70%-80% of RP cases are non-syndromic (isolated) while the remaining 20–30% cases are associated with non-ocular manifestations, and thus classified as syndromic RP [36]. RP may be inherited as an autosomal dominant (15–25%), autosomal recessive (5–20%), X-linked (5–15%) [37, 38], or a di-genic entity [39] with associated mutations reported in over 132 different genes [RetNet—Retinal Information Network (uth.edu)]. Mutations in RPGR gene is the leading cause of X-linked RP [40].

Syndromic IRDs

Bardet-biedl syndrome

Bardet-Biedl syndrome (BBS) is a rare ciliopathy with multisystem involvement [41]. Hallmark features of BBS include obesity, macro or micro-cephaly, night blindness, cone-rod dystrophy, retinitis pigmentosa (RP), hypodontia, dental crowding, hepatic fibrosis, hypogonadism, hypogenitalism, tricuspid regurgitation, dilated cardiomyopathy, renal anomalies, polydactyly, brachydactyly, syndactyly, delayed development, mental retardation, ataxia, speech disability speech delay, and diabetes mellitus [42, 43]. However, expression of these symptoms may vary from one person to the other. Since the mutated genes in BBS have functional relevance in ciliary biogenesis and trafficking, the condition is regarded as ciliopathy [44]. As per literature survey [45], and RetNet—Retinal Information Network (uth.edu), mutations in 28 distinct genes/loci are so far associated with BBS phenotypes, all following an autosomal recessive inheritance pattern [46] and in some cases oligogenic [47]. Interestingly, ~ 50% of the total BBS cases are attributed to pathological sequence variations in three genes, namely, BBS1, BBS2, and BBS10 [45].

Usher syndrome (USH)

Usher syndrome (USH) is a rare form syndromic IRDs, presenting deafness in conjunction with blindness, that affect people with a worldwide prevalence of 4–17 in 100000 [48] [49]. Chief ocular complaints are night blindness, progressive vision loss, nystagmus whereas non-ocular symptoms include hearing difficulty or sensorineural hearing loss of variable degree [50]. USH is sub-divided into different types, for example, USH1, USH2 and USH3, based upon clinical presentation of the disease. USH2 is the predominant type among all sub-types [51]. USH is passed in an autosomal recessive pattern [52], and di-genic [53] with mutation in 10 genes thus far known to cause the disease. While mutations in USH2A gene account for roughly 80% of USH2 cases, MYO7A gene mutations are responsible for over 50% of USH1 cases [54].

Joubert syndrome

Joubert syndrome (JBTS) is an infrequent genetic ciliopathy characterized by the involvement of multiple systems and organs, including the brain, kidneys, liver, and eyes. The clinical presentation of JBTS typically involve mild to moderate mental retardation, macrocephaly, retinal dystrophy, nystagmus, coloboma, visual impairment, hepatic and renal anomalies, and skeletal deformities with characteristic “molar tooth sign” on MRI. Given its rarity as a genetic ciliopathy, JBTS has a global occurrence rate of 1 in 80,000 to 1 in 100,000 live births [55]. JBTS is predominantly inherited as an autosomal recessive disorder [56]. However, there have been reports of X-linked JBTS due to mutations in the OFD1 gene [55]. Pathogenic sequence variations in at least 40 genes have been reported to cause JBTS so far [57]. Mutations in AIH1 and CEP290 genes collectively account for approximately 38% of genetically diagnosed JBTS patients [55].

Senior-loken syndrome

Senior-Loken syndrome (SLS) is a rare syndromic form of IRDs that is estimated to affect 1 in 1,000,000 individuals worldwide. The disease is characterized by retinopathy that may progress as Leber congenital amaurosis (LCA), retinitis pigmentosa (RP), or sector RP. Patients typically present with photophobia, nystagmus, and hyperopia, which may manifest in the first few years of life or later in childhood. Additionally, patients with SLS experience nephronophthisis, a condition that is marked by cystic kidney disease (medullary cystic kidney disease), reduced concentrating ability, and chronic tubule-interstitial nephritis. Over time, the disease typically progresses to end-stage renal disease [58, 59]. SLS is inherited as an autosomal recessive Mendelian disorder [60]. To date, mutations in 10 genes are associated with SLS including NPHP1 [61], NPHP2 [62], NPHP3 [63], NPHP4 [64], NPHP5/IQCB1 [65], NPHP6/CEP290 [66, 67], NPHP10/SDCCAG8 [68], NPHP13/WRD19 [69], NPHP15/CEP164 [70], and TRAF3IP1 [71].

Methods

This review was carried out between November-2022 and April-2023 by following PRISMA guidelines as mentioned in Supplementary Table S1. Briefly, the inclusion criteria for considering genetic studies comprised families of Pakistani descent, exhibiting both syndromic and non-syndromic inherited retinal disorders, and articles published during the period spanning from 1999 to April-2023. A thorough literature survey was performed for this purpose using PubMed (NCBI), Google Scholar, and Web of Science. Different key words such as inherited retinal degenerations/dystrophies, IRDs, retinitis pigmentosa (syndromic/non-syndromic), Stargardt disease, cone- and/or cone-rod dystrophy, macular degeneration, congenital stationary night blindness, leber congenital amaurosis, achromatopsia, color blindness, mutations, Pakistan, etc. were used for retrieving relevant literature. All articles that appeared during our search were further shortlisted and papers that did not fall under the purview of this review were excluded. This included articles presenting findings related to non-retinal phenotypes like cataract, age related macular dystrophy, microphthalmia, anophthalmia, aniridia, anterior segment dysgenesis, and sporadic cases. Data pertaining to genetic and clinical aspects of the families were extracted from all papers and recorded (and tabulated) in Microsoft (MS) excel sheet. This followed manual curation of the data using different options of the MS excel tool. Genomic nomenclature of all variants reported in this study were validated using VariantValidator [https://​variantvalidator​.​org]. Additional features of the variants such as impact of the variations on cDNA and protein level, gene symbols, protein and transcript ID, genomic coordinates of the variation, inheritance pattern, and allele frequencies were determined using major genomic data bases (Ensemble, UCSC, HGNC, OMIM, gnomAD). All identified variants were queried in different online databases such as ClinVar, HGMD and Varsome to check their clinical significance. ACMG verdicts about the variants were retrieved from Varsome database. Retinal information network (RetNet) was used to calculate number of genes associated with each IRDs type. All missense variants were evaluated for their predicted pathogenicity using different in-silico tools, namely, CADD, DANN, LRT, Mutation Assessor, Mutation Taster, Mutpred, PolyPhen-2, PROVEAN, and SIFT.

Results

Demographic and clinical features of IRDs

This review paper focused on a total of 126 published research articles, including 1 case series, 34 case reports, and 91 cohort papers, all documenting IRDs in families of Pakistani descent between 1999 and April-2023. Excluding a retrospective case series study (n = 1), major diagnostic methods utilized in the remaining 125 articles included linkage analysis and/or homozygosity mapping coupled with targeted Sanger sequencing (n = 62), targeted Sanger sequencing (n = 24), and next-generation sequencing (panel-based sequencing, whole exome sequencing, and whole genome sequencing) (n = 39) (Fig. 1, Table S3).
All articles were thoroughly checked to infer different features such as ethnic affiliation of the patients, parental consanguinity, zygosity of the identified alleles, mutation types /molecular impact of the alleles, inheritance pattern, and disease type. Collectively, highest number of IRDs cases were reported from Punjab province (32.21%), followed by Khyber Pakhtunkhwa (13.73%), Sindh (1.12%), Baluchistan (0.84%), and Kashmir (< 1%), while a subset (1.12%) of studies documented IRDs in Pakistani families living abroad (UK/Canada). In the remaining 50.70% cases, no ethnic affiliation could be inferred from the published reports. Analysis of the retrieved articles for presence/absence of parental consanguinity revealed that parents were consanguineously married in 70.03% of the cases, 2.24% non-consanguineously married while no information about parental consanguinity were available in 27.73% cases. Interestingly, 95.50% IRDs cases were found to follow autosomal recessive (AR) inheritance pattern followed by autosomal dominant (AD) (1.70%), X-Linked (1.10%) pattern (Table 1). In the remaining 1.70% cases, information about inheritance pattern was not known. The authors, however, reported homozygous pathogenic variants in genes which can cause both AD and AR inheritance pattern (as per OMIM database).
Table 1
Demographic attributes of the index cases and genomic features of the observed alleles in Pakistani IRDs families between 1999 and April 2023
Demographic characteristics (n = 357 index cases)
No.
%
Ethnicity
 N.D
181
50.70
 Punjab
115
32.21
 Khyber Pakhtunkhwa
49
13.73
 Britishi Pakistani
3
0.84
 Sindh
4
1.12
 Balochistan
3
0.84
 Canadian Pakistani
1
0.28
 Kashmir
1
0.28
Parental consanguinity
 Yes
250
70.03
 N.D
99
27.73
 No
8
2.24
Clinical Diagnosis
 Non-Syndromic
276
77.31
 Syndromic
81
22.68
Inheritance pattern
 Autosomal Dominant
6
1.70
 Autosomal Recessive
341
95.50
 Autosomal Dominant/Recessive
6
1.70
 X-Linked
4
1.10
Genomic features of the observed alleles (n = 277 variants)
Zygosity
  Homozygous
246
88.81
  N.D
22
7.94
  Heterozygous
6
2.17
  Hemizygous
3
1.08
Impact Type
  Missense
116
41.88
  Indels/Frameshift
73
26.35
  Nonsense
53
19.13
  Splicing
34
12.27
  Synonymous
1
0.36
Classification of the observed missense variants (n = 116)
ACMG
  Benign/Likely Benign
8
6.90
  Pathogenic/Likely Pathogenic
63
54.31
  Uncertain Significance
45
38.79
ClinVar
  Benign/Likely Benign
6
5.17
  Pathogenic/Likely Pathogenic
49
42.24
  Uncertain Significance
16
13.79
  Conflicting
9
7.76
  Not reported
36
31.03
Types of single nucleotide variants (SNVs) reported (n = 170)
 Synonymous
1
0.59
 Missense
116
68.24
 Nonsense
53
31.18
Transitions (n = 109)
 Purine-Purine
45
41.28
 Pyramidine-Pyramidine
64
58.72
Transversions (n = 61)
 Purine-Pyramidine
37
60.66
 Pyramidine-Purine
24
39.34
Transitions (n = 109)
 C > T
48
44.04
 G > A
34
31.19
 A > G
11
10.09
 T > C
16
14.68
Transversions (n = 61)
 G > T
17
27.87
 C > A
10
16.39
 G > C
12
19.67
 T > G
9
14.75
 A > T
6
9.84
 C > G
3
4.92
 T > A
2
3.28
 A > C
2
3.28
As per available literature and genotype information, higher cases of non-syndromic (77.32%) IRDs were reported compared to syndromic IRDs (22.68%) (Table 1). Syndromic IRDs included Alström syndrome (AS) (~ 1%), BBS (8%), Cohen syndrome (COH) (~ 1%), JBTS (2%), MKS (1%), Retinal dystrophy with microvillus inclusion disease (RDMVID) (< 1%), SLSN (1%), USH (8%), Zellweger syndrome (ZS) (< 1%). Non-syndromic IRDs included RP (41%), LCA (14%), CSNB (6%), CRD (4%), RD (3%), Achromatopsia (2%), STGD (2%), Fundus Albipunctatus (FA) (1%), Hypotrichosis juvenile macular dystrophy HJMD (1%), FA/CSNB (~ 1%), LCA/EORD (~ 1%), MD (~ 1%), Retinitis punctata albescens (RPA) (~ 1%), Early onset retinal dystrophy (EORD) (< 1%), Choroideremia (CHM) (< 1%), Retinoschisis (RS) (< 1%) (Fig. 2).

