Skip to main content
Erschienen in: BMC Cancer 1/2018

Open Access 01.12.2018 | Research article

Association of Glutathione S-transferase gene polymorphism with bladder Cancer susceptibility

verfasst von: Tianbiao Zhou, Hong-Yan Li, Wei-Ji Xie, Zhiqing Zhong, Hongzhen Zhong, Zhi-Jun Lin

Erschienen in: BMC Cancer | Ausgabe 1/2018

Abstract

Background

We conducted a meta-analysis to evaluate the relationship between the glutathione S-transferase μ1 (GSTM1)– and glutathione S-transferase θ1 (GSTT1)– null genotypes and susceptibility to bladder cancer.

Methods

We identified association reports from the databases of PubMed, Embase, the Cochrane Library and the China Biological Medicine Database (CBM disc) on July 1, 2017 and synthesized eligible investigations. Results were expressed using odds ratios (ORs) for dichotomous data, and we also calculated 95% confidence intervals (CIs).

Results

In this meta-analysis, we found that the GSTM1-null genotype was associated with bladder cancer risk in the overall population, and individually in whites, Africans and Asians (overall population: OR = 1.40, 95% CI: 1.31–1.48, P<0.00001; whites: OR = 1.39, 95% CI: 1.26–1.54, P<0.00001; Africans: OR = 1.54, 95% CI: 1.16–2.05, P = 0.003; Asians: OR = 1.45, 95% CI: 1.33–1.59, P<0.00001). The GSTT1-null genotype was associated with bladder cancer risk in the overall population, but not in whites, in Africans or Asians (overall population: OR = 1.11, 95% CI: 1.01–1.22, P = 0.03; whites: OR = 1.16, 95% CI: 0.99–1.36, P = 0.07; Africans: OR = 1.07, 95% CI: 0.65–1.76, P = 0.79; Asians: OR = 1.05, 95% CI: 0.91–1.22, P = 0.51). Interestingly, a dual-null GSTM1–GSTT1 genotype was associated with bladder cancer risk in the overall population and in Asians (overall population: OR = 1.48, 95% CI: 1.15–1.92, P = 0.002; Asians: OR = 1.62, 95% CI: 1.15–2.28, P = 0.006). In conclusion, the GSTM1-null, GSTT1-null and dual-null GSTM1–GSTT1 genotypes might be associated with the onset of bladder cancer, but additional genetic-epidemiological studies should be conducted to explore this association further.
Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1186/​s12885-018-5014-1) contains supplementary material, which is available to authorized users.
Tianbiao Zhou and Hongyan Li contributed equally to this work.

Background

Bladder cancer, also known as urothelial cancer of the bladder, is the most common malignancy affecting the urinary system [13]. Treatment of bladder cancer has not advanced in the past 30 years [1]. The disease has a multifactorial etiology that includes environmental factors such as cigarette smoking, arsenic exposure and occupational exposure as well as genetic factors [46]. Genetic factors are the one of the most important factors associated with the onset of bladder cancer [7]. Smoking is a major risk factor for the development of this cancer, but the functional consequences of the carcinogens in tobacco smoke in terms of bladder cancer–associated metabolic changes remain poorly defined. Current evidence indicates that some gene polymorphisms are associated with bladder cancer morbidity [812].
Glutathione S-transferases (GSTs) play an important role in detoxification of various toxic compounds, such as carcinogens, and are a family of enzymes that include the glutathione S-transferase μ1 (GSTM1), θ1 (GSTT1) and π1 (GSTP1) classes, etc. [13]. They are important phase II detoxifying enzymes that catalyze the conjugation of reduced glutathione (GSH) to hydrophobic, electrophilic xenobiotic substances [14]. Genetic risk to malignant tumors has led to the accumulating attention to the investigations of genes polymorphism involved in process of carcinogenesis [15]. The gene polymorphisms of GSTs might influence the detoxification activities of the enzymes, predisposing individuals to cancers, such as oral squamous-cell carcinoma, gynecological cancer, breast cancer, prostate cancer, hepatocellular carcinoma, and colorectal cancer [1621].
In the past few decades, most of the epidemiological investigations have focused on the relationship between the null genotypes for GSTM1-GSTT1 and bladder cancer susceptibility. However, available evidence is inadequate due to the sparseness of data or disagreements among reported studies. We performed this meta-analysis to investigate whether the dual-null GSTM1-GSTT1 genotype was associated with bladder cancer susceptibility.

Methods

Search strategy

We retrieved relevant published articles from the electronic databases of PubMed, Embase, the Cochrane Library and the China Biological Medicine Database (CBM-disc) on July 1, 2017, and we recruited eligible original articles for our meta-analysis. Key search terms consisted of [“glutathione S-transferases” OR “GSTs” OR “GSTM1” OR “GSTT1”] and [“bladder cancers” OR “bladder cancer”]. We identified additional articles through references cited in retrieved articles, and we also examined citations of retrieved articles and the previous meta-analyses.

Inclusion and exclusion criteria

Inclusion criteria

(1) The endpoint of each study had to be bladder cancers. (2) The study had to include 2 comparison groups (bladder cancers vs. controls). (3) The study had to provide detailed data on genotype distribution.

Exclusion criteria

(1) Case reports, review articles and editorials. (1) Preliminary results not focused on GSTM1, GSTT1 or outcome. (3) Investigating the relationship of GST gene expression to disease. (4) Multiple publications.

Quality appraisal

To evaluate the quality of the recruited articles that met the above-listed inclusion criteria, we used a quality score based on 7 aspects of genetic-association studies (Additional file 1: Table S1). Thakkinstian et al. [22] created the quality score form in 2005; its range spans from 0 (worst quality) to 12 (best quality). Two researchers who were responsible for literature retrieval appraised quality independent of one another, and a discussion was made until every respect was entirely consistent by comparison.

Data extraction and synthesis

Two investigators independently excerpted the following information from each eligible study: first author’s surname, year of publication, and number of cases and controls for both the GSTM1 and GSTT1 genotypes. We calculated frequencies for both the disease group and the control group from the corresponding genotype distribution. Finally, we compared the results and resolved any disagreements by discussion. We tested the consistency of the data extracted by the 2 researchers, and any disagreement was again resolved by discussion.

Statistical analysis

We performed all statistical analyses using Cochrane Review Manager Software, version 5 (RevMan 5; Cochrane Library, UK). We used I2 to test heterogeneity among the included studies, and we counted the pooled statistic using a fixed-effects model (Cochran–Mantel–Haenszel method), but switched to a random-effects model (DerSimonian–Laird method) when the P-value of the heterogeneity test was < 0.1. Results were expressed with odds ratios (ORs) for dichotomous data, and we also calculated 95% confidence intervals (CIs). P < 0.05 was required for the pooled OR to be statistically significant. We graphically judged publication bias from the Begg adjusted-rank correlation test [23] and the Egger regression asymmetry test [24] using the Stata version 12.0 (Stata Corporation, College Station, TX), and P-values < 0.1 were considered significant.

Results

Study characteristics for the GSTM1-null genotype and bladder cancer risk

We included 72 studies [2596], which contained 20,239 case series and 24,393 controls, in our assessment of the relationship between the GSTM1-null genotype and bladder cancer susceptibility (Fig. 1 and Table 1). We extracted data of interest: first author’s surname, year of publication and number of cases and controls for the GSTM1-null genotype (Table 1). Average distribution frequency of the GSTM1-null genotype was 56.15% in the bladder cancer group and 46.97% in the control group, indicating that the GSTM1-null genotype was higher in the bladder cancer cases than in the controls (case/control = 1.20).
Table 1
Characteristics of the studies evaluating effects of the GSTM1-null genotypes on bladder carcinogen risk
Author, year
Country
Ethnicity
Source of controls
Quality Score
Case
Control
+
total
+
total
Bell 1993
USA
Overall
Population-based
9
111
89
200
85
115
200
Caucasian
Population-based
 
61
39
100
50
50
100
African
Population-based
 
50
50
100
35
65
100
Daly 1993
UK
Caucasian
Population-based
4
45
8
53
31
27
58
Zhong 1993
UK
Caucasian
Hospital-based
4
39
58
97
94
131
225
Lin 1994
USA, etc
Overall
Population-based
6
61
46
107
442
473
915
Caucasian
Population-based
 
52
37
89
236
243
479
Asian
Population-based
 
5
1
6
179
170
349
African
Population-based
 
4
8
12
27
60
87
Okkels 1996
Denmark
Caucasian
Hospital-based
7
133
100
233
100
100
200
Anwar 1996
Egypt
African
Population-based
9
19
3
22
10
11
21
Brockmoller 1996
Germany
Caucasian
Hospital-based
8
217
157
374
192
181
373
Lafuente 1996
Egypt
African
Population-based
5
39
27
66
28
27
55
Katoh 1998
Japan
Asian
Hospital-based
9
66
46
112
50
62
112
Abdel-Rahman 1998
Egypt
African
Hospital-based
8
26
11
37
15
19
34
Salagovic 1999
Slovakia
Caucasian
Hospital-based
6
40
36
76
123
125
248
Mungan 2000
Netherlands
Caucasian
Hospital-based
4
38
23
61
30
39
69
Peluso 2000
Italy
Caucasian
Hospital-based
5
61
69
130
29
25
54
Schnakenberg 2000
Germany
Caucasian
Population-based
6
93
64
157
129
94
223
Steinhoff 2000
Germany
Caucasian
Hospital-based
7
80
55
135
57
70
127
Georgiou 2000
Greece
Caucasian
Hospital-based
6
56
33
89
56
91
147
Kim 2000
Korea
Asian
Hospital-based
6
78
34
112
128
97
225
Toruner 2001
Turkey
Asian
Hospital-based
8
75
46
121
55
66
121
Aktas 2001
Turkey
Asian
Population-based
4
56
47
103
70
132
202
Giannakopoulos 2002
Greece
Caucasian
Hospital-based
6
56
33
89
56
91
147
Kim 2002
Korea
Asian
Population-based
8
138
78
216
265
184
449
Lee 2002
Korea
Asian
Hospital-based
8
149
83
232
86
79
165
Ma 2002
China
Asian
Population-based
8
180
137
317
99
83
182
Schroeder 2003
USA
Mix
Hospital-based
8
137
93
230
101
112
213
Jong 2003
Korea
Asian
Population-based
9
75
51
126
99
105
204
Moore 2004
USA
Mix
Population-based
8
54
52
106
49
60
109
Srivastava 2004
India
Asian
Hospital-based
7
42
64
106
54
128
182
Hung 2004
France
Caucasian
Hospital-based
7
132
69
201
112
102
214
Saad 2005
UK
Caucasian
Population-based
8
45
27
72
40
41
81
Srivastava 2005
India
Asian
Population-based
10
140
230
370
43
63
106
Sobti 2005
India
Asian
Population-based
9
37
63
100
24
52
76
Garcia-Closas 2005
Spain
Caucasian
Hospital-based
9
716
422
1138
571
561
1132
Karagas 2005
USA
Mix
Population-based
9
210
134
344
309
233
542
Kim 2005
Korea
Asian
Hospital-based
7
92
61
153
73
80
153
McGrath 2006
USA
Mix
Population-based
11
109
82
191
483
439
922
Ouerhani 2006
Tunisia
African
Population-based
6
39
23
62
36
43
79
Murta-Nascimento 2007
Spain
Caucasian
Hospital-based
8
428
251
679
367
368
735
Moore 2007
Spain
Caucasian
Hospital-based
7
683
394
1077
524
498
1022
Cengiz 2007
Turkey
Caucasian
Hospital-based
6
34
17
51
22
31
53
Kellen 2007
Belgium
Caucasian
Population-based
8
312
267
579
597
466
1063
Zhao 2007
USA
Caucasian
Hospital-based
8
324
298
622
317
316
633
Shao 2008
China
Asian
Hospital-based
10
85
117
202
81
191
272
Yuan 2008
USA
Mix
Population-based
11
387
275
662
335
351
686
Covolo 2008
Italy
Caucasian
Hospital-based
7
128
69
197
111
100
211
Golka 2008
Germany
Caucasian
Hospital-based
7
184
109
293
88
88
176
Song 2009
China
Asian
Hospital-based
11
131
77
208
108
104
212
Altayli 2009
Turkey
Caucasian
Hospital-based
7
58
77
135
65
63
128
Grando 2009
Brazil
Mix
Population-based
7
40
60
100
33
67
100
Lin 2009
USA
Mix
Population-based
9
312
292
604
286
324
610
Zupa 2009
Italy
Caucasian
Population-based
8
13
10
23
68
53
121
Abd 2010
Egypt
African
Hospital-based
6
11
9
20
9
11
20
Moore 2011
USA
Mix
Hospital-based
10
653
400
1053
690
545
1235
Öztürk 2011
Turkey
Caucasian
Population-based
8
98
78
176
51
46
97
Rouissi 2011
Tunisia
African
Population-based
7
63
62
125
56
69
125
Salinas-Sonchez 2011
Spain
Caucasian
Hospital-based
5
109
92
201
78
115
193
Goerlitz 2011
Egypt
African
Hospital-based
9
344
274
618
332
289
621
Marenne 2012
Spain
Caucasian
Hospital-based
7
488
285
773
402
357
759
Ovsiannikov 2012
Germany
Caucasian
Hospital-based
6
102
94
196
123
112
235
Schwender 2012
Germany
Caucasian
Hospital-based
7
909
663
1572
863
876
1739
Henriquez-Hernondez 2012
Spain
Caucasian
Hospital-based
8
23
67
90
17
64
81
Lesseur 2012
New Hampshire
Caucasian
Hospital-based
9
378
275
653
508
420
928
Zhang 2012
USA
Mix
Hospital-based
10
381
329
710
402
380
782
Matic 2013
Serbia
Caucasian
Hospital-based
8
111
90
201
61
61
122
Savic-Radojevic 2013
Serbia
Caucasian
Hospital-based
6
45
35
80
32
28
60
Safarinejad 2013
Iran
Asian
Hospital-based
10
50
116
166
93
239
332
Wang 2013
China
Asian
Hospital-based
7
699
351
1050
834
570
1404
Berber 2013
Turkey
Caucasian
Hospital-based
7
54
60
114
51
63
114
Kang 2013
Korea
Asian
Hospital-based
9
65
45
110
103
117
220
Reszka 2014
Poland
Caucasian
Population-based
9
149
95
244
165
200
365
Ceylan 2015
Turkey
Caucasian
Hospital-based
8
22
43
65
31
39
70
Elhawary 2017
Saudi Arabia
Asian
Hospital-based
7
24
28
52
40
64
104
Ali 2017
Pakistan
Asian
Population-based
11
83
117
200
57
143
200
In the subgroup of patients and controls who smoked cigarettes, we included 24 studies [25, 30, 34, 35, 42, 43, 47, 48, 50, 51, 5456, 64, 65, 68, 69, 73, 76, 83, 85, 91, 92, 95] (data not shown) containing 3724 case series and 3160 controls. Average distribution frequency of the GSTM1-null genotype was 55.67% in the bladder cancer group and 47.57% in the control group, indicating that the GSTM1-null genotype was significantly higher in the bladder cancer cases compared with the controls (case/control = 1.17).

Study characteristics for GSTT1-null genotype and bladder cancer risk

We included 61 studies [29, 3234, 3640, 4245, 4753, 5561, 6369, 7274, 76, 77, 79, 8386, 89, 91, 92, 95108] containing 13,041 case series and 16,739 controls in our assessment of the relationship between the GSTT1-null genotype and bladder cancer risk (Fig. 1 and Table 2). Average distribution frequency of the GSTT1-null genotype was 29.58% in the bladder cancer group and 26.67% in the control group, indicating that the GSTT1 -null genotype was higher in the bladder cancer cases compared with the controls (case/control = 1.11).
Table 2
Characteristics of the studies evaluating effects of the GSTT1-null genotype of on bladder carcinogen risk
Author, Year
Country
Ethnicity
Source of controls
Quality score
Case
Control
+
total
+
total
Brockmoller 1996
Germany
Caucasian
Hospital-based
8
66
308
374
78
295
373
Kempkes 1996
Germany
Caucasian
Population-based
7
20
93
113
31
139
170
Abdel-Rahman 1998
Egypt
African
Hospital-based
8
17
20
37
5
29
34
Katoh 1998
Japan
Caucasian
Hospital-based
9
46
66
112
59
53
112
Kim 1998
Korea
Asian
Hospital-based
7
18
49
67
29
38
67
Lee 1999
Korea
Asian
Hospital-based
7
93
65
158
66
65
131
Salagovic 1999
Slovakia
Caucasian
Hospital-based
6
21
55
76
42
206
248
Georgiou 2000
Greece
Caucasian
Hospital-based
6
5
84
89
16
131
147
Peluso 2000
Italy
Caucasian
Hospital-based
5
14
108
122
6
48
54
Kim 2000
Korea
Asian
Hospital-based
6
47
65
112
101
119
220
Steinhoff 2000
Germany
Caucasian
Hospital-based
7
20
115
135
17
110
127
Schnakenberg 2000
Germany
Asian
Hospital-based
6
28
129
157
48
175
223
Toruner 2001
Turkey
Asian
Hospital-based
8
24
97
121
21
100
121
Giannakopoulos 2002
Greece
Caucasian
Hospital-based
6
5
84
89
16
131
147
Lee 2002
Korea
Asian
Hospital-based
8
135
97
232
85
80
165
Ma 2002
China
Asian
Population-based
8
29
32
61
88
94
182
Kim 2002
Korea
Asian
Population-based
8
91
125
216
228
221
449
Gago-Dominguez 2003
USA
Mix
Population-based
8
50
146
196
34
142
176
Jong 2003
Korea
Asian
Hospital-based
9
68
58
126
113
91
204
Chen 2004
China
Asian
Population-based
8
32
30
62
51
30
81
Moore 2004
USA
Mix
Population-based
8
17
89
106
12
97
109
Hung 2004
France
Caucasian
Hospital-based
7
43
158
201
33
181
214
Srivastava 2004
India
Asian
Hospital-based
7
28
78
106
29
153
182
Sanyal 2004
Sweden
Caucasian
Population-based
8
66
204
270
12
110
122
Broberg 2005
Sweden
Caucasian
Population-based
9
7
54
61
22
132
154
Garcia-Closas 2005
Spain
Caucasian
Hospital-based
9
230
899
1129
248
873
1121
Saad 2005
UK
Caucasian
Population-based
8
26
46
72
14
67
81
Karagas 2005
USA
Mix
Population-based
9
53
83
136
301
458
759
Golka 2005
Dortmund
Caucasian
Hospital-based
8
30
106
136
38
125
163
Kim 2005
Korea
Asian
Hospital-based
7
71
82
153
89
64
153
Srivastava 2005
India
Asian
Population-based
10
28
78
106
79
291
370
Shao 2005
China
Asian
Population-based
7
204
201
405
195
194
389
Sobti 2005
India
Asian
Population-based
9
30
70
100
11
65
76
McGrath 2006
USA
Mix
Population-based
11
35
156
191
148
776
924
Ouerhani 2006
Tunisia
African
Population-based
6
26
36
62
35
44
79
Kogevinas 2006
Spain
Caucasian
Hospital-based
8
24
75
99
17
74
91
Cengiz 2007
Turkey
Caucasian
Hospital-based
6
18
33
51
11
42
53
Kellen 2007
Belgium
Caucasian
Population-based
8
30
164
194
61
319
380
Zhao 2007
USA
Caucasian
Hospital-based
8
103
520
623
115
519
634
Covolo 2008
Italy
Caucasian
Hospital-based
7
42
155
197
33
178
211
Yuan 2008
USA
Mix
Population-based
11
140
518
658
124
556
680
Song 2008
China
Asian
Hospital-based
7
71
37
108
58
54
112
Altayli 2009
Turkey
Caucasian
Hospital-based
7
31
104
135
9
119
128
Grando 2009
Brazil
Mix
Population-based
7
51
49
100
37
63
100
Song 2009
China
Asian
Hospital-based
11
110
98
208
105
107
212
Cantor 2010
Spain
Caucasian
Hospital-based
9
136
542
678
160
550
710
Moore 2011
USA
Mix
Hospital-based
10
210
794
1004
237
942
1179
Rouissi 2011
Tunisia
African
Population-based
7
30
95
125
38
87
125
Goerlitz 2011
Egypt
African
Hospital-based
9
147
470
617
156
464
620
Salinas-Sánchez 2011
Spain
Caucasian
Hospital-based
5
42
148
190
25
138
163
Lesseur 2012
New Hampshire
Caucasian
Hospital-based
9
106
556
662
143
780
923
Ovsiannikov 2012
Germany
Caucasian
Hospital-based
6
33
163
196
47
188
235
Henriquez-Hernondez 2012
Spain
Caucasian
Hospital-based
8
60
30
90
40
41
81
Berber 2013
Turkey
Caucasian
Hospital-based
7
31
83
114
16
98
114
Matic 2013
Serbia
Caucasian
Hospital-based
8
56
145
201
34
88
122
Safarinejad 2013
Iran
Asian
Hospital-based
10
35
131
166
69
263
332
Kang 2013
Korea
Asian
Hospital-based
9
64
46
110
128
92
220
Reszka 2014
Poland
Caucasian
Population-based
9
30
212
242
77
288
365
Ceylan 2015
Turkey
Caucasian
Hospital-based
8
19
46
65
9
61
70
Ali 2017
Pakistan
Asian
Population-based
11
34
166
200
26
174
200
Elhawary 2017
Saudi Arabia
Asian
Hospital-based
7
6
46
52
8
96
104
In the subgroup of patients and controls who smoked cigarettes, we included 21 studies [34, 42, 43, 47, 48, 50, 51, 55, 56, 64, 65, 68, 69, 73, 76, 83, 85, 91, 92, 95, 97] (data not shown) containing 3170 case series and 2793 controls. Average distribution frequency of the GSTT1-null genotype was 29.29% in the bladder cancer group and 28.65% in the control group-that is, similar in both groups (case/control = 1.02).