Genetic spectrum of IRDs

Various characteristics of the identified genomic variants are shown in Table 1. A total of 277 disease-causing alleles across 87 known IRDs-associated genes were documented in the literature under the scope of this study as mentioned in supplementary Table S2. Topmost mutated genes included PDE6A (5.32%), TULP1 (4.76%), RP1 (4.48%), RPE65 (4.48%), CDH23 (3.36%), CRB1 (3.36%), GUCY2D (3.36%), LCA5 (3.08%), RPGRIP1 (3.08%), USH2A (3.08%), AIPL1 (2.80%), RDH5 (2.80%) PDE6B (2.80%) (Fig. 3). On the contrary, least frequently mutated genes, categorized as “Others”, were ARL13B, ARL3, ASRGL1, BEST1, CC2D2A, CHM, DRAM2, IFT43, IMPG2, MKKS, MKS1, NPHP4, NR2E3, NYX, PDE6H, PEX6, PRCD, PRPF3, RBP3, RPGR, RS1, SLC6A6, SNRNP200, STX3 and TCTN2 (each reported only once in Pakistani families so far) (Fig. 3). Of the total 277 disease-causing alleles found in Pakistani IRDs patients, 88.81% alleles were found in a homozygous state, 2.17% in heterozygous state, and 1.08% in hemizygous state; however, zygosity of the remaining 7.94% alleles was not described in the published reports (Table 1). Based on their predicted impact on protein, alleles were classified as missense, indels/frameshift, nonsense, splicing, and synonymous with their respective frequencies of 41.88%, 26.35%, 19.13%, 12.27%, and 0.36% (Table 1). Of the total 277 alleles, 61.37% (170 alleles) were defined as single nucleotide variants (SNVs). Of the 170 SNVs, 109 or 64.12% were transitions (Purine to Purine = 45, Pyramidine to Pyramidine = 64) and 61 or 35.88% were transversions (Purine to Pyramidine = 37, Pyramidine to Purine = 24) (Table 1). A C > T was the most frequent (44.04%) transition followed by G > A (31.19%), T > C (14.68%), and A > G (10.09%). Similarly, G > T (27.87%) was the mostly frequent transversion followed by G > C (19.67%), C > A (16.39%), T > G (14.75%), A > T (9.84%), C > G (4.92%), T > A (3.28%) and A > C (3.28%) (Table 1). Using ACMG guidelines, all reported alleles were re-evaluated for their clinical significance. Collectively, ‘pathogenic/likely pathogenic’ variants were found to be 71.48% followed by ‘variants of uncertain significance (VUS)’ (19.49%), and ‘benign/likely benign’ (2.89%). No ACMG verdict about the 6.14% alleles was available on the Varsome database (Supplementary Table S2).
Furthermore, all missense variants (n = 116) were re-evaluated as per ACMG guidelines/standards, ClinVar database, and using in-silico tools (Table 2). ACMG predicted 63 missense alleles as pathogenic/likely pathogenic, 45 as VUS, and 8 as benign/likely benign (Table 2). Similarly, ClinVar database showed 49 missense variants as pathogenic/likely pathogenic, 16 as VUS, 9 as conflicting, and 6 as benign/likely benign. Thirty-six missense alleles were; however, not reported in the ClinVar database. Findings of our in-silico study are shown in Table 2.
Table 2
In-silico predictions of the identified 116 missense variants reported in Pakistani families
Gene
Transcript ID
cDNA
CADD
DANN
LRT
MA
MT
MP
PP-2
PRO
SIFT
ACMG
ClinVar
AIPL1
NM_014336.5
c.465G > T
35
VUS
B
B
VUS
VUS
PD
VUS
VUS
VUS
VUS
SLC6A6
NM_003043.6
c.1196G > T
33
VUS
P
P
VUS
P
PD
n.a
n.a
LP
LP
RLBP1
NM_000326.5
c.346G > C
33
VUS
P
B
VUS
VUS
PD
B
B
P
LP
USH2A
NM_206933.4
c.7334C > T
32
VUS
B
VUS
B
VUS
PD
VUS
VUS
B
B
TULP1
NM_003322.6
c.1561C > T
32
VUS
P
P
VUS
P
PD
P
P
VUS
LP
ADAM9
NM_003816.3
c.1144 T > G
32
VUS
P
P
VUS
P
PD
P
P
VUS
n.a
SNRNP200
NM_014014.5
c.3269G > A
32
P
P
P
VUS
P
PD
VUS
P
LP
P
GUCY2D
NM_000180.4
c.2302C > T
32
P
VUS
P
B
n.a
PD
P
P
P
P
GNAT1
NM_144499.3
c.386A > G
32
VUS
P
P
VUS
P
PD
P
P
LP
P
ARL3
NM_004311.4
c.296G > T
32
VUS
P
P
VUS
P
PD
P
P
LP
P
PDE6A
NM_000440.3
c.1630C > T
32
P
VUS
VUS
B
n.a
PD
P
P
P
P/LP
RPE65
NM_000329.3
c.751G > T
32
VUS
P
P
VUS
P
PD
VUS
P
LP
VUS
PEX6
NM_000287.4
c.2626C > T
32
P
P
P
VUS
n.a
PD
P
VUS
LP
VUS
LRAT
NM_004744.5
c.196G > C
31
VUS
P
P
VUS
P
PD
P
P
LP
n.a
GUCY2D
NM_000180.4
c.2384G > T
31
VUS
VUS
P
B
P
PD
P
P
P
n.a
ARL13B
NM_001174150.2
c.236G > A
31
P
VUS
VUS
VUS
P
PD
VUS
P
LP
P
TULP1
NM_003322.6
c.1445G > A
31
P
P
P
VUS
n.a
PD
VUS
P
P
P
RPE65
NM_000329.3
c.131G > A
31
P
VUS
P
VUS
P
PD
VUS
P
P
P
RDH12
NM_152443.3
c.506G > A
31
P
P
VUS
VUS
P
PD
VUS
P
P
P/LP
GUCY2D
NM_000180.4
c.2384G > A
31
P
VUS
P
B
n.a
PD
VUS
P
LP
VUS
GUCY2D
NM_000180.4
c.582G > C
29.8
VUS
B
VUS
VUS
P
PD
P
P
VUS
n.a
RAX2
NM_001319074.4
c.236G > A
29.7
VUS
B
P
VUS
P
n.a
n.a
n.a
VUS
VUS
USH2A
NM_206933.4
c.12523 T > G
29.5
VUS
B
P
VUS
P
PD
P
P
P
n.a
PRPF3
NM_004698.4
c.1481C > T
29.4
VUS
P
P
VUS
P
PD
P
P
P
CFL
CNGB1
NM_001297.5
c.2284C > T
29.4
P
P
P
VUS
n.a
PD
P
P
P
P
PDE6B
NM_000283.4
c.1655G > A
29.3
P
P
P
VUS
P
PD
VUS
P
P
P/LP
DHX38
NM_014003.4
c.971G > A
29.1
P
VUS
P
VUS
B
PD
VUS
VUS
VUS
LP
CDH23
NM_022124.6
c.8150A > G
29
VUS
P
P
VUS
P
PD
P
P
VUS
n.a
RDH5
NM_002905.5
c.319G > C
28.8
P
P
VUS
VUS
P
PD
P
P
LP
n.a
USH1G/SANS
NM_173477.5
c.1373A > T
28.7
VUS
P
P
VUS
P
PD
n.a
n.a
P
P/LP
RPE65
NM_000329.3
c.179 T > C
28.6
VUS
P
VUS
VUS
P
PD
VUS
P
LP
n.a
RPE65
NM_000329.3
c.782 T > C
28.6
VUS
P
P
VUS
P
PD
P
P
LP
VUS
ABCA4
NM_000350.3
c.5882G > A
28.4
VUS
P
B
VUS
n.a
PD
P
P
P
P
TULP1
NM_003322.6
c.1466A > G
28.2
VUS
P
P
VUS
P
PD
VUS
P
P
P
RPE65
NM_000329.3
c.119G > A
28.1
VUS
P
P
VUS
P
PD
P
P
LP
LP
ABCA4
NM_000350.3
c.91 T > C
27.7
VUS
B
P
VUS
P
PD
P
P
LP
LP
ABCA4
NM_000350.3
c.214G > A
27.6
P
VUS
P
VUS
n.a
PD
P
P
P
P/LP
CNGA3
NM_001298.3
c.991G > C
27.3
P
P
P
VUS
P
PD
P
P
LP
n.a
RDH5
NM_002905.5
c.758 T > G
27.2
B
P
VUS
VUS
VUS
PD
VUS
B
VUS
n.a
RDH12
NM_152443.3
c.609C > A
27.1
VUS
P
P
VUS
P
PD
P
P
P
P
CLRN1
NM_174878.3
c.461 T > G
27
B
P
VUS
VUS
VUS
PD
P
VUS
VUS
LP
CDH23
NM_022124.6
c.7198C > T
27
P
VUS
P
VUS
VUS
PD
P
P
VUS
n.a
ABCA4
NM_000350.3
c.2023G > A
26.9
VUS
P
P
VUS
n.a
PD
B
P
VUS
CFL
CEP290
NM_025114.4
c.148C > T
26.7
VUS
VUS
B
VUS
B