Study characteristics for the dual-null GSTM1-GSTT1 genotype and bladder cancer risk

We included 18 studies [32, 37, 39, 43, 47, 48, 52, 55, 58, 60, 63, 65, 67, 79, 84, 85, 89, 96] containing 2426 case series and 3874 controls in our assessment of the relationship between the dual-null GSTM1-GSTT1 genotype and bladder cancer risk (Fig. 1 and Table 3). Average distribution frequency of the dual-null GSTM1-GSTT1 genotype was 16.78% in the bladder cancer group and 11.45% in the control group. Therefore, the dual-null GSTM1-GSTT1 genotype was significantly higher in the bladder cancer cases compared with the controls (case/control = 1.47).
Table 3
Characteristics of the studies evaluating effects of the GSTM1-GSTT1 dual-null genotype on bladder carcinogen risk
Author, Year
Country
Ethnicity
Source of controls
Quality score
Case
Control
null-null
non-null-null
total
null-null
non-null-null
total
Abdel-Rahman 1998
Egypt
African
Hospital-based
8
14
23
37
3
31
34
Steinhoff 2000
Germany
Caucasian
Hospital-based
7
12
123
135
4
123
127
Schnakenberg 2000
Germany
Caucasian
Population-based
6
12
145
157
31
192
223
Ma 2002
China
Asian
Population-based
8
16
45
61
54
128
182
Lee 2002
Korea
Asian
Hospital-based
8
83
149
232
37
128
165
Srivastava 2004
India
Asian
Hospital-based
7
16
90
106
9
173
182
Moore 2004
USA
Mix
Population-based
8
9
97
106
6
103
109
Hung 2004
France
Caucasian
Hospital-based
7
28
173
201
19
195
214
Srivastava 2005
India
Asian
Population-based
10
17
89
106
32
338
370
McGrath 2006
USA
Mix
Population-based
11
18
173
191
78
844
922
Song 2009
China
Asian
Hospital-based
11
77
131
208
50
162
212
Salinas-Sonchez 2011
Spain
Caucasian
Hospital-based
5
20
131
151
6
88
94
Ovsiannikov 2012
Germany
Caucasian
Hospital-based
6
17
179
196
29
206
235
Henriquez-Hernondez 2012
Spain
Caucasian
Hospital-based
8
17
73
90
8
73
81
Berber 2013
Turkey
Caucasian
Hospital-based
7
11
103
114
7
107
114
Safarinejad 2013
Iran
Asian
Hospital-based
10
38
128
166
73
259
332
Ceylan 2015
Turkey
Caucasian
Hospital-based
8
8
57
65
8
62
70
Elhawary 2017
Saudi Arabia
Asian
Hospital-based
7
0
104
104
0
208
208

Association of the GSTM1-null genotype with bladder cancer risk

In this meta-analysis, we found that the GSTM1-null genotype was associated with bladder cancer risk in the overall population, and individually in whites, Africans and Asians (overall population: OR = 1.40, 95% CI: 1.31–1.48, P<0.00001; whites: OR = 1.39, 95% CI: 1.26–1.54, P<0.00001; Africans: OR = 1.54, 95% CI: 1.16–2.05, P = 0.003; Asians: OR = 1.45, 95% CI: 1.33–1.59, P<0.00001); as well as in controls from both hospital-based and population-based studies that included both high- and low-quality studies (Fig. 2 for the overall population; Table 4). In the meta-analysis for all patients and controls who smoked cigarettes, we found that the GSTM1-null genotype was associated with bladder cancer risk in the overall population, Asians and controls from both hospital-based and population-based studies that included both high- and low-quality studies. However, we did not find this relationship in whites or Africans (Table 4).
Table 4
Meta-analysis of the association of null genotypes of GSTM1, GSTT1 and dual-null genotype of GSTM1/GSTT1 with bladder carcinogens risk
Genetic contrasts
Group and subgroups
Studies Number
Q test P value
Model selected
OR (95% CI)
P
GSTM1
 - vs +
Overall
72
<0.00001
Random
1.40 (1.31,1.48)
<0.00001
Caucasian
37
<0.00001
Random
1.39 (1.26,1.54)
<0.00001
Asian
20
0.39
Fixed
1.45 (1.33,1.59)
<0.00001
African
9
0.10
Random
1.54 (1.16,2.05)
0.003
Hospital-based
46
0.0001
Random
1.42 (1.32,1.52)
<0.00001
Population-based
26
0.003
Random
1.36 (1.21,1.53)
<0.00001
High quality
54
0.0002
Random
1.37 (1.28,1.45)
<0.00001
Low quality
18
0.0009
Random
1.58 (1.29,1.94)
<0.0001
GSTM1 (smoking)
 - vs +
Overall
24
0.02
Random
1.37 (1.19,1.59)
<0.0001
Caucasian
10
0.007
Random
1.17 (0.85,1.59)
0.33
Asian
7
0.63
Fixed
1.67 (1.32,2.11)
<0.0001
African
3
0.22
Fixed
1.44 (0.95,2.17)
0.08
High quality
17
0.02
Random
1.35 (1.14,1.60)
0.0005
Low quality
7
0.27
Fixed
1.48 (1.12,1.96)
0.006
GSTT1
 - vs +
Overall
61
<0.00001
Random
1.11 (1.01,1.22)
0.03
Caucasian
29
<0.00001
Random
1.16 (0.99,1.36)
0.07
Asian
21
0.01
Random
1.05 (0.91,1.22)
0.51
African
4
0.03
Random
1.07 (0.65,1.76)
0.79
Hospital-based
40
<0.0001
Random
1.11 (0.99,1.24)
0.07
Population-based
21
0.0002
Random
1.12 (0.94,1.35)
0.20
High quality
52
<0.00001
Random
1.14 (1.03,1.26)
0.01
Low quality
9
0.23
Fixed
0.93 (0.75,1.14)
0.49
GSTT1 (smoking)
 
Overall
21
0.67
Fixed
1.06 (0.93,1.20)
0.38
Caucasian
9
0.84
Fixed
1.14 (0.91,1.43)
0.24
Asian
7
0.62
Fixed
1.00 (0.77,1.30)
0.99
African
2
0.41
Fixed
0.60 (0.36,1.02)
0.06
High quality
16
0.52
Fixed
1.06 (0.93,1.22)
0.37
Low quality
5
0.64
Fixed
1.01 (0.70,1.48)
0.94
Dual-null genotype of GSTM1/GSTT1
 
Overall
18
0.003
Random
1.48 (1.15,1.92)
0.002
Caucasian
8
0.03
Random
1.30 (0.83,2.03)
0.25
Asian
7
0.04
Random
1.62 (1.15,2.28)
0.006
Hospital-based
13
0.03
Random
1.71 (1.28,2.28)
0.0003
Population-based
5
0.06
Random
1.07 (0.67,1.71)
0.77
High quality
15
0.11
Fixed
1.61 (1.36,1.91)
<0.00001
Low quality
3
0.04
Random
0.86 (0.40,1.85)
0.70

Association of the GSTT1-null genotype with bladder cancer risk

In this study, we found that the GSTT1-null genotype was associated with bladder cancer risk in the overall population, and controls from hospital-based studies that included high-quality studies; but not with bladder cancer risk in whites, Africans, Asians or controls from population-based studies that included low-quality studies (overall population: OR = 1.11, 95% CI: 1.01–1.22, P = 0.03; whites: OR = 1.16, 95% CI: 0.99–1.36, P = 0.07; Africans: OR = 1.07, 95% CI: 0.65–1.76, P = 0.79; Asians: OR = 1.05, 95% CI: 0.91–1.22, P = 0.51; Fig. 3 for overall population; Table 4). However, in controls from either hospital-based or population-based studies that included both high- and low-quality studies, or in the meta-analysis for all patients and controls who smoked cigarettes, we found that the GSTT1-null genotype was not associated with bladder cancer risk in the overall population, or in individual white, African or Asian populations (Table 4).

Association of dual-null GSTM1-GSTT1 genotype with bladder cancer risk

We found an association between the dual-null GSTM1-GSTT1 genotype and bladder cancer risk in the overall population, Asians and controls from hospital-based studies that included high-quality studies (overall population: OR = 1.48, 95% CI: 1.15–1.92, P = 0.002; Asians: OR = 1.62, 95% CI: 1.15–2.28, P = 0.006; Fig. 4 for overall population; Table 4). However, the dual-null GSTM1-GSTT1 genotype was not associated with onset of bladder cancer in whites or in controls from population-based studies that included low-quality studies (whites: OR = 1.30, 95% CI: 0.83–2.03, P = 0.25; Table 4).