PD
B
VUS
VUS
LP
CNGA3
NM_001298.3
c.955 T > C
26.6
VUS
P
P
VUS
P
PD
P
P
P
P/LP
CERKL
NM_201548.5
c.316C > A
26.5
VUS
VUS
VUS
VUS
P
PD
VUS
B
VUS
CFL
CNGA3
NM_001298.3
c.952G > A
26.5
VUS
P
P
VUS
P
PD
VUS
VUS
VUS
n.a
CNGA3
NM_001298.3
c.847C > T
26.5
VUS
P
P
VUS
P
PD
P
P
P
P/LP
TULP1
NM_003322.6
c.1274 T > C
26.4
VUS
VUS
P
VUS
P
PD
P
P
LP
n.a
SEMA4A
NM_022367.4
c.1049 T > G
26.1
VUS
VUS
P
VUS
P
PD
P
P
LP
P
GUCY2D
NM_000180.4
c.917A > T
26
VUS
VUS
VUS
VUS
P
PD
P
P
VUS
n.a
BBS12
NM_152618.3
c.1589 T > C
26
VUS
VUS
VUS
VUS
P
PD
P
P
VUS
n.a
TMEM67
NM_153704.6
c.1127A > C
26
VUS
VUS
VUS
VUS
VUS
PD
VUS
VUS
P
P
ARL6/BBS3
NM_001278293.3
c.281 T > C
25.8
VUS
P
P
VUS
P
n.a
VUS
P
LP
P
DHX38
NM_014003.4
c.995G > A
25.8
VUS
VUS
VUS
VUS
B
PD
P
B
VUS
VUS
EYS
NM_001142800.2
c.7187G > C
25.7
VUS
VUS
P
B
P
PD
VUS
P
VUS
VUS
ASRGL1
NM_001083926.2
c.532G > A
25.6
P
P
P
VUS
P
PD
P
P
LP
n.a
PDE6B
NM_000283.4
c.1160C > T
25.6
VUS
P
P
VUS
P
PD
P
P
LP
P
IMPDH1
NM_000883.4
c.931G > A
25.6
VUS
P
n.a
VUS
P
PD
P
VUS
P
P
CRB1
NM_201253.3
c.3101G > C
25.5
VUS
n.a
P
VUS
VUS
n.a
P
P
LP
n.a
CRB1
NM_201253.3
c.3962G > C
25.5
P
n.a
P
VUS
P
PD
P
P
P
n.a
RDH12
NM_152443.3
c.619A > G
25.5
VUS
P
P
VUS
P
PD
P
VUS
LP
P
BBS12
NM_152618.3
c.1616G > T
25.4
VUS
VUS
VUS
VUS
P
PD
P
VUS
LP
VUS
RHO
NM_000539.3
c.448G > A
25.3
P
VUS
VUS
VUS
P
PD
B
VUS
P
LP
LCA5
NM_001122769.3
c.652C > G
25.3
VUS
VUS
VUS
B
B
PD
P
P
VUS
n.a
TULP1
NM_003322.6
c.1138A > G
25.2
VUS
P
VUS
VUS
P
B
P
VUS
VUS
n.a
ABCA4
NM_000350.3
c.5243G > A
25.1
VUS
B
VUS
B
VUS
PD
VUS
B
VUS
P
RPGRIP1
NM_020366.4
c.2480G > T
25.1
VUS
VUS
VUS
VUS
P
PD
P
VUS
VUS
P
MKKS
NM_170784.3
c.280 T > C
25
VUS
VUS
P
VUS
P
PD
VUS
B
VUS
n.a
CNGA3
NM_001298.3
c.827A > G
24.8
VUS
P
P
VUS
P
PD
P
P
LP
LP
GUCY2D
NM_000180.4
c.2189 T > C
24.8
VUS
VUS
P
B
P
PD
P
P
LP
n.a
RPGRIP1
NM_020366.4
c.2656C > T
24.7
VUS
VUS
P
VUS
B
PD
VUS
VUS
VUS
n.a
CRB1
NM_201253.3
c.433 T > C
24.6
VUS
n.a
P
VUS
P
PD
P
P
LP
n.a
RDH5
NM_002905.5
c.536A > G
24.5
VUS
P
P
VUS
P
PD
VUS
VUS
LP
P
SEMA4A
NM_022367.4
c.1033G > C
24.4
VUS
VUS
P
VUS
P
PD
VUS
VUS
LP
VUS
PDE6B
NM_001145292.2
c.938C > T
24.3
VUS
P
B
VUS
VUS
B
B
B
VUS
LP
CRB1
NM_201253.3
c.3296C > A
24.3
VUS
n.a
VUS
VUS
VUS
PD
VUS
VUS
VUS
n.a
PRCD
NM_001077620.3
c.2 T > C
24.2
VUS
VUS
n.a
VUS
P
n.a
B
VUS
P
P
BBS5
NM_152384.3
c.2 T > A
24.2
VUS
VUS
n.a
VUS
P
n.a
B
VUS
P
P
CNGA3
NM_001298.3
c.822G > T
24.1
VUS
P
P
VUS
P
PD
P
P
P
CFL
CNGA3
NM_001298.3
c.1306C > T
24
VUS
P
P
VUS
n.a
PD
P
P
P
P
CLRN1
NM_174878.3
c.92C > T
23.9
VUS
VUS
B
VUS
VUS
PD
VUS
VUS
LP
P
BBS2
NM_031885.5
c.443A > T
23.8
VUS
VUS
n.a
B
P
PD
VUS
P
VUS
n.a
ZNF513
NM_144631.6
c.1015 T > C
23.8
VUS
VUS
B
VUS
VUS
PD
P
VUS
B
VUS
GRM6
NM_000843.4
c.824G > A
23.7
VUS
n.a
VUS
VUS
VUS
PD
VUS
B
VUS
VUS
PDE6A
NM_000440.3
c.304C > A
23.6
VUS
P
VUS
B
n.a
PD
VUS
B
P
CFL
IMPDH1
NM_000883.4
c.676G > A
23.6
VUS
P
n.a
VUS
P
B
P
B
VUS
n.a
RDH5
NM_002905.5
c.602C > T
23.6
VUS
VUS
P
B
VUS
PD
VUS
VUS
VUS
n.a
NMNAT1
NM_022787.4
c.25G > A
23.6
VUS
B
P
B
VUS
PD
B
P
P
P
CLCC1
NM_001377458.1
c.75C > A
23.6
VUS
P
P
VUS
P
PD
VUS
P
VUS
P
EYS
NM_001142800.2
c.8299A > T
23.4
VUS
B
VUS
B
VUS
PD
B
B
LB
n.a
TULP1
NM_003322.6
c.1307C > G
23.4
VUS
VUS
B
VUS
P
B
P
VUS
VUS
n.a
AIPL1
NM_014336.5
c.116C > A
23.4
B
P
P
VUS
P
PD
P
P
VUS
n.a
CRB1
NM_201253.3
c.2234C > T
23.1
VUS
n.a
P
VUS
n.a
PD
P
P
P
P/LP
BEST1
NM_004183.4
c.418C > G
22.8
VUS
B
P
VUS
P
PD
B
VUS
LP
CFL
CRB1
NM_201253.3
c.2536G > A
22.8
VUS
n.a
P
VUS
P
PD
P
P
P
P
BBS1
NM_024649.5
c.442G > A
22.7
VUS
n.a
VUS
VUS
n.a
PD
VUS
B
VUS
CFL
GUCY2D
NM_000180.4
c.530G > C
22.7
VUS
B
VUS
VUS
P
PD
VUS
VUS
VUS
n.a
RPE65
NM_000329.3
c.1087C > A
22.7
VUS
VUS
VUS
VUS
P
B
B
B
P
P
NMNAT1
NM_022787.4
c.547C > T
22.7
VUS
B
P
B
VUS
PD
VUS
VUS
VUS
VUS
CRB1
NM_201253.3
c.1459 T > C
22.6
VUS
n.a
VUS
VUS
VUS
PD
P
VUS
VUS
B/LB
IFT43
NM_001102564.3
c.100G > A
22.6
VUS
B
B
B
n.a
PD
VUS
VUS
VUS
CFL
RPGRIP1
NM_020366.4
c.1639G > T
22.5
VUS
B
B
B
n.a
PD
B
B
B
B/LB
GRM6
NM_000843.4
c.2267G > A
22.3
VUS
n.a
VUS
B
P
B
VUS
B
VUS
P
CRB1
NM_201253.3
c.2966 T > C
22.2
VUS
n.a
VUS
VUS
P
PD
VUS
VUS
VUS
n.a
RDH5
NM_002905.5
c.668A > C
22.1
VUS
B
VUS
B
VUS
PD
VUS
B
VUS
n.a
SEMA4A
NM_022367.4
c.2138G > A
21.3
VUS
B
B
B
n.a
B
B
B
B
B/LB
FAM161A
NM_001201543.2
c.1139G > T
18.53
VUS
B
VUS
VUS
P
PD
P
VUS
VUS
VUS
ALMS1
NM_001378454.1
c.5242A > G
17.8
VUS
n.a
n.a
VUS
n.a
n.a
n.a
n.a
B
LB
NR2E3
NM_014249.4
c.227G > A
16.07
B
B
B
n.a
n.a
PD
n.a
n.a
LP
CFL
AIPL1
NM_014336.5
c.773G > C
15.35
B
B
B
VUS
VUS
PD
VUS
B
VUS
LP
CRB1
NM_201253.3
c.3347 T > C
9.398
B
n.a
VUS
VUS
VUS
B
B
B
VUS
n.a
RP1
NM_006269.2
c.1118C > T
9.092
B
B
VUS
B
n.a
B
B
VUS
B
B/LB
RAX2
NM_001319074.4
c.374G > A
1.497
B
B
B
VUS
B
n.a
n.a
n.a
LB
n.a
RP1
NM_006269.2
c.2005G > A
1.173
B
B
B
VUS
n.a
B
B
B
VUS
VUS
GUCY2D
NM_000180.4
c.2384G > A
32
P
VUS
P
B
n.a
PD
VUS
P
P
VUS
MP MutPred, MT Mutation taster, MA Mutation assessor, LRT Likelihood ratio test, PP-2 PolyPhen-2, PRO PROVEAN, SIFT Sorting intolerant from tolerant, ACMG The American college of medical genetics and genomics, B Benign, LB Likely benign, B/LB Benign/Likely benign, P Pathogenic, LP Likely pathogenic, P/LP Pathogenic/Likely pathogenic, PD Probably/Possibly damaging, VUS Variant of uncertain significance, CFL Conflicting, NA Not available
In summary, eight alleles were eligible to be classified as benign/likely benign consistently by the ACMG standards, ClinVar classification system, and by majority of the online in-silico predictors. These eight benign/likely benign missense alleles are further detailed in Table 3, and include SEMA4A (p.Arg713Gln) [72], USH2A (p.Ser2445Phe) [73], RPGRIP1 (p.Ala547Ser) [74], RP1 (p.Thr373Ile) [75], ZNF513 (p.Cys339Arg) [7], ALMS1 (p.Lys1748Glu) [76], RAX2 (p.Gly125Glu) [77], and EYS (p.Thr2777Ser) [78].
Table 3
List of missense variants classified as ‘benign or Likely benign’ by the ACMG guidelines
 