Evaluation of publication bias

We performed a publication bias test for the association of the GSTM1-null, GSTT1-null and dual-null GSTM1-GSTT1 genotypes with bladder cancer risk in the overall population. There was no bias for the association of the dual-null GSTM1-GSTT1 genotype with bladder cancer risk, but there was for the GSTM1- and GSTT1-null genotypes (GSTM1-null: Begg P = 0.100, Egger P = 0.052; GSTT1-null: Begg P = 0.001, Egger P = 0.002; dual-null GSTM1–GSTT1: Begg P = 0.343, Egger P = 0.236; Fig. 5).

Discussion

Research on single-nucleotide polymorphisms have focused mainly on their impact on tumor suppressor genes, metabolic-enzyme genes, and DNA repair genes, etc. Understanding disease susceptibility and pathogenesis and using them to guide diagnosis and individual treatment choice constitute an important new therapeutic approach [109]. In this study, we found that the average distribution frequency of the GSTM1-null genotype was significantly higher in bladder cancer cases than in controls (case/control = 1.20). In the subgroup of patients and controls who smoked cigarettes, it was also higher in the bladder cancer case group compared with the control group (case/control = 1.17). This might indicate that the GSTM1-null genotype was associated with bladder cancer risk in the overall population, including whites, Africans, Asians, and controls from both hospital-based and population-based studies that included both high- and low-quality studies. In the meta-analysis for all patients and controls who smoked cigarettes, we found that the GSTM1-null genotype was associated with bladder cancer risk in the overall population, Asians, and controls from both hospital-based and population-based studies that included both high- and low-quality studies. The sample size of our meta-analysis was larger than those of other meta-analyses [61, 110112], and therefore our results might be more robust. However, our tests for publication bias, the GSTM1 studies were found to be positive. Therefore, the positive association between the GSTM1-null genotype and bladder cancer should be reassessed in the future.
The average distribution frequency of the GSTT1-null genotype was higher in the bladder cancer case group than in the control group (case/control = 1.11). In the subgroup of patients and controls who smoked cigarettes, it was similar in both groups (case/control = 1.02). This might tell us that the GSTT1-null genotype was associated with bladder cancer risk. For confirmation, we performed a meta-analysis, which further showed the GSTT1-null genotype to be associated with bladder cancer risk in the overall population, whites and controls from hospital-based studies that included high-quality studies. In the meta-analysis for all patients and controls who smoked cigarettes, we found that the GSTT1-null genotype was not associated with bladder cancer risk in the overall population, whites, Africans, Asians or controls from both hospital-based and population-based studies that included both high- and low-quality studies. Our results indicate that the GSTT1-null genotype does not predict the risk of bladder cancer. The sample size of our meta-analysis was larger than those of other meta-analyses [111, 112], suggesting that our conclusion might be more robust. However, publication bias was also found for GSTT1. Therefore, further studies are required.
Average distribution frequency of the dual-null GSTM1-GSTT1 genotype in the bladder cancer group was slightly higher than in the control group (case/control = 1.47), indicating a possible association between the dual-null GSTM1-GSTT1 genotype and bladder cancer risk. Meta-analysis further revealed an association between the dual-null GSTM1-GSTT1 genotype and bladder cancer risk in the overall population, Asians and controls from hospital-based studies that included high-quality studies. No publication bias was found for this meta-analysis, and the conclusion was robust.
In a previous study, García-Closas et al. [61] conducted a meta-analysis of 28 studies of GSTM1 and reported that the GSTM1-null genotype both increased the overall risk of bladder cancer and posed similar relative risks for both smokers and non-smokers. This finding suggested that GSTM1 lowers the risk of bladder cancer through mechanisms that are not specific to the detoxification of polycyclic aromatic hydrocarbons in tobacco smoke. Engel et al. [110] performed a meta-analysis of GSTM1 and bladder cancer that included 17 studies and reported that the GSTM1-null status is associated with a modest increase in the risk of bladder cancer, and that there was no evidence of multiplicative interaction between the GSTM1-null genotype and once and current smoking in relation to bladder cancer. A meta-analysis by Yu et al. [112] included 48 case–control studies for GSTM1-null and 57 studies for GSTT1, and suggested that the GSTM1- and GSTT1-null genotypes might both be related to higher bladder cancer risk. Yu et al. [111] also performed a meta-analysis to investigate the association between GSTM1-GSTT1 deletion polymorphisms and bladder cancer susceptibility, including 46 studies of GSTM1-null, 54 of GSTT1 and 10 of dual-null GSTM1-GSTT1. All 3 genotypes were associated with increased bladder cancer risk. In our meta-analysis, we included 72 studies for GSTM1-null, 62 for GSTT1-null and 18 for dual-null GSTM1-GSTT1 genotypes. These results from the meta-analyses mentioned above were similar to our results. However, the sample size of our meta-analysis was larger than the previous meta-analyses, and the results from our studies might be more robust. Furthermore, we initially conducted a meta-analysis that showed no evidence of multiplicative interaction between the GSTT1-null genotype and smoking in relation to bladder cancer.
Smoking is a known risk factor for bladder cancer [113], and the products of GSTs help detoxify the polycyclic aromatic hydrocarbons found in tobacco smoke [114]. Our study suggests that the GSTM1-null genotype might play a role in such detoxification, but the GSTT1-null genotype does not. However, more studies should be conducted to confirm this.
GSTM1-null, GSTT1-null and dual-null GSTM1-GSTT1 genotypes play an important role in detoxification of various toxic compounds, such as carcinogens. In this meta-analysis, it indicated that GSTM1-null, GSTT1-null and dual-null GSTM1-GSTT1 genotypes were risk factors to susceptibility of bladder cancer, and took part in the pathogenesis of bladder cancer.
There were limitations in our meta-analysis. First, age might be a source of heterogeneity, but it was difficult to stratify the different ages in the reports prior to pooling the results, for the reason that the ages from most of the included studies were different. So, no conclusions can be drawn regarding the impact of GSTs on age of onset. Furthermore, heterogeneity and publication bias were both significant for GSTM1-null and GSTT1-null. Subgroup analyses were performed to find out any effect modifier, but the reason was not clear.

Conclusion

Our results supported that the GSTM1-null, GSTT1-null and dual-null GSTM1–GSTT1 genotypes might be associated with the onset of bladder cancers. However, more association investigations are required to further clarify these relationships.

Acknowledgements

Not applicable.