cDNA change
Protein change
gnomAD MAF
Disease
Population
Consanguinity
Zygosity
ACMG
SEMA4A
c.2138G > A
p.(Arg713Gln)
0.03651
adRP
N.D
No
Heterozygous
Benign
USH2A
c.7334C > T
p.(Ser2445Phe)
0.000841
arUSH2
KPK
No
Homozygous
Benign
RPGRIP1
c.1639G > T
p.(Ala547Ser)
0.2038
arCRD
N.D
Yes
Homozygous
Benign
RP1
c.1118C > T
p.(Thr373Ile)
0.01215
arRP
N.D
Yes
Homozygous
Benign
ZNF513
c.1015 T > C
p.(Cys339Arg)
0.0001668
arRP
Punjab
Yes
Homozygous
Benign
ALMS1
c.5242A > G
p.(Lys1748Glu)
NA
arAS
Punjab
Yes
Homozygous
Benign
RAX2
c.374G > A
p.(Gly125Glu)
NA
arRD
Punjab
Yes
Homozygous
Likely Benign
RAX2
c.8299A > T
p.(Thr2777Ser)
NA
arRP
Punjab
Yes
Homozygous
Likely Benign

Discussion

This study provides an overview of the existing clinical and genetic aspects of IRDs in Pakistani families based on published reports. Majority of the IRDs families in the published reports belonged to two major ethnic Pakistani populations i.e. Punjab and Khyber Pakhtunkhwa. Other ethnic Pakistani populations such as Sindh, Baluchistan and Gilgit-Baltistan were only marginally represented in the available medical literature. Consistent with the traditional practice of endogamy in the country [7981], over 70% IRDs cases in this study were found among children whose parents were consanguineously married. Consequently, recessively inherited IRDs were disproportionately high (> 95%) in the current report as opposed to dominant cases. Our findings reiterate the fact that consanguinity-driven homozygosity mapping can greatly leverage identification of novel disease genes in recessively inherited Mendelian disorders in endogamous populations as previously shown [82, 83]. For example, at least 12 IRDs-associated genes have been first identified/reported in Pakistani families [84, 85].
Of the total retrieved variants detected in IRDs families of Pakistani origin, ~ 80% were considered as ‘rare’ since they were reported only once from the Pakistani population. The remainder ~ 20% variants were observed at least twice in Pakistani families, hence they were considered as ‘recurrent’ alleles. Of the recurrent alleles, a frameshift mutation in LCA5 gene (NM_001122779.3:c.1151delC;p.Pro384GlnfsTer18) was independently reported seven times [76, 8691], and thus considered to be the topmost commonly reported allele in Pakistan.
While ethnic affiliations of index cases carrying c.1151delC allele were not provided in five out of seven studies, c.1151delC allele was independently reported in two unrelated families from KPK and Punjab provinces. The second most recurrent allele was a missense substitution (c.1138A > G:p.Thr380Ala) in the TULP1 (NM_003322.6) gene which was reported by five independent studies. Of them, two families belonged to ethnically matched KPK population, and thus possibly related. However, one family carrying c.1138A > G allele belonged to Punjab province. No data on the ethnic affiliation was available in the remaining two reports [8890, 92, 93]. In addition to the likelihood that these alleles constitute hotspot mutations, frequent occurrence of these recurrent alleles in multiple and ethnically matched Pakistani families might indicate a founder effect in the society.
Our findings, of RP as the most leading IRD type in Pakistani families (41%), align with several previous studies suggesting RP as the most frequently reported form of IRDs in world populations [9498]. Also, we have found that RP is the most genetically heterogeneous disorder among IRDs in Pakistani population as mutations in 37 different RP-associated genes were identified. Nonetheless, Pakistani families somehow present unique genetic architecture of IRDs. For example, unlike ABCA4 and/or USH2A gene mutations which are considered as a major etiology of the IRDs cases worldwide [9698], we have found that PDE6A gene mutations are the leading cause of IRDs in Pakistani families. While disease-causing mutations in SNRNP200 gene are known to cause adRP [99101], SNRNP200 gene mutation correlated with arRP in a Pakistani IRD family [102]. Lastly, detection of rare forms of IRDs notably STX3-associated intestinal-retinal syndrome [103], VPS13B-associated Cohen syndrome [104], and SLC6A6-associated taurine transporter (TauT) deficiency disorders [105] in Pakistani families not only points towards the distinctive genetic nature of this population but it also highlights its potential in medical research.
Our CADD score analysis of all missense variants that are described in this report revealed two alleles with lowest CADD-PHRED scores. These included RP1 (c.2005G > A; p.Ala669Thr), and RAX2 (c.374G > A; p.Gly125Glu) with a CADD-PHRED scores of 1.173 and 1.497, respectively. Though our in-silico findings about these alleles are not final, we recommend further researcher to further investigate these two missense variants in order to fully characterize their impact on protein structure and/or function.

Conclusions

This study provides a comprehensive overview of IRDs in Pakistani families over a period of 25 years (1999–2023). Our analysis reaffirms the fact that majority of the prevalent IRDs cases in Pakistan are recessively inherited, and that they mostly appeared due to the bi-allelic inheritance of rare pathogenic mutations from both parents. Undoubtedly, RP was the most frequently occurring IRD in Pakistan followed by LCA. Overall, PDE6A gene mutations was the leading cause of IRDs in Pakistani families followed by mutations in TULP1 gene. Altogether, marked genetic and allelic and heterogeneity was observed in the Pakistani IRDs families. In summary, Pakistani families are notable in expressing both common and rare Mendelian disorders such as Cohen syndrome, intestinal-retinal syndrome, and taurine transporter deficiency possibly due to the traditional practice of endogamy in the society.

Limitations

Since the data presented in this study were all retrieved from published reports, and further validated/curated using online databases, we foresee certain limitations in our study. For example, we do not claim causality of variants (if any) presented in this report as it does not fall under the purview of our study. Despite our own efforts, we do see the possibility of overlooking certain relevant literature on the subject. Incomplete information, inconsistencies or in some cases errors seen in the retrieved data may have skewed our own analysis. It is pertinent to mention here that all calculations about genomic variants were based on the total number of alleles (n = 277) reported in the 126 research articles. We were unfortunately unable to assess objectively the total number of families and/or patients affected by these 277 alleles due to the inadequate information provided in the literature. Nevertheless, published reports emerged mostly from two provinces of Pakistan i.e. Punjab and Khyber Pakhtunkhwa. Therefore, we recommend taking care while extrapolating our findings to other ethnic Pakistani populations like Sindh, Baluchistan and Gilgit-Baltistan.

Acknowledgements

None.

Declarations

Not applicable.
Not applicable.