Funding

This study was supported by Guangzhou Medical Key Discipline Construction Project. The funding paid the publication fee for this paper.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.
Not applicable.
Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
2.
Zurück zum Zitat Chen CH, Shun CT, Huang KH, Huang CY, Yu HJ, Pu YS. Characteristics of female non-muscle-invasive bladder cancer in Taiwan: association with upper tract urothelial carcinoma and end-stage renal disease. Urology. 2008;71:1155–60.PubMedCrossRef Chen CH, Shun CT, Huang KH, Huang CY, Yu HJ, Pu YS. Characteristics of female non-muscle-invasive bladder cancer in Taiwan: association with upper tract urothelial carcinoma and end-stage renal disease. Urology. 2008;71:1155–60.PubMedCrossRef
3.
Zurück zum Zitat Zhang Z, Zhang G, Gao Z, Li S, Li Z, Bi J, Liu X, Kong C. Comprehensive analysis of differentially expressed genes associated with PLK1 in bladder cancer. BMC Cancer. 2017;17:861.PubMedPubMedCentralCrossRef Zhang Z, Zhang G, Gao Z, Li S, Li Z, Bi J, Liu X, Kong C. Comprehensive analysis of differentially expressed genes associated with PLK1 in bladder cancer. BMC Cancer. 2017;17:861.PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Oliveira PA, Vasconcelos-Nobrega C, Gil da Costa RM, Arantes-Rodrigues R. The N-butyl-N-4-hydroxybutyl nitrosamine mouse urinary bladder Cancer model. Methods Mol Biol. 2018;1655:155–67.PubMedCrossRef Oliveira PA, Vasconcelos-Nobrega C, Gil da Costa RM, Arantes-Rodrigues R. The N-butyl-N-4-hydroxybutyl nitrosamine mouse urinary bladder Cancer model. Methods Mol Biol. 2018;1655:155–67.PubMedCrossRef
6.
Zurück zum Zitat Chen CH, Chiou HY, Hsueh YM, Chen CJ, Yu HJ, Pu YS. Clinicopathological characteristics and survival outcome of arsenic related bladder cancer in Taiwan. J Urol. 2009;181:547–52 discussion 553.PubMedCrossRef Chen CH, Chiou HY, Hsueh YM, Chen CJ, Yu HJ, Pu YS. Clinicopathological characteristics and survival outcome of arsenic related bladder cancer in Taiwan. J Urol. 2009;181:547–52 discussion 553.PubMedCrossRef
7.
Zurück zum Zitat Benhamou S, Bonastre J, Groussard K, Radvanyi F, Allory Y, Lebret T. A prospective multicenter study on bladder cancer: the COBLAnCE cohort. BMC Cancer. 2016;16:837.PubMedPubMedCentralCrossRef Benhamou S, Bonastre J, Groussard K, Radvanyi F, Allory Y, Lebret T. A prospective multicenter study on bladder cancer: the COBLAnCE cohort. BMC Cancer. 2016;16:837.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Verma A, Kapoor R, Mittal RD. Cluster of differentiation 44 (CD44) gene variants: a putative Cancer stem cell marker in risk prediction of bladder Cancer in north Indian population. Indian J Clin Biochem. 2017;32:74–83.PubMedCrossRef Verma A, Kapoor R, Mittal RD. Cluster of differentiation 44 (CD44) gene variants: a putative Cancer stem cell marker in risk prediction of bladder Cancer in north Indian population. Indian J Clin Biochem. 2017;32:74–83.PubMedCrossRef
9.
Zurück zum Zitat Singh V, Jaiswal PK, Mittal RD. Replicative study of GWAS TP63C/T, TERTC/T, and SLC14A1C/T with susceptibility to bladder cancer in north Indians. Urol Oncol. 2014;32:1209–14.PubMedCrossRef Singh V, Jaiswal PK, Mittal RD. Replicative study of GWAS TP63C/T, TERTC/T, and SLC14A1C/T with susceptibility to bladder cancer in north Indians. Urol Oncol. 2014;32:1209–14.PubMedCrossRef
10.
Zurück zum Zitat Wieczorek E, Wasowicz W, Gromadzinska J, Reszka E. Functional polymorphisms in the matrix metalloproteinase genes and their association with bladder cancer risk and recurrence: a mini-review. Int J Urol. 2014;21:744–52.PubMedCrossRef Wieczorek E, Wasowicz W, Gromadzinska J, Reszka E. Functional polymorphisms in the matrix metalloproteinase genes and their association with bladder cancer risk and recurrence: a mini-review. Int J Urol. 2014;21:744–52.PubMedCrossRef
11.
Zurück zum Zitat Selinski S. Discovering urinary bladder cancer risk variants: status quo after almost ten years of genome-wide association studies. EXCLI J. 2017;16:1288–96.PubMedPubMedCentral Selinski S. Discovering urinary bladder cancer risk variants: status quo after almost ten years of genome-wide association studies. EXCLI J. 2017;16:1288–96.PubMedPubMedCentral
12.
Zurück zum Zitat Selinski S, Blaszkewicz M, Ickstadt K, Gerullis H, Otto T, Roth E, Volkert F, Ovsiannikov D, Moormann O, Banfi G, Nyirady P, Vermeulen SH, Garcia-Closas M, Figueroa JD, Johnson A, Karagas MR, Kogevinas M, Malats N, Schwenn M, Silverman DT, Koutros S, Rothman N, Kiemeney LA, Hengstler JG, Golka K. Identification and replication of the interplay of four genetic high-risk variants for urinary bladder cancer. Carcinogenesis. 2017;38:1167–79.PubMedPubMedCentralCrossRef Selinski S, Blaszkewicz M, Ickstadt K, Gerullis H, Otto T, Roth E, Volkert F, Ovsiannikov D, Moormann O, Banfi G, Nyirady P, Vermeulen SH, Garcia-Closas M, Figueroa JD, Johnson A, Karagas MR, Kogevinas M, Malats N, Schwenn M, Silverman DT, Koutros S, Rothman N, Kiemeney LA, Hengstler JG, Golka K. Identification and replication of the interplay of four genetic high-risk variants for urinary bladder cancer. Carcinogenesis. 2017;38:1167–79.PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Mittal RD, Kesarwani P, Singh R, Ahirwar D, Mandhani A. GSTM1, GSTM3 and GSTT1 gene variants and risk of benign prostate hyperplasia in North India. Dis Markers. 2009;26:85–91.PubMedPubMedCentralCrossRef Mittal RD, Kesarwani P, Singh R, Ahirwar D, Mandhani A. GSTM1, GSTM3 and GSTT1 gene variants and risk of benign prostate hyperplasia in North India. Dis Markers. 2009;26:85–91.PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Mi Y, Ren K, Zou J, Bai Y, Zhang L, Zuo L, Okada A, Yasui T. The association between three genetic variants in MicroRNAs (Rs11614913, Rs2910164, Rs3746444) and prostate Cancer risk. Cell Physiol Biochem. 2018;48:149–57.PubMedCrossRef Mi Y, Ren K, Zou J, Bai Y, Zhang L, Zuo L, Okada A, Yasui T. The association between three genetic variants in MicroRNAs (Rs11614913, Rs2910164, Rs3746444) and prostate Cancer risk. Cell Physiol Biochem. 2018;48:149–57.PubMedCrossRef
16.
Zurück zum Zitat Baltruskeviciene E, Kazbariene B, Aleknavicius E, Krikstaponiene A, Venceviciene L, Suziedelis K, Stratilatovas E, Didziapetriene J. Changes of reduced glutathione and glutathione S-transferase levels in colorectal cancer patients undergoing treatment. Tumori 2017:0. Baltruskeviciene E, Kazbariene B, Aleknavicius E, Krikstaponiene A, Venceviciene L, Suziedelis K, Stratilatovas E, Didziapetriene J. Changes of reduced glutathione and glutathione S-transferase levels in colorectal cancer patients undergoing treatment. Tumori 2017:0.
17.
Zurück zum Zitat Muguruma N, Okamoto K, Nakagawa T, Sannomiya K, Fujimoto S, Mitsui Y, Kimura T, Miyamoto H, Higashijima J, Shimada M, Horino Y, Matsumoto S, Hanaoka K, Nagano T, Shibutani M, Takayama T. Molecular imaging of aberrant crypt foci in the human colon targeting glutathione S-transferase P1–1. Sci Rep 2017;7:6536. Muguruma N, Okamoto K, Nakagawa T, Sannomiya K, Fujimoto S, Mitsui Y, Kimura T, Miyamoto H, Higashijima J, Shimada M, Horino Y, Matsumoto S, Hanaoka K, Nagano T, Shibutani M, Takayama T. Molecular imaging of aberrant crypt foci in the human colon targeting glutathione S-transferase P1–1. Sci Rep 2017;7:6536.
18.
Zurück zum Zitat Wang W, Liu F, Wang C, Tang Y, Jiang Z. Glutathione S-transferase A1 mediates nicotine-induced lung cancer cell metastasis by promoting epithelial-mesenchymal transition. Exp Ther Med. 2017;14:1783–8.PubMedPubMedCentralCrossRef Wang W, Liu F, Wang C, Tang Y, Jiang Z. Glutathione S-transferase A1 mediates nicotine-induced lung cancer cell metastasis by promoting epithelial-mesenchymal transition. Exp Ther Med. 2017;14:1783–8.PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Rao A, Parameswar P, Majumdar S, Uppala D, Kotina S, Vennamaneni N. Evaluation of genetic polymorphisms in glutathione S-transferase Theta1, glutathione S-transferase Mu1, and glutathione S-transferase Mu3 in Oral leukoplakia and Oral squamous cell carcinoma with deleterious habits using polymerase chain reaction. Int J Appl Basic Med Res. 2017;7:181–5.PubMedPubMedCentralCrossRef Rao A, Parameswar P, Majumdar S, Uppala D, Kotina S, Vennamaneni N. Evaluation of genetic polymorphisms in glutathione S-transferase Theta1, glutathione S-transferase Mu1, and glutathione S-transferase Mu3 in Oral leukoplakia and Oral squamous cell carcinoma with deleterious habits using polymerase chain reaction. Int J Appl Basic Med Res. 2017;7:181–5.PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Zhao E, Hu K, Zhao Y. Associations of the glutathione S-transferase P1 Ile105Val genetic polymorphism with gynecological cancer susceptibility: a meta-analysis. Oncotarget. 2017;8:41734–9.PubMedPubMedCentral Zhao E, Hu K, Zhao Y. Associations of the glutathione S-transferase P1 Ile105Val genetic polymorphism with gynecological cancer susceptibility: a meta-analysis. Oncotarget. 2017;8:41734–9.PubMedPubMedCentral