Competing interests

The authors declare no competing interests.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
2.
Zurück zum Zitat Hanany M, Rivolta C, Sharon D. Worldwide carrier frequency and genetic prevalence of autosomal recessive inherited retinal diseases. Proc Natl Acad Sci U S A. 2020;117(5):2710–6.ADSPubMedPubMedCentralCrossRef Hanany M, Rivolta C, Sharon D. Worldwide carrier frequency and genetic prevalence of autosomal recessive inherited retinal diseases. Proc Natl Acad Sci U S A. 2020;117(5):2710–6.ADSPubMedPubMedCentralCrossRef
3.
Zurück zum Zitat Tehreem R, et al. Exome sequencing identified molecular determinants of retinal dystrophies in nine consanguineous Pakistani families. Genes (Basel). 2022;13(9):1630.PubMedCrossRef Tehreem R, et al. Exome sequencing identified molecular determinants of retinal dystrophies in nine consanguineous Pakistani families. Genes (Basel). 2022;13(9):1630.PubMedCrossRef
4.
Zurück zum Zitat Gill JS, et al. Progressive cone and cone-rod dystrophies: clinical features, molecular genetics and prospects for therapy. Br J Ophthalmol. 2019;103(5):711–20.PubMedCrossRef Gill JS, et al. Progressive cone and cone-rod dystrophies: clinical features, molecular genetics and prospects for therapy. Br J Ophthalmol. 2019;103(5):711–20.PubMedCrossRef
5.
Zurück zum Zitat Maria T, et al. Clinical and preclinical therapeutic outcome metrics for USH2A-related disease. Human Mol Genet. 2020;29(11):1882–99.CrossRef Maria T, et al. Clinical and preclinical therapeutic outcome metrics for USH2A-related disease. Human Mol Genet. 2020;29(11):1882–99.CrossRef
6.
Zurück zum Zitat Gouronc A, et al. High prevalence of Bardet-Biedl syndrome in La Reunion Island is due to a founder variant in ARL6/BBS3. Clin Genet. 2020;98(2):166–71.PubMedCrossRef Gouronc A, et al. High prevalence of Bardet-Biedl syndrome in La Reunion Island is due to a founder variant in ARL6/BBS3. Clin Genet. 2020;98(2):166–71.PubMedCrossRef
7.
Zurück zum Zitat Li L, et al. A mutation in ZNF513, a putative regulator of photoreceptor development, causes autosomal-recessive retinitis pigmentosa. Am J Hum Genet. 2010;87(3):400–9.PubMedPubMedCentralCrossRef Li L, et al. A mutation in ZNF513, a putative regulator of photoreceptor development, causes autosomal-recessive retinitis pigmentosa. Am J Hum Genet. 2010;87(3):400–9.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Ayyagari R, et al. Late-onset macular degeneration and long anterior lens zonules result from a CTRP5 gene mutation. Invest Ophthalmol Vis Sci. 2005;46(9):3363–71.PubMedCrossRef Ayyagari R, et al. Late-onset macular degeneration and long anterior lens zonules result from a CTRP5 gene mutation. Invest Ophthalmol Vis Sci. 2005;46(9):3363–71.PubMedCrossRef
9.
Zurück zum Zitat Branham K, et al. Mutations in RPGR and RP2 account for 15% of males with simplex retinal degenerative disease. Invest Ophthalmol Vis Sci. 2012;53(13):8232–7.PubMedPubMedCentralCrossRef Branham K, et al. Mutations in RPGR and RP2 account for 15% of males with simplex retinal degenerative disease. Invest Ophthalmol Vis Sci. 2012;53(13):8232–7.PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Brown MD, et al. Leber’s hereditary optic neuropathy: a model for mitochondrial neurodegenerative diseases. FASEB J. 1992;6(10):2791–9.PubMedCrossRef Brown MD, et al. Leber’s hereditary optic neuropathy: a model for mitochondrial neurodegenerative diseases. FASEB J. 1992;6(10):2791–9.PubMedCrossRef
11.
12.
Zurück zum Zitat Ripolles-Garcia A, et al. Natural disease history of a canine model of oligogenic RPGRIP1-cone-rod dystrophy establishes variable effects of previously and newly mapped modifier loci. Hum Mol Genet. 2023;32(13):2139–51.PubMedCrossRef Ripolles-Garcia A, et al. Natural disease history of a canine model of oligogenic RPGRIP1-cone-rod dystrophy establishes variable effects of previously and newly mapped modifier loci. Hum Mol Genet. 2023;32(13):2139–51.PubMedCrossRef
13.
Zurück zum Zitat Ellingford JM, et al. Molecular findings from 537 individuals with inherited retinal disease. J Med Genet. 2016;53(11):761–7.PubMedCrossRef Ellingford JM, et al. Molecular findings from 537 individuals with inherited retinal disease. J Med Genet. 2016;53(11):761–7.PubMedCrossRef
15.
Zurück zum Zitat Thiadens AA, et al. Clinical course, genetic etiology, and visual outcome in cone and cone-rod dystrophy. Ophthalmology. 2012;119(4):819–26.PubMedCrossRef Thiadens AA, et al. Clinical course, genetic etiology, and visual outcome in cone and cone-rod dystrophy. Ophthalmology. 2012;119(4):819–26.PubMedCrossRef
16.
Zurück zum Zitat Boulanger-Scemama E, et al. Phenotype analysis of retinal dystrophies in light of the underlying genetic defects: application to cone and cone-rod dystrophies. Int J Mol Sci. 2019;20(19):4854.PubMedPubMedCentralCrossRef Boulanger-Scemama E, et al. Phenotype analysis of retinal dystrophies in light of the underlying genetic defects: application to cone and cone-rod dystrophies. Int J Mol Sci. 2019;20(19):4854.PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Donato L, et al. The impact of modifier genes on cone-rod dystrophy heterogeneity: an explorative familial pilot study and a hypothesis on neurotransmission impairment. PLoS ONE. 2022;17(12):e0278857.PubMedPubMedCentralCrossRef Donato L, et al. The impact of modifier genes on cone-rod dystrophy heterogeneity: an explorative familial pilot study and a hypothesis on neurotransmission impairment. PLoS ONE. 2022;17(12):e0278857.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Jasdeep, S.G., et al., Progressive cone and cone-rod dystrophies: clinical features, molecular genetics and prospects for therapy. British J Ophthalmol, 2019. Jasdeep, S.G., et al., Progressive cone and cone-rod dystrophies: clinical features, molecular genetics and prospects for therapy. British J Ophthalmol, 2019.
19.
Zurück zum Zitat Zeitz C, et al. Night blindness-associated mutations in the ligand-binding, cysteine-rich, and intracellular domains of the metabotropic glutamate receptor 6 abolish protein trafficking. Hum Mutat. 2007;28(8):771–80.PubMedCrossRef Zeitz C, et al. Night blindness-associated mutations in the ligand-binding, cysteine-rich, and intracellular domains of the metabotropic glutamate receptor 6 abolish protein trafficking. Hum Mutat. 2007;28(8):771–80.PubMedCrossRef
20.
Zurück zum Zitat Zeitz C, Robson AG, Audo I. Congenital stationary night blindness: an analysis and update of genotype-phenotype correlations and pathogenic mechanisms. Prog Retin Eye Res. 2015;45:58–110.PubMedCrossRef Zeitz C, Robson AG, Audo I. Congenital stationary night blindness: an analysis and update of genotype-phenotype correlations and pathogenic mechanisms. Prog Retin Eye Res. 2015;45:58–110.PubMedCrossRef
21.
Zurück zum Zitat Bijveld MM, et al. Genotype and phenotype of 101 dutch patients with congenital stationary night blindness. Ophthalmology. 2013;120(10):2072–81.PubMedCrossRef Bijveld MM, et al. Genotype and phenotype of 101 dutch patients with congenital stationary night blindness. Ophthalmology. 2013;120(10):2072–81.PubMedCrossRef
22.
Zurück zum Zitat Tsang SH, Sharma T. Congenital Stationary Night Blindness. Adv Exp Med Biol. 2018;1085:61–4.PubMedCrossRef Tsang SH, Sharma T. Congenital Stationary Night Blindness. Adv Exp Med Biol. 2018;1085:61–4.PubMedCrossRef
23.
Zurück zum Zitat Kabanarou SA, et al. Congenital stationary night blindness and a “Schubert-Bornschein” type electrophysiology in a family with dominant inheritance. Br J Ophthalmol. 2004;88(8):1018–22.PubMedPubMedCentralCrossRef Kabanarou SA, et al. Congenital stationary night blindness and a “Schubert-Bornschein” type electrophysiology in a family with dominant inheritance. Br J Ophthalmol. 2004;88(8):1018–22.PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Marmor MF, Zeitz C. Riggs-type dominant congenital stationary night blindness: ERG findings, a new GNAT1 mutation and a systemic association. Doc Ophthalmol. 2018;137(1):57–62.PubMedCrossRef Marmor MF, Zeitz C. Riggs-type dominant congenital stationary night blindness: ERG findings, a new GNAT1 mutation and a systemic association. Doc Ophthalmol. 2018;137(1):57–62.PubMedCrossRef
25.
Zurück zum Zitat Miyake Y, et al. On- and off-responses in photopic electroretinogram in complete and incomplete types of congenital stationary night blindness. Jpn J Ophthalmol. 1987;31(1):81–7.PubMed Miyake Y, et al. On- and off-responses in photopic electroretinogram in complete and incomplete types of congenital stationary night blindness. Jpn J Ophthalmol. 1987;31(1):81–7.PubMed
26.
27.
28.
Zurück zum Zitat Gul H, et al. Homozygosity mapping coupled with whole-exome sequencing and protein modelling identified a novel missense mutation in GUCY2D in a consanguineous Pakistani family with Leber congenital amaurosis. J Genet. 2021;100:1–8.CrossRef Gul H, et al. Homozygosity mapping coupled with whole-exome sequencing and protein modelling identified a novel missense mutation in GUCY2D in a consanguineous Pakistani family with Leber congenital amaurosis. J Genet. 2021;100:1–8.CrossRef
29.
Zurück zum Zitat Stone EM. Leber congenital amaurosis - a model for efficient genetic testing of heterogeneous disorders: LXIV Edward Jackson Memorial Lecture. Am J Ophthalmol. 2007;144(6):791–811.PubMedCrossRef Stone EM. Leber congenital amaurosis - a model for efficient genetic testing of heterogeneous disorders: LXIV Edward Jackson Memorial Lecture. Am J Ophthalmol. 2007;144(6):791–811.PubMedCrossRef
30.
Zurück zum Zitat Oscar FCC, Juan Carlos Z. Review and update on the molecular basis of Leber congenital amaurosis. World J Clin Cases. 2015;3(2):112.CrossRef Oscar FCC, Juan Carlos Z. Review and update on the molecular basis of Leber congenital amaurosis. World J Clin Cases. 2015;3(2):112.CrossRef
31.
Zurück zum Zitat Astuti GD, et al. Comprehensive genotyping reveals RPE65 as the most frequently mutated gene in Leber congenital amaurosis in Denmark. Eur J Hum Genet. 2016;24(7):1071–9.PubMedCrossRef Astuti GD, et al. Comprehensive genotyping reveals RPE65 as the most frequently mutated gene in Leber congenital amaurosis in Denmark. Eur J Hum Genet. 2016;24(7):1071–9.PubMedCrossRef
32.
Zurück zum Zitat Rahman N, et al. Macular dystrophies: clinical and imaging features, molecular genetics and therapeutic options. Br J Ophthalmol. 2020;104(4):451–60.PubMedCrossRef Rahman N, et al. Macular dystrophies: clinical and imaging features, molecular genetics and therapeutic options. Br J Ophthalmol. 2020;104(4):451–60.PubMedCrossRef
33.
Zurück zum Zitat Sadda, S.R., Ryan's retina. 2023: Elsevier. Sadda, S.R., Ryan's retina. 2023: Elsevier.
34.
Zurück zum Zitat Haji Abdollahi S, Hirose T. Stargardt-Fundus flavimaculatus: recent advancements and treatment. Semin Ophthalmol. 2013;28(5–6):372–6.PubMedCrossRef Haji Abdollahi S, Hirose T. Stargardt-Fundus flavimaculatus: recent advancements and treatment. Semin Ophthalmol. 2013;28(5–6):372–6.PubMedCrossRef
35.
37.
Zurück zum Zitat Rivolta C, et al. Retinitis pigmentosa and allied diseases: numerous diseases, genes, and inheritance patterns. Hum Mol Genet. 2002;11(10):1219–27.PubMedCrossRef Rivolta C, et al. Retinitis pigmentosa and allied diseases: numerous diseases, genes, and inheritance patterns. Hum Mol Genet. 2002;11(10):1219–27.PubMedCrossRef
38.
Zurück zum Zitat Tsang SH, Sharma T. Autosomal dominant retinitis pigmentosa. Adv Exp Med Biol. 2018;1085:69–77.PubMedCrossRef Tsang SH, Sharma T. Autosomal dominant retinitis pigmentosa. Adv Exp Med Biol. 2018;1085:69–77.PubMedCrossRef
39.
Zurück zum Zitat Dryja TP, et al. Dominant and digenic mutations in the peripherin/RDS and ROM1 genes in retinitis pigmentosa. Invest Ophthalmol Vis Sci. 1997;38(10):1972–82.PubMed Dryja TP, et al. Dominant and digenic mutations in the peripherin/RDS and ROM1 genes in retinitis pigmentosa. Invest Ophthalmol Vis Sci. 1997;38(10):1972–82.PubMed
40.
Zurück zum Zitat Beigi F, et al. Homozygous females for a X-linked RPGR-ORF15 mutation in an Iranian family with retinitis pigmentosa. Exp Eye Res. 2021;211:108714.PubMedCrossRef Beigi F, et al. Homozygous females for a X-linked RPGR-ORF15 mutation in an Iranian family with retinitis pigmentosa. Exp Eye Res. 2021;211:108714.PubMedCrossRef
41.
Zurück zum Zitat Florea, L., L. Caba, and E.V. Gorduza, Bardet-Biedl Syndrome-Multiple Kaleidoscope Images: Insight into Mechanisms of Genotype-Phenotype Correlations. Genes (Basel), 2021. 12(9). Florea, L., L. Caba, and E.V. Gorduza, Bardet-Biedl Syndrome-Multiple Kaleidoscope Images: Insight into Mechanisms of Genotype-Phenotype Correlations. Genes (Basel), 2021. 12(9).
42.
Zurück zum Zitat Khan SA, Ahmad Ansari MZ, Khalid M. Bardet Biedl syndrome: a rare genetic disorder. J Pak Med Assoc. 2020;70(9):1651–2.PubMed Khan SA, Ahmad Ansari MZ, Khalid M. Bardet Biedl syndrome: a rare genetic disorder. J Pak Med Assoc. 2020;70(9):1651–2.PubMed
43.
Zurück zum Zitat Evgeny NS, et al., Bardet-Biedl Syndrome. Molecular Syndromology, 2016. Evgeny NS, et al., Bardet-Biedl Syndrome. Molecular Syndromology, 2016.
44.
Zurück zum Zitat Jonathan LT, Philip LB, The nonmotile ciliopathies. Genetics in Medicine, 2009. Jonathan LT, Philip LB, The nonmotile ciliopathies. Genetics in Medicine, 2009.
45.
Zurück zum Zitat Forsyth R, Gunay-Aygun M, Bardet-Biedl Syndrome Overview, in GeneReviews((R)), M.P. Adam, et al., Editors. 1993: Seattle (WA). Forsyth R, Gunay-Aygun M, Bardet-Biedl Syndrome Overview, in GeneReviews((R)), M.P. Adam, et al., Editors. 1993: Seattle (WA).
46.
Zurück zum Zitat Muzammal M, et al. Exome sequence analysis in consanguineous Pakistani families inheriting Bardet-Biedle syndrome determined founder effect of mutation c.299delC (p.Ser100Leufs*24) in BBS9 gene. Mol Genet Genomic Med. 2019;7(8):e834.PubMedPubMedCentralCrossRef Muzammal M, et al. Exome sequence analysis in consanguineous Pakistani families inheriting Bardet-Biedle syndrome determined founder effect of mutation c.299delC (p.Ser100Leufs*24) in BBS9 gene. Mol Genet Genomic Med. 2019;7(8):e834.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Badano JL, et al. Dissection of epistasis in oligogenic bardet-Biedl syndrome. Nature. 2006;439(7074):326–30.ADSPubMedCrossRef Badano JL, et al. Dissection of epistasis in oligogenic bardet-Biedl syndrome. Nature. 2006;439(7074):326–30.ADSPubMedCrossRef
48.
Zurück zum Zitat Maria, T., et al., Usher syndrome: clinical features, molecular genetics and advancing therapeutics. 2020. Maria, T., et al., Usher syndrome: clinical features, molecular genetics and advancing therapeutics. 2020.
49.
Zurück zum Zitat Mathur P, Yang J. Usher syndrome: Hearing loss, retinal degeneration and associated abnormalities. Biochim Biophys Acta. 2015;1852(3):406–20.PubMedCrossRef Mathur P, Yang J. Usher syndrome: Hearing loss, retinal degeneration and associated abnormalities. Biochim Biophys Acta. 2015;1852(3):406–20.PubMedCrossRef
51.
Zurück zum Zitat Stemerdink M, et al. Genetics, pathogenesis and therapeutic developments for Usher syndrome type 2. Hum Genet. 2022;141(3–4):737–58.PubMedCrossRef Stemerdink M, et al. Genetics, pathogenesis and therapeutic developments for Usher syndrome type 2. Hum Genet. 2022;141(3–4):737–58.PubMedCrossRef
52.
53.
Zurück zum Zitat Zheng QY, et al. Digenic inheritance of deafness caused by mutations in genes encoding cadherin 23 and protocadherin 15 in mice and humans. Hum Mol Genet. 2005;14(1):103–11.MathSciNetPubMedCrossRef Zheng QY, et al. Digenic inheritance of deafness caused by mutations in genes encoding cadherin 23 and protocadherin 15 in mice and humans. Hum Mol Genet. 2005;14(1):103–11.MathSciNetPubMedCrossRef
54.
Zurück zum Zitat Toms M, Pagarkar W, Moosajee M. Usher syndrome: clinical features, molecular genetics and advancing therapeutics. Ther Adv Ophthalmol. 2020;12:2515841420952194.PubMedPubMedCentral Toms M, Pagarkar W, Moosajee M. Usher syndrome: clinical features, molecular genetics and advancing therapeutics. Ther Adv Ophthalmol. 2020;12:2515841420952194.PubMedPubMedCentral
55.
Zurück zum Zitat Wang SF, et al. Review of ocular manifestations of joubert syndrome. Genes (Basel). 2018;9(12):605.PubMedCrossRef Wang SF, et al. Review of ocular manifestations of joubert syndrome. Genes (Basel). 2018;9(12):605.PubMedCrossRef
56.
Zurück zum Zitat Spahiu L, et al. Joubert syndrome: molecular basis and treatment. J Mother Child. 2022;26(1):118–23.PubMed Spahiu L, et al. Joubert syndrome: molecular basis and treatment. J Mother Child. 2022;26(1):118–23.PubMed
57.
Zurück zum Zitat Gana S, Serpieri V, Valente EM. Genotype-phenotype correlates in Joubert syndrome: a review. Am J Med Genet C Semin Med Genet. 2022;190(1):72–88.PubMedPubMedCentralCrossRef Gana S, Serpieri V, Valente EM. Genotype-phenotype correlates in Joubert syndrome: a review. Am J Med Genet C Semin Med Genet. 2022;190(1):72–88.PubMedPubMedCentralCrossRef
58.
Zurück zum Zitat Tsang SH, Aycinena ARP, Sharma T. Ciliopathy: Senior-Loken Syndrome. Adv Exp Med Biol. 2018;1085:175–8.PubMedCrossRef Tsang SH, Aycinena ARP, Sharma T. Ciliopathy: Senior-Loken Syndrome. Adv Exp Med Biol. 2018;1085:175–8.PubMedCrossRef
59.
Zurück zum Zitat Khairil-Ridzwan KK, et al. Exudative retinal detachment due to coats disease in a teenager with senior-loken syndrome: case report and review of literature. Cureus. 2019;11(4):e4460.PubMedPubMedCentral Khairil-Ridzwan KK, et al. Exudative retinal detachment due to coats disease in a teenager with senior-loken syndrome: case report and review of literature. Cureus. 2019;11(4):e4460.PubMedPubMedCentral
60.
Zurück zum Zitat Ronquillo CC, Bernstein PS, Baehr W. Senior-Loken syndrome: a syndromic form of retinal dystrophy associated with nephronophthisis. Vision Res. 2012;75:88–97.PubMedPubMedCentralCrossRef Ronquillo CC, Bernstein PS, Baehr W. Senior-Loken syndrome: a syndromic form of retinal dystrophy associated with nephronophthisis. Vision Res. 2012;75:88–97.PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Hildebrandt F, et al. A novel gene encoding an SH3 domain protein is mutated in nephronophthisis type 1. Nat Genet. 1997;17(2):149–53.PubMedCrossRef Hildebrandt F, et al. A novel gene encoding an SH3 domain protein is mutated in nephronophthisis type 1. Nat Genet. 1997;17(2):149–53.PubMedCrossRef
62.
Zurück zum Zitat Otto EA, et al. Mutations in INVS encoding inversin cause nephronophthisis type 2, linking renal cystic disease to the function of primary cilia and left-right axis determination. Nat Genet. 2003;34(4):413–20.PubMedPubMedCentralCrossRef Otto EA, et al. Mutations in INVS encoding inversin cause nephronophthisis type 2, linking renal cystic disease to the function of primary cilia and left-right axis determination. Nat Genet. 2003;34(4):413–20.PubMedPubMedCentralCrossRef
63.
Zurück zum Zitat Olbrich H, et al. Mutations in a novel gene, NPHP3, cause adolescent nephronophthisis, tapeto-retinal degeneration and hepatic fibrosis. Nat Genet. 2003;34(4):455–9.PubMedCrossRef Olbrich H, et al. Mutations in a novel gene, NPHP3, cause adolescent nephronophthisis, tapeto-retinal degeneration and hepatic fibrosis. Nat Genet. 2003;34(4):455–9.PubMedCrossRef
64.
Zurück zum Zitat Mollet G, et al. The gene mutated in juvenile nephronophthisis type 4 encodes a novel protein that interacts with nephrocystin. Nat Genet. 2002;32(2):300–5.PubMedCrossRef Mollet G, et al. The gene mutated in juvenile nephronophthisis type 4 encodes a novel protein that interacts with nephrocystin. Nat Genet. 2002;32(2):300–5.PubMedCrossRef
65.
Zurück zum Zitat Otto EA, et al. Nephrocystin-5, a ciliary IQ domain protein, is mutated in Senior-Loken syndrome and interacts with RPGR and calmodulin. Nat Genet. 2005;37(3):282–8.PubMedCrossRef Otto EA, et al. Nephrocystin-5, a ciliary IQ domain protein, is mutated in Senior-Loken syndrome and interacts with RPGR and calmodulin. Nat Genet. 2005;37(3):282–8.PubMedCrossRef
66.
Zurück zum Zitat Sayer JA, et al. The centrosomal protein nephrocystin-6 is mutated in Joubert syndrome and activates transcription factor ATF4. Nat Genet. 2006;38(6):674–81.PubMedCrossRef Sayer JA, et al. The centrosomal protein nephrocystin-6 is mutated in Joubert syndrome and activates transcription factor ATF4. Nat Genet. 2006;38(6):674–81.PubMedCrossRef
67.
Zurück zum Zitat Valente EM, et al. Mutations in CEP290, which encodes a centrosomal protein, cause pleiotropic forms of Joubert syndrome. Nat Genet. 2006;38(6):623–5.PubMedCrossRef Valente EM, et al. Mutations in CEP290, which encodes a centrosomal protein, cause pleiotropic forms of Joubert syndrome. Nat Genet. 2006;38(6):623–5.PubMedCrossRef
68.
Zurück zum Zitat Otto EA, et al. Candidate exome capture identifies mutation of SDCCAG8 as the cause of a retinal-renal ciliopathy. Nat Genet. 2010;42(10):840–50.PubMedPubMedCentralCrossRef Otto EA, et al. Candidate exome capture identifies mutation of SDCCAG8 as the cause of a retinal-renal ciliopathy. Nat Genet. 2010;42(10):840–50.PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat Coussa RG, et al. WDR19: an ancient, retrograde, intraflagellar ciliary protein is mutated in autosomal recessive retinitis pigmentosa and in Senior-Loken syndrome. Clin Genet. 2013;84(2):150–9.PubMedPubMedCentralCrossRef Coussa RG, et al. WDR19: an ancient, retrograde, intraflagellar ciliary protein is mutated in autosomal recessive retinitis pigmentosa and in Senior-Loken syndrome. Clin Genet. 2013;84(2):150–9.PubMedPubMedCentralCrossRef
70.
Zurück zum Zitat Chaki M, et al. Exome capture reveals ZNF423 and CEP164 mutations, linking renal ciliopathies to DNA damage response signaling. Cell. 2012;150(3):533–48.PubMedPubMedCentralCrossRef Chaki M, et al. Exome capture reveals ZNF423 and CEP164 mutations, linking renal ciliopathies to DNA damage response signaling. Cell. 2012;150(3):533–48.PubMedPubMedCentralCrossRef
71.
Zurück zum Zitat Bizet AA, et al. Mutations in TRAF3IP1/IFT54 reveal a new role for IFT proteins in microtubule stabilization. Nat Commun. 2015;6:8666.ADSPubMedCrossRef Bizet AA, et al. Mutations in TRAF3IP1/IFT54 reveal a new role for IFT proteins in microtubule stabilization. Nat Commun. 2015;6:8666.ADSPubMedCrossRef