21.
Zurück zum Zitat Xue C, He X, Zou D. Glutathione S-transferase M1 polymorphism and breast Cancer risk: a meta-analysis in the Chinese population. Clin Lab. 2016;62:2277–84.PubMedCrossRef Xue C, He X, Zou D. Glutathione S-transferase M1 polymorphism and breast Cancer risk: a meta-analysis in the Chinese population. Clin Lab. 2016;62:2277–84.PubMedCrossRef
22.
Zurück zum Zitat Thakkinstian A, McEvoy M, Minelli C, Gibson P, Hancox B, Duffy D, Thompson J, Hall I, Kaufman J, Leung TF, Helms PJ, Hakonarson H, Halpi E, Navon R, Attia J. Systematic review and meta-analysis of the association between {beta}2-adrenoceptor polymorphisms and asthma: a HuGE review. Am J Epidemiol. 2005;162:201–11.PubMedCrossRef Thakkinstian A, McEvoy M, Minelli C, Gibson P, Hancox B, Duffy D, Thompson J, Hall I, Kaufman J, Leung TF, Helms PJ, Hakonarson H, Halpi E, Navon R, Attia J. Systematic review and meta-analysis of the association between {beta}2-adrenoceptor polymorphisms and asthma: a HuGE review. Am J Epidemiol. 2005;162:201–11.PubMedCrossRef
23.
Zurück zum Zitat Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50:1088–101.CrossRefPubMed Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50:1088–101.CrossRefPubMed
25.
Zurück zum Zitat Bell DA, Taylor JA, Paulson DF, Robertson CN, Mohler JL, Lucier GW. Genetic risk and carcinogen exposure: a common inherited defect of the carcinogen-metabolism gene glutathione S-transferase M1 (GSTM1) that increases susceptibility to bladder cancer. J Natl Cancer Inst. 1993;85:1159–64.PubMedCrossRef Bell DA, Taylor JA, Paulson DF, Robertson CN, Mohler JL, Lucier GW. Genetic risk and carcinogen exposure: a common inherited defect of the carcinogen-metabolism gene glutathione S-transferase M1 (GSTM1) that increases susceptibility to bladder cancer. J Natl Cancer Inst. 1993;85:1159–64.PubMedCrossRef
26.
Zurück zum Zitat Zhong S, Wyllie AH, Barnes D, Wolf CR, Spurr NK. Relationship between the GSTM1 genetic polymorphism and susceptibility to bladder, breast and colon cancer. Carcinogenesis. 1993;14:1821–4.PubMedCrossRef Zhong S, Wyllie AH, Barnes D, Wolf CR, Spurr NK. Relationship between the GSTM1 genetic polymorphism and susceptibility to bladder, breast and colon cancer. Carcinogenesis. 1993;14:1821–4.PubMedCrossRef
27.
Zurück zum Zitat Daly AK, Thomas DJ, Cooper J, Pearson WR, Neal DE, Idle JR. Homozygous deletion of gene for glutathione S-transferase M1 in bladder cancer. BMJ. 1993;307:481–2.PubMedPubMedCentralCrossRef Daly AK, Thomas DJ, Cooper J, Pearson WR, Neal DE, Idle JR. Homozygous deletion of gene for glutathione S-transferase M1 in bladder cancer. BMJ. 1993;307:481–2.PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Lin HJ, Han CY, Bernstein DA, Hsiao W, Lin BK, Hardy S. Ethnic distribution of the glutathione transferase mu 1-1 (GSTM1) null genotype in 1473 individuals and application to bladder cancer susceptibility. Carcinogenesis. 1994;15:1077–81.PubMedCrossRef Lin HJ, Han CY, Bernstein DA, Hsiao W, Lin BK, Hardy S. Ethnic distribution of the glutathione transferase mu 1-1 (GSTM1) null genotype in 1473 individuals and application to bladder cancer susceptibility. Carcinogenesis. 1994;15:1077–81.PubMedCrossRef
29.
Zurück zum Zitat Brockmoller J, Cascorbi I, Kerb R, Roots I. Combined analysis of inherited polymorphisms in arylamine N-acetyltransferase 2, glutathione S-transferases M1 and T1, microsomal epoxide hydrolase, and cytochrome P450 enzymes as modulators of bladder cancer risk. Cancer Res. 1996;56:3915–25.PubMed Brockmoller J, Cascorbi I, Kerb R, Roots I. Combined analysis of inherited polymorphisms in arylamine N-acetyltransferase 2, glutathione S-transferases M1 and T1, microsomal epoxide hydrolase, and cytochrome P450 enzymes as modulators of bladder cancer risk. Cancer Res. 1996;56:3915–25.PubMed
30.
Zurück zum Zitat Lafuente A, Zakahary MM, El-Aziz MA, Ascaso C, Lafuente MJ, Trias M, Carretero P. Influence of smoking in the glutathione-S-transferase M1 deficiency--associated risk for squamous cell carcinoma of the bladder in schistosomiasis patients in Egypt. Br J Cancer. 1996;74:836–8.PubMedPubMedCentralCrossRef Lafuente A, Zakahary MM, El-Aziz MA, Ascaso C, Lafuente MJ, Trias M, Carretero P. Influence of smoking in the glutathione-S-transferase M1 deficiency--associated risk for squamous cell carcinoma of the bladder in schistosomiasis patients in Egypt. Br J Cancer. 1996;74:836–8.PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Okkels H, Sigsgaard T, Wolf H, Autrup H. Glutathione S-transferase mu as a risk factor in bladder tumours. Pharmacogenetics. 1996;6:251–6.PubMedCrossRef Okkels H, Sigsgaard T, Wolf H, Autrup H. Glutathione S-transferase mu as a risk factor in bladder tumours. Pharmacogenetics. 1996;6:251–6.PubMedCrossRef
32.
Zurück zum Zitat Abdel-Rahman SZ, Anwar WA, Abdel-Aal WE, Mostafa HM, Au WW. GSTM1 and GSTT1 genes are potential risk modifiers for bladder cancer. Cancer Detect Prev. 1998;22:129–38.PubMedCrossRef Abdel-Rahman SZ, Anwar WA, Abdel-Aal WE, Mostafa HM, Au WW. GSTM1 and GSTT1 genes are potential risk modifiers for bladder cancer. Cancer Detect Prev. 1998;22:129–38.PubMedCrossRef
33.
Zurück zum Zitat Katoh T, Inatomi H, Kim H, Yang M, Matsumoto T, Kawamoto T. Effects of glutathione S-transferase (GST) M1 and GSTT1 genotypes on urothelial cancer risk. Cancer Lett. 1998;132:147–52.PubMedCrossRef Katoh T, Inatomi H, Kim H, Yang M, Matsumoto T, Kawamoto T. Effects of glutathione S-transferase (GST) M1 and GSTT1 genotypes on urothelial cancer risk. Cancer Lett. 1998;132:147–52.PubMedCrossRef
34.
Zurück zum Zitat Salagovic J, Kalina I, Habalova V, Hrivnak M, Valansky L, Biros E. The role of human glutathione S-transferases M1 and T1 in individual susceptibility to bladder cancer. Physiol Res. 1999;48:465–71.PubMed Salagovic J, Kalina I, Habalova V, Hrivnak M, Valansky L, Biros E. The role of human glutathione S-transferases M1 and T1 in individual susceptibility to bladder cancer. Physiol Res. 1999;48:465–71.PubMed
35.
Zurück zum Zitat Mungan NA, Aben KK, Beeks E, Kampman E, Bunschoten A, Bussemakers M, Witjes JA, Kiemeney LA. A germline homozygote deletion of the glutathione-S-transferase Mu1 gene predisposes to bladder cancer. Urol Int. 2000;64:134–8.PubMedCrossRef Mungan NA, Aben KK, Beeks E, Kampman E, Bunschoten A, Bussemakers M, Witjes JA, Kiemeney LA. A germline homozygote deletion of the glutathione-S-transferase Mu1 gene predisposes to bladder cancer. Urol Int. 2000;64:134–8.PubMedCrossRef
36.
Zurück zum Zitat Georgiou I, Filiadis IF, Alamanos Y, Bouba I, Giannakopoulos X, Lolis D. Glutathione S-transferase null genotypes in transitional cell bladder cancer: a case-control study. Eur Urol. 2000;37:660–4.PubMedCrossRef Georgiou I, Filiadis IF, Alamanos Y, Bouba I, Giannakopoulos X, Lolis D. Glutathione S-transferase null genotypes in transitional cell bladder cancer: a case-control study. Eur Urol. 2000;37:660–4.PubMedCrossRef
37.
Zurück zum Zitat Steinhoff C, Franke KH, Golka K, Thier R, Romer HC, Rotzel C, Ackermann R, Schulz WA. Glutathione transferase isozyme genotypes in patients with prostate and bladder carcinoma. Arch Toxicol. 2000;74:521–6.PubMedCrossRef Steinhoff C, Franke KH, Golka K, Thier R, Romer HC, Rotzel C, Ackermann R, Schulz WA. Glutathione transferase isozyme genotypes in patients with prostate and bladder carcinoma. Arch Toxicol. 2000;74:521–6.PubMedCrossRef
38.
Zurück zum Zitat Kim WJ, Lee HL, Lee SC, Kim YT, Kim H. Polymorphisms of N-acetyltransferase 2, glutathione S-transferase mu and theta genes as risk factors of bladder cancer in relation to asthma and tuberculosis. J Urol. 2000;164:209–13.PubMedCrossRef Kim WJ, Lee HL, Lee SC, Kim YT, Kim H. Polymorphisms of N-acetyltransferase 2, glutathione S-transferase mu and theta genes as risk factors of bladder cancer in relation to asthma and tuberculosis. J Urol. 2000;164:209–13.PubMedCrossRef
39.
Zurück zum Zitat Schnakenberg E, Lustig M, Breuer R, Werdin R, Hubotter R, Dreikorn K, Schloot W. Gender-specific effects of NAT2 and GSTM1 in bladder cancer. Clin Genet. 2000;57:270–7.PubMedCrossRef Schnakenberg E, Lustig M, Breuer R, Werdin R, Hubotter R, Dreikorn K, Schloot W. Gender-specific effects of NAT2 and GSTM1 in bladder cancer. Clin Genet. 2000;57:270–7.PubMedCrossRef
40.
Zurück zum Zitat Peluso M, Airoldi L, Magagnotti C, Fiorini L, Munnia A, Hautefeuille A, Malaveille C, Vineis P. White blood cell DNA adducts and fruit and vegetable consumption in bladder cancer. Carcinogenesis. 2000;21:183–7.PubMedCrossRef Peluso M, Airoldi L, Magagnotti C, Fiorini L, Munnia A, Hautefeuille A, Malaveille C, Vineis P. White blood cell DNA adducts and fruit and vegetable consumption in bladder cancer. Carcinogenesis. 2000;21:183–7.PubMedCrossRef
41.
Zurück zum Zitat Aktas D, Ozen H, Atsu N, Tekin A, Sozen S, Tuncbilek E. Glutathione S-transferase M1 gene polymorphism in bladder cancer patients. A marker for invasive bladder cancer? Cancer Genet Cytogenet. 2001;125:1–4.PubMedCrossRef Aktas D, Ozen H, Atsu N, Tekin A, Sozen S, Tuncbilek E. Glutathione S-transferase M1 gene polymorphism in bladder cancer patients. A marker for invasive bladder cancer? Cancer Genet Cytogenet. 2001;125:1–4.PubMedCrossRef
42.
Zurück zum Zitat Toruner GA, Akyerli C, Ucar A, Aki T, Atsu N, Ozen H, Tez M, Cetinkaya M, Ozcelik T. Polymorphisms of glutathione S-transferase genes (GSTM1, GSTP1 and GSTT1) and bladder cancer susceptibility in the Turkish population. Arch Toxicol. 2001;75:459–64.PubMedCrossRef Toruner GA, Akyerli C, Ucar A, Aki T, Atsu N, Ozen H, Tez M, Cetinkaya M, Ozcelik T. Polymorphisms of glutathione S-transferase genes (GSTM1, GSTP1 and GSTT1) and bladder cancer susceptibility in the Turkish population. Arch Toxicol. 2001;75:459–64.PubMedCrossRef
43.
Zurück zum Zitat Lee SJ, Cho SH, Park SK, Kim SW, Park MS, Choi HY, Choi JY, Lee SY, Im HJ, Kim JY, Yoon KJ, Choi H, Shin SG, Park TW, Rothman N, Hirvonen A, Kang D. Combined effect of glutathione S-transferase M1 and T1 genotypes on bladder cancer risk. Cancer Lett. 2002;177:173–9.PubMedCrossRef Lee SJ, Cho SH, Park SK, Kim SW, Park MS, Choi HY, Choi JY, Lee SY, Im HJ, Kim JY, Yoon KJ, Choi H, Shin SG, Park TW, Rothman N, Hirvonen A, Kang D. Combined effect of glutathione S-transferase M1 and T1 genotypes on bladder cancer risk. Cancer Lett. 2002;177:173–9.PubMedCrossRef
44.
Zurück zum Zitat Kim WJ, Kim H, Kim CH, Lee MS, Oh BR, Lee HM, Katoh T. GSTT1-null genotype is a protective factor against bladder cancer. Urology. 2002;60:913–8.PubMedCrossRef Kim WJ, Kim H, Kim CH, Lee MS, Oh BR, Lee HM, Katoh T. GSTT1-null genotype is a protective factor against bladder cancer. Urology. 2002;60:913–8.PubMedCrossRef
45.
Zurück zum Zitat Giannakopoulos X, Charalabopoulos K, Baltogiannis D, Chatzikiriakidou A, Alamanos Y, Georgiou I, Evangelou A, Agnantis N, Sofikitis N. The role of N-acetyltransferase-2 and glutathione S-transferase on the risk and aggressiveness of bladder cancer. Anticancer Res. 2002;22:3801–4.PubMed Giannakopoulos X, Charalabopoulos K, Baltogiannis D, Chatzikiriakidou A, Alamanos Y, Georgiou I, Evangelou A, Agnantis N, Sofikitis N. The role of N-acetyltransferase-2 and glutathione S-transferase on the risk and aggressiveness of bladder cancer. Anticancer Res. 2002;22:3801–4.PubMed
46.
Zurück zum Zitat Schroeder JC, Conway K, Li Y, Mistry K, Bell DA, Taylor JA. p53 mutations in bladder cancer: evidence for exogenous versus endogenous risk factors. Cancer Res. 2003;63:7530–8.PubMed Schroeder JC, Conway K, Li Y, Mistry K, Bell DA, Taylor JA. p53 mutations in bladder cancer: evidence for exogenous versus endogenous risk factors. Cancer Res. 2003;63:7530–8.PubMed
47.
Zurück zum Zitat Hung RJ, Boffetta P, Brennan P, Malaveille C, Hautefeuille A, Donato F, Gelatti U, Spaliviero M, Placidi D, Carta A, Scotto di Carlo A, Porru S. GST, NAT, SULT1A1, CYP1B1 genetic polymorphisms, interactions with environmental exposures and bladder cancer risk in a high-risk population. Int J Cancer. 2004;110:598–604.PubMedCrossRef Hung RJ, Boffetta P, Brennan P, Malaveille C, Hautefeuille A, Donato F, Gelatti U, Spaliviero M, Placidi D, Carta A, Scotto di Carlo A, Porru S. GST, NAT, SULT1A1, CYP1B1 genetic polymorphisms, interactions with environmental exposures and bladder cancer risk in a high-risk population. Int J Cancer. 2004;110:598–604.PubMedCrossRef
48.
Zurück zum Zitat Srivastava DS, Kumar A, Mittal B, Mittal RD. Polymorphism of GSTM1 and GSTT1 genes in bladder cancer: a study from North India. Arch Toxicol. 2004;78:430–4.PubMedCrossRef Srivastava DS, Kumar A, Mittal B, Mittal RD. Polymorphism of GSTM1 and GSTT1 genes in bladder cancer: a study from North India. Arch Toxicol. 2004;78:430–4.PubMedCrossRef
49.
Zurück zum Zitat Kim EJ, Jeong P, Quan C, Kim J, Bae SC, Yoon SJ, Kang JW, Lee SC, Jun Wee J, Kim WJ. Genotypes of TNF-alpha, VEGF, hOGG1, GSTM1, and GSTT1: useful determinants for clinical outcome of bladder cancer. Urology. 2005;65:70–5.PubMedCrossRef Kim EJ, Jeong P, Quan C, Kim J, Bae SC, Yoon SJ, Kang JW, Lee SC, Jun Wee J, Kim WJ. Genotypes of TNF-alpha, VEGF, hOGG1, GSTM1, and GSTT1: useful determinants for clinical outcome of bladder cancer. Urology. 2005;65:70–5.PubMedCrossRef
50.
Zurück zum Zitat Karagas MR, Park S, Warren A, Hamilton J, Nelson HH, Mott LA, Kelsey KT. Gender, smoking, glutathione-S-transferase variants and bladder cancer incidence: a population-based study. Cancer Lett. 2005;219:63–9.PubMedCrossRef Karagas MR, Park S, Warren A, Hamilton J, Nelson HH, Mott LA, Kelsey KT. Gender, smoking, glutathione-S-transferase variants and bladder cancer incidence: a population-based study. Cancer Lett. 2005;219:63–9.PubMedCrossRef
51.
Zurück zum Zitat Ouerhani S, Tebourski F, Slama MR, Marrakchi R, Rabeh M, Hassine LB, Ayed M, Elgaaied AB. The role of glutathione transferases M1 and T1 in individual susceptibility to bladder cancer in a Tunisian population. Ann Hum Biol. 2006;33:529–35.PubMedCrossRef Ouerhani S, Tebourski F, Slama MR, Marrakchi R, Rabeh M, Hassine LB, Ayed M, Elgaaied AB. The role of glutathione transferases M1 and T1 in individual susceptibility to bladder cancer in a Tunisian population. Ann Hum Biol. 2006;33:529–35.PubMedCrossRef
52.
Zurück zum Zitat Srivastava DS, Mishra DK, Mandhani A, Mittal B, Kumar A, Mittal RD. Association of genetic polymorphism of glutathione S-transferase M1, T1, P1 and susceptibility to bladder cancer. Eur Urol. 2005;48:339–44.PubMedCrossRef Srivastava DS, Mishra DK, Mandhani A, Mittal B, Kumar A, Mittal RD. Association of genetic polymorphism of glutathione S-transferase M1, T1, P1 and susceptibility to bladder cancer. Eur Urol. 2005;48:339–44.PubMedCrossRef
53.
Zurück zum Zitat Yuan JM, Chan KK, Coetzee GA, Castelao JE, Watson MA, Bell DA, Wang R, Yu MC. Genetic determinants in the metabolism of bladder carcinogens in relation to risk of bladder cancer. Carcinogenesis. 2008;29:1386–93.PubMedPubMedCentralCrossRef Yuan JM, Chan KK, Coetzee GA, Castelao JE, Watson MA, Bell DA, Wang R, Yu MC. Genetic determinants in the metabolism of bladder carcinogens in relation to risk of bladder cancer. Carcinogenesis. 2008;29:1386–93.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Shao J, Gu M, Zhang Z, Xu Z, Hu Q, Qian L. Genetic variants of the cytochrome P450 and glutathione S-transferase associated with risk of bladder cancer in a south-eastern Chinese population. Int J Urol. 2008;15:216–21.PubMedCrossRef Shao J, Gu M, Zhang Z, Xu Z, Hu Q, Qian L. Genetic variants of the cytochrome P450 and glutathione S-transferase associated with risk of bladder cancer in a south-eastern Chinese population. Int J Urol. 2008;15:216–21.PubMedCrossRef
55.
Zurück zum Zitat Salinas-Sanchez AS, Sanchez-Sanchez F, Donate-Moreno MJ, Rubio-del-Campo A, Gimenez-Bachs JM, Lorenzo-Romero JG, Serrano-Oviedo L, Escribano J. Polymorphic deletions of the GSTT1 and GSTM1 genes and susceptibility to bladder cancer. BJU Int. 2011;107:1825–32.PubMedCrossRef Salinas-Sanchez AS, Sanchez-Sanchez F, Donate-Moreno MJ, Rubio-del-Campo A, Gimenez-Bachs JM, Lorenzo-Romero JG, Serrano-Oviedo L, Escribano J. Polymorphic deletions of the GSTT1 and GSTM1 genes and susceptibility to bladder cancer. BJU Int. 2011;107:1825–32.PubMedCrossRef
56.
Zurück zum Zitat Moore LE, Baris DR, Figueroa JD, Garcia-Closas M, Karagas MR, Schwenn MR, Johnson AT, Lubin JH, Hein DW, Dagnall CL, Colt JS, Kida M, Jones MA, Schned AR, Cherala SS, Chanock SJ, Cantor KP, Silverman DT, Rothman N. GSTM1 null and NAT2 slow acetylation genotypes, smoking intensity and bladder cancer risk: results from the New England bladder cancer study and NAT2 meta-analysis. Carcinogenesis. 2011;32:182–9.PubMedCrossRef Moore LE, Baris DR, Figueroa JD, Garcia-Closas M, Karagas MR, Schwenn MR, Johnson AT, Lubin JH, Hein DW, Dagnall CL, Colt JS, Kida M, Jones MA, Schned AR, Cherala SS, Chanock SJ, Cantor KP, Silverman DT, Rothman N. GSTM1 null and NAT2 slow acetylation genotypes, smoking intensity and bladder cancer risk: results from the New England bladder cancer study and NAT2 meta-analysis. Carcinogenesis. 2011;32:182–9.PubMedCrossRef
57.
Zurück zum Zitat Goerlitz D, El Daly M, Abdel-Hamid M, Saleh DA, Goldman L, El Kafrawy S, Hifnawy T, Ezzat S, Abdel-Aziz MA, Zaghloul MS, Ali SR, Khaled H, Amr S, Zheng YL, Mikhail N, Loffredo C. GSTM1, GSTT1 null variants, and GPX1 single nucleotide polymorphism are not associated with bladder cancer risk in Egypt. Cancer Epidemiol Biomark Prev. 2011;20:1552–4.CrossRef Goerlitz D, El Daly M, Abdel-Hamid M, Saleh DA, Goldman L, El Kafrawy S, Hifnawy T, Ezzat S, Abdel-Aziz MA, Zaghloul MS, Ali SR, Khaled H, Amr S, Zheng YL, Mikhail N, Loffredo C. GSTM1, GSTT1 null variants, and GPX1 single nucleotide polymorphism are not associated with bladder cancer risk in Egypt. Cancer Epidemiol Biomark Prev. 2011;20:1552–4.CrossRef