72.
Zurück zum Zitat Abid A, et al. Identification of novel mutations in the SEMA4A gene associated with retinal degenerative diseases. J Med Genet. 2006;43(4):378–81.PubMedCrossRef Abid A, et al. Identification of novel mutations in the SEMA4A gene associated with retinal degenerative diseases. J Med Genet. 2006;43(4):378–81.PubMedCrossRef
73.
75.
76.
Zurück zum Zitat Maranhao B, et al. Investigating the molecular basis of retinal degeneration in a familial cohort of Pakistani decent by exome sequencing. PLoS ONE. 2015;10(9):e0136561.PubMedPubMedCentralCrossRef Maranhao B, et al. Investigating the molecular basis of retinal degeneration in a familial cohort of Pakistani decent by exome sequencing. PLoS ONE. 2015;10(9):e0136561.PubMedPubMedCentralCrossRef
77.
Zurück zum Zitat Biswas P, et al. Deciphering the genetic architecture and ethnographic distribution of IRD in three ethnic populations by whole genome sequence analysis. PLoS Genet. 2021;17(10):e1009848.PubMedPubMedCentralCrossRef Biswas P, et al. Deciphering the genetic architecture and ethnographic distribution of IRD in three ethnic populations by whole genome sequence analysis. PLoS Genet. 2021;17(10):e1009848.PubMedPubMedCentralCrossRef
78.
Zurück zum Zitat Khan MI, et al. Missense mutations at homologous positions in the fourth and fifth laminin A G-like domains of eyes shut homolog cause autosomal recessive retinitis pigmentosa. Mol Vis. 2010;16:2753–9.PubMedPubMedCentral Khan MI, et al. Missense mutations at homologous positions in the fourth and fifth laminin A G-like domains of eyes shut homolog cause autosomal recessive retinitis pigmentosa. Mol Vis. 2010;16:2753–9.PubMedPubMedCentral
79.
Zurück zum Zitat Ahmad B, Rehman AU, Malik S. Consanguinity and inbreeding coefficient in tribal pashtuns inhabiting the turbulent and war-affected territory of bajaur agency. North-West Pakistan J Biosoc Sci. 2016;48(1):113–28.PubMed Ahmad B, Rehman AU, Malik S. Consanguinity and inbreeding coefficient in tribal pashtuns inhabiting the turbulent and war-affected territory of bajaur agency. North-West Pakistan J Biosoc Sci. 2016;48(1):113–28.PubMed
80.
Zurück zum Zitat Ahmad I, Rehman AU, Malik S. Determinants of consanguinity and inbreeding coefficient f in dir lower district, north-west pakistan: a multivariate approach. Iran J Public Health. 2016;45(4):537–9.PubMedPubMedCentral Ahmad I, Rehman AU, Malik S. Determinants of consanguinity and inbreeding coefficient f in dir lower district, north-west pakistan: a multivariate approach. Iran J Public Health. 2016;45(4):537–9.PubMedPubMedCentral
81.
Zurück zum Zitat Rehman AU, et al. Transition in consanguinity in Dir lower district, a victim of war, natural disaster and population displacement, in North-West Pakistan - a response to Sthanadar. J Biosoc Sci. 2016;48(3):421–6.MathSciNetPubMedCrossRef Rehman AU, et al. Transition in consanguinity in Dir lower district, a victim of war, natural disaster and population displacement, in North-West Pakistan - a response to Sthanadar. J Biosoc Sci. 2016;48(3):421–6.MathSciNetPubMedCrossRef
83.
84.
Zurück zum Zitat Biswas P, et al. A missense mutation in ASRGL1 is involved in causing autosomal recessive retinal degeneration. Hum Mol Genet. 2016;25(12):2483–97.PubMedPubMedCentral Biswas P, et al. A missense mutation in ASRGL1 is involved in causing autosomal recessive retinal degeneration. Hum Mol Genet. 2016;25(12):2483–97.PubMedPubMedCentral
86.
Zurück zum Zitat den Hollander AI, et al. Mutations in LCA5, encoding the ciliary protein lebercilin, cause Leber congenital amaurosis. Nat Genet. 2007;39(7):889–95.CrossRef den Hollander AI, et al. Mutations in LCA5, encoding the ciliary protein lebercilin, cause Leber congenital amaurosis. Nat Genet. 2007;39(7):889–95.CrossRef
87.
Zurück zum Zitat Mackay DS, et al. Screening of a large cohort of leber congenital amaurosis and retinitis pigmentosa patients identifies novel LCA5 mutations and new genotype-phenotype correlations. Hum Mutat. 2013;34(11):1537–46.PubMedPubMedCentralCrossRef Mackay DS, et al. Screening of a large cohort of leber congenital amaurosis and retinitis pigmentosa patients identifies novel LCA5 mutations and new genotype-phenotype correlations. Hum Mutat. 2013;34(11):1537–46.PubMedPubMedCentralCrossRef
88.
Zurück zum Zitat Maria M, et al. Homozygosity mapping and targeted sanger sequencing reveal genetic defects underlying inherited retinal disease in families from pakistan. PLoS ONE. 2015;10(3):e0119806.MathSciNetPubMedPubMedCentralCrossRef Maria M, et al. Homozygosity mapping and targeted sanger sequencing reveal genetic defects underlying inherited retinal disease in families from pakistan. PLoS ONE. 2015;10(3):e0119806.MathSciNetPubMedPubMedCentralCrossRef
89.
Zurück zum Zitat McKibbin M, et al. Genotype-phenotype correlation for leber congenital amaurosis in Northern Pakistan. Arch Ophthalmol. 2010;128(1):107–13.PubMedCrossRef McKibbin M, et al. Genotype-phenotype correlation for leber congenital amaurosis in Northern Pakistan. Arch Ophthalmol. 2010;128(1):107–13.PubMedCrossRef
90.
Zurück zum Zitat Li L, et al. Homozygosity mapping and genetic analysis of autosomal recessive retinal dystrophies in 144 consanguineous Pakistani families. Invest Ophthalmol Vis Sci. 2017;58(4):2218–38.PubMedPubMedCentralCrossRef Li L, et al. Homozygosity mapping and genetic analysis of autosomal recessive retinal dystrophies in 144 consanguineous Pakistani families. Invest Ophthalmol Vis Sci. 2017;58(4):2218–38.PubMedPubMedCentralCrossRef
91.
Zurück zum Zitat Biswas P, et al. Identification of causative mutations in consanguineous pedigrees from Pakistan with recessive retinal degeneration by whole exome analysis. Invest Ophthalmol Vis Sci. 2013;54(15):3349–3349. Biswas P, et al. Identification of causative mutations in consanguineous pedigrees from Pakistan with recessive retinal degeneration by whole exome analysis. Invest Ophthalmol Vis Sci. 2013;54(15):3349–3349.
92.
Zurück zum Zitat Ajmal M, et al. Identification of recurrent and novel mutations in TULP1 in Pakistani families with early-onset retinitis pigmentosa. Mol Vis. 2012;18:1226–37.PubMedPubMedCentral Ajmal M, et al. Identification of recurrent and novel mutations in TULP1 in Pakistani families with early-onset retinitis pigmentosa. Mol Vis. 2012;18:1226–37.PubMedPubMedCentral
93.
Zurück zum Zitat Cifuentes Delatte L. 30 years of alkalinizing treatment. Actas Urol Esp. 1990;14(2):85–8.PubMed Cifuentes Delatte L. 30 years of alkalinizing treatment. Actas Urol Esp. 1990;14(2):85–8.PubMed
94.
Zurück zum Zitat Verbakel SK, et al. Non-syndromic retinitis pigmentosa. Prog Retin Eye Res. 2018;66:157–86.PubMedCrossRef Verbakel SK, et al. Non-syndromic retinitis pigmentosa. Prog Retin Eye Res. 2018;66:157–86.PubMedCrossRef
96.
Zurück zum Zitat Perea-Romero I, et al. Genetic landscape of 6089 inherited retinal dystrophies affected cases in Spain and their therapeutic and extended epidemiological implications. Sci Rep. 2021;11(1):1526.ADSPubMedPubMedCentralCrossRef Perea-Romero I, et al. Genetic landscape of 6089 inherited retinal dystrophies affected cases in Spain and their therapeutic and extended epidemiological implications. Sci Rep. 2021;11(1):1526.ADSPubMedPubMedCentralCrossRef
97.
Zurück zum Zitat Karali M, et al. Genetic epidemiology of inherited retinal diseases in a large patient cohort followed at a single center in Italy. Sci Rep. 2022;12(1):20815.ADSPubMedPubMedCentralCrossRef Karali M, et al. Genetic epidemiology of inherited retinal diseases in a large patient cohort followed at a single center in Italy. Sci Rep. 2022;12(1):20815.ADSPubMedPubMedCentralCrossRef
98.
Zurück zum Zitat Pontikos N, et al. Genetic basis of inherited retinal disease in a molecularly characterized cohort of more than 3000 families from the United Kingdom. Ophthalmology. 2020;127(10):1384–94.PubMedCrossRef Pontikos N, et al. Genetic basis of inherited retinal disease in a molecularly characterized cohort of more than 3000 families from the United Kingdom. Ophthalmology. 2020;127(10):1384–94.PubMedCrossRef
99.
Zurück zum Zitat Zhang T, et al. SNRNP200 mutations cause autosomal dominant retinitis pigmentosa. Front Med (Lausanne). 2020;7:588991.PubMedCrossRef Zhang T, et al. SNRNP200 mutations cause autosomal dominant retinitis pigmentosa. Front Med (Lausanne). 2020;7:588991.PubMedCrossRef
100.
Zurück zum Zitat Zhang X, et al. Contribution of SNRNP200 sequence variations to retinitis pigmentosa. Eye (Lond). 2013;27(10):1204–13.PubMedCrossRef Zhang X, et al. Contribution of SNRNP200 sequence variations to retinitis pigmentosa. Eye (Lond). 2013;27(10):1204–13.PubMedCrossRef
101.
Zurück zum Zitat Cvackova Z, Mateju D, Stanek D. Retinitis pigmentosa mutations of SNRNP200 enhance cryptic splice-site recognition. Hum Mutat. 2014;35(3):308–17.PubMedCrossRef Cvackova Z, Mateju D, Stanek D. Retinitis pigmentosa mutations of SNRNP200 enhance cryptic splice-site recognition. Hum Mutat. 2014;35(3):308–17.PubMedCrossRef
102.
Zurück zum Zitat Astuti GDN, et al. Identification of inherited retinal disease-associated genetic variants in 11 candidate genes. Genes (Basel). 2018;9(1):21.MathSciNetPubMedCrossRef Astuti GDN, et al. Identification of inherited retinal disease-associated genetic variants in 11 candidate genes. Genes (Basel). 2018;9(1):21.MathSciNetPubMedCrossRef
103.
Zurück zum Zitat Janecke AR, et al. Pathogenic STX3 variants affecting the retinal and intestinal transcripts cause an early-onset severe retinal dystrophy in microvillus inclusion disease subjects. Hum Genet. 2021;140(8):1143–56.PubMedPubMedCentralCrossRef Janecke AR, et al. Pathogenic STX3 variants affecting the retinal and intestinal transcripts cause an early-onset severe retinal dystrophy in microvillus inclusion disease subjects. Hum Genet. 2021;140(8):1143–56.PubMedPubMedCentralCrossRef
104.
Zurück zum Zitat Rafiq MA, et al. Novel VPS13B mutations in three large pakistani cohen syndrome families suggests a baloch variant with autistic-like features. BMC Med Genet. 2015;16:41.PubMedPubMedCentralCrossRef Rafiq MA, et al. Novel VPS13B mutations in three large pakistani cohen syndrome families suggests a baloch variant with autistic-like features. BMC Med Genet. 2015;16:41.PubMedPubMedCentralCrossRef
105.
Zurück zum Zitat Ansar M, et al. Taurine treatment of retinal degeneration and cardiomyopathy in a consanguineous family with SLC6A6 taurine transporter deficiency. Hum Mol Genet. 2020;29(4):618–23.PubMedCrossRef Ansar M, et al. Taurine treatment of retinal degeneration and cardiomyopathy in a consanguineous family with SLC6A6 taurine transporter deficiency. Hum Mol Genet. 2020;29(4):618–23.PubMedCrossRef
Metadaten
Titel
A systematic review of inherited retinal dystrophies in Pakistan: updates from 1999 to April 2023
verfasst von
Asad Munir
Salma Afsar
Atta Ur Rehman
Publikationsdatum
01.12.2024
Verlag
BioMed Central
Erschienen in
BMC Ophthalmology / Ausgabe 1/2024
Elektronische ISSN: 1471-2415
DOI
https://doi.org/10.1186/s12886-024-03319-7

Weitere Artikel der Ausgabe 1/2024

BMC Ophthalmology 1/2024 Zur Ausgabe

Neu im Fachgebiet Augenheilkunde

Metastase in der periokulären Region

Metastasen Leitthema

Orbitale und periokuläre metastatische Tumoren galten früher als sehr selten. Aber mit der ständigen Aktualisierung von Medikamenten und Nachweismethoden für die Krebsbehandlung werden neue Chemotherapien und Strahlenbehandlungen eingesetzt. Die …

Staging und Systemtherapie bei okulären und periokulären Metastasen

Metastasen Leitthema

Metastasen bösartiger Erkrankungen sind die häufigsten Tumoren, die im Auge diagnostiziert werden. Sie treten bei ungefähr 5–10 % der Patienten mit soliden Tumoren im Verlauf der Erkrankung auf. Besonders häufig sind diese beim Mammakarzinom und …

Wundheilung nach Trabekulektomie

Trabekulektomie CME-Artikel

Die überschießende Wundheilung in der filtrierenden Glaukomchirurgie ist ein zentraler Faktor für ein operatives Versagen. Nach der Einführung der Trabekulektomie in den 1960er-Jahren wurden viele Faktoren erkannt, die mit einer vermehrten …

„standard operating procedures“ (SOP) – Vorschlag zum therapeutischen Management bei periokulären sowie intraokulären Metastasen

Metastasen Leitthema

Peri- sowie intraokuläre Metastasen sind insgesamt gesehen selten und meist Zeichen einer fortgeschrittenen primären Tumorerkrankung. Die Therapie ist daher zumeist palliativ und selten kurativ. Zudem ist die Therapiefindung sehr individuell. Die …

Update Augenheilkunde

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.