58.
Zurück zum Zitat Safarinejad MR, Safarinejad S, Shafiei N. Association of genetic polymorphism of glutathione S-transferase (GSTM1, GSTT1, GSTP1) with bladder cancer susceptibility. Urol Oncol. 2013;31:1193–203.PubMedCrossRef Safarinejad MR, Safarinejad S, Shafiei N. Association of genetic polymorphism of glutathione S-transferase (GSTM1, GSTT1, GSTP1) with bladder cancer susceptibility. Urol Oncol. 2013;31:1193–203.PubMedCrossRef
59.
Zurück zum Zitat Ali SH, Bangash KS, Rauf A, Younis M, Anwar K, Khurram R, Khawaja MA, Azam M, Qureshi AA, Akhter S, Kiemeney LA, Qamar R. Identification of novel potential genetic predictors of urothelial bladder carcinoma susceptibility in Pakistani population. Fam Cancer. 2017;16:577–94.PubMedCrossRef Ali SH, Bangash KS, Rauf A, Younis M, Anwar K, Khurram R, Khawaja MA, Azam M, Qureshi AA, Akhter S, Kiemeney LA, Qamar R. Identification of novel potential genetic predictors of urothelial bladder carcinoma susceptibility in Pakistani population. Fam Cancer. 2017;16:577–94.PubMedCrossRef
60.
Zurück zum Zitat Elhawary NA, Nassir A, Saada H, Dannoun A, Qoqandi O, Alsharif A, Tayeb MT. Combined genetic biomarkers confer susceptibility to risk of urothelial bladder carcinoma in a Saudi population. Dis Markers. 2017;2017:1474560.PubMedPubMedCentralCrossRef Elhawary NA, Nassir A, Saada H, Dannoun A, Qoqandi O, Alsharif A, Tayeb MT. Combined genetic biomarkers confer susceptibility to risk of urothelial bladder carcinoma in a Saudi population. Dis Markers. 2017;2017:1474560.PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Garcia-Closas M, Malats N, Silverman D, Dosemeci M, Kogevinas M, Hein DW, Tardon A, Serra C, Carrato A, Garcia-Closas R, Lloreta J, Castano-Vinyals G, Yeager M, Welch R, Chanock S, Chatterjee N, Wacholder S, Samanic C, Tora M, Fernandez F, Real FX, Rothman N. NAT2 slow acetylation, GSTM1 null genotype, and risk of bladder cancer: results from the Spanish bladder Cancer study and meta-analyses. Lancet. 2005;366:649–59.PubMedPubMedCentralCrossRef Garcia-Closas M, Malats N, Silverman D, Dosemeci M, Kogevinas M, Hein DW, Tardon A, Serra C, Carrato A, Garcia-Closas R, Lloreta J, Castano-Vinyals G, Yeager M, Welch R, Chanock S, Chatterjee N, Wacholder S, Samanic C, Tora M, Fernandez F, Real FX, Rothman N. NAT2 slow acetylation, GSTM1 null genotype, and risk of bladder cancer: results from the Spanish bladder Cancer study and meta-analyses. Lancet. 2005;366:649–59.PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Anwar WA, Abdel-Rahman SZ, El-Zein RA, Mostafa HM, Au WW. Genetic polymorphism of GSTM1, CYP2E1 and CYP2D6 in Egyptian bladder cancer patients. Carcinogenesis. 1996;17:1923–9.PubMedCrossRef Anwar WA, Abdel-Rahman SZ, El-Zein RA, Mostafa HM, Au WW. Genetic polymorphism of GSTM1, CYP2E1 and CYP2D6 in Egyptian bladder cancer patients. Carcinogenesis. 1996;17:1923–9.PubMedCrossRef
63.
Zurück zum Zitat Ma QW, Lin GF, Chen JG, Shen JH. Polymorphism of glutathione S-transferase T1, M1 and P1 genes in a Shanghai population: patients with occupational or non-occupational bladder cancer. Biomed Environ Sci. 2002;15:253–60.PubMed Ma QW, Lin GF, Chen JG, Shen JH. Polymorphism of glutathione S-transferase T1, M1 and P1 genes in a Shanghai population: patients with occupational or non-occupational bladder cancer. Biomed Environ Sci. 2002;15:253–60.PubMed
64.
Zurück zum Zitat Jong Jeong H, Jin Kim H, Young Seo I, Ju Kim H, Oh GJ, Cheon Chae S, Sik Lim J, Taeg Chung H, Joong KJ. Association between glutathione S-transferase M1 and T1 polymorphisms and increased risk for bladder cancer in Korean smokers. Cancer Lett. 2003;202:193–9.PubMedCrossRef Jong Jeong H, Jin Kim H, Young Seo I, Ju Kim H, Oh GJ, Cheon Chae S, Sik Lim J, Taeg Chung H, Joong KJ. Association between glutathione S-transferase M1 and T1 polymorphisms and increased risk for bladder cancer in Korean smokers. Cancer Lett. 2003;202:193–9.PubMedCrossRef
65.
Zurück zum Zitat Moore LE, Wiencke JK, Bates MN, Zheng S, Rey OA, Smith AH. Investigation of genetic polymorphisms and smoking in a bladder cancer case-control study in Argentina. Cancer Lett. 2004;211:199–207.PubMedCrossRef Moore LE, Wiencke JK, Bates MN, Zheng S, Rey OA, Smith AH. Investigation of genetic polymorphisms and smoking in a bladder cancer case-control study in Argentina. Cancer Lett. 2004;211:199–207.PubMedCrossRef
66.
Zurück zum Zitat Saad AA, O'Connor PJ, Mostafa MH, Metwalli NE, Cooper DP, Povey AC, Margison GP. Glutathione S-transferase M1, T1 and P1 polymorphisms and bladder cancer risk in Egyptians. Int J Biol Markers. 2005;20:69–72.PubMedCrossRef Saad AA, O'Connor PJ, Mostafa MH, Metwalli NE, Cooper DP, Povey AC, Margison GP. Glutathione S-transferase M1, T1 and P1 polymorphisms and bladder cancer risk in Egyptians. Int J Biol Markers. 2005;20:69–72.PubMedCrossRef
67.
Zurück zum Zitat McGrath M, Michaud D, De Vivo I. Polymorphisms in GSTT1, GSTM1, NAT1 and NAT2 genes and bladder cancer risk in men and women. BMC Cancer. 2006;6:239.PubMedPubMedCentralCrossRef McGrath M, Michaud D, De Vivo I. Polymorphisms in GSTT1, GSTM1, NAT1 and NAT2 genes and bladder cancer risk in men and women. BMC Cancer. 2006;6:239.PubMedPubMedCentralCrossRef
68.
Zurück zum Zitat Sobti RC, Al-Badran AI, Sharma S, Sharma SK, Krishan A, Mohan H. Genetic polymorphisms of CYP2D6, GSTM1, and GSTT1 genes and bladder cancer risk in North India. Cancer Genet Cytogenet. 2005;156:68–73.PubMedCrossRef Sobti RC, Al-Badran AI, Sharma S, Sharma SK, Krishan A, Mohan H. Genetic polymorphisms of CYP2D6, GSTM1, and GSTT1 genes and bladder cancer risk in North India. Cancer Genet Cytogenet. 2005;156:68–73.PubMedCrossRef
69.
Zurück zum Zitat Cengiz M, Ozaydin A, Ozkilic AC, Dedekarginoglu G. The investigation of GSTT1, GSTM1 and SOD polymorphism in bladder cancer patients. Int Urol Nephrol. 2007;39:1043–8.PubMedCrossRef Cengiz M, Ozaydin A, Ozkilic AC, Dedekarginoglu G. The investigation of GSTT1, GSTM1 and SOD polymorphism in bladder cancer patients. Int Urol Nephrol. 2007;39:1043–8.PubMedCrossRef
70.
Zurück zum Zitat Murta-Nascimento C, Silverman DT, Kogevinas M, Garcia-Closas M, Rothman N, Tardon A, Garcia-Closas R, Serra C, Carrato A, Villanueva C, Dosemeci M, Real FX, Malats N. Risk of bladder cancer associated with family history of cancer: do low-penetrance polymorphisms account for the increase in risk? Cancer Epidemiol Biomark Prev. 2007;16:1595–600.CrossRef Murta-Nascimento C, Silverman DT, Kogevinas M, Garcia-Closas M, Rothman N, Tardon A, Garcia-Closas R, Serra C, Carrato A, Villanueva C, Dosemeci M, Real FX, Malats N. Risk of bladder cancer associated with family history of cancer: do low-penetrance polymorphisms account for the increase in risk? Cancer Epidemiol Biomark Prev. 2007;16:1595–600.CrossRef
71.
Zurück zum Zitat Moore LE, Malats N, Rothman N, Real FX, Kogevinas M, Karami S, Garcia-Closas R, Silverman D, Chanock S, Welch R, Tardon A, Serra C, Carrato A, Dosemeci M, Garcia-Closas M. Polymorphisms in one-carbon metabolism and trans-sulfuration pathway genes and susceptibility to bladder cancer. Int J Cancer. 2007;120:2452–8.PubMedCrossRef Moore LE, Malats N, Rothman N, Real FX, Kogevinas M, Karami S, Garcia-Closas R, Silverman D, Chanock S, Welch R, Tardon A, Serra C, Carrato A, Dosemeci M, Garcia-Closas M. Polymorphisms in one-carbon metabolism and trans-sulfuration pathway genes and susceptibility to bladder cancer. Int J Cancer. 2007;120:2452–8.PubMedCrossRef
72.
Zurück zum Zitat Kellen E, Zeegers M, Paulussen A, Vlietinck R, Vlem EV, Veulemans H, Buntinx F. Does occupational exposure to PAHs, diesel and aromatic amines interact with smoking and metabolic genetic polymorphisms to increase the risk on bladder cancer?; the Belgian case control study on bladder cancer risk. Cancer Lett. 2007;245:51–60.PubMedCrossRef Kellen E, Zeegers M, Paulussen A, Vlietinck R, Vlem EV, Veulemans H, Buntinx F. Does occupational exposure to PAHs, diesel and aromatic amines interact with smoking and metabolic genetic polymorphisms to increase the risk on bladder cancer?; the Belgian case control study on bladder cancer risk. Cancer Lett. 2007;245:51–60.PubMedCrossRef
73.
Zurück zum Zitat Zhao H, Lin J, Grossman HB, Hernandez LM, Dinney CP, Wu X. Dietary isothiocyanates, GSTM1, GSTT1, NAT2 polymorphisms and bladder cancer risk. Int J Cancer. 2007;120:2208–13.PubMedCrossRef Zhao H, Lin J, Grossman HB, Hernandez LM, Dinney CP, Wu X. Dietary isothiocyanates, GSTM1, GSTT1, NAT2 polymorphisms and bladder cancer risk. Int J Cancer. 2007;120:2208–13.PubMedCrossRef
74.
Zurück zum Zitat Covolo L, Placidi D, Gelatti U, Carta A, Scotto Di Carlo A, Lodetti P, Picciche A, Orizio G, Campagna M, Arici C, Porru S. Bladder cancer, GSTs, NAT1, NAT2, SULT1A1, XRCC1, XRCC3, XPD genetic polymorphisms and coffee consumption: a case-control study. Eur J Epidemiol. 2008;23:355–62.PubMedCrossRef Covolo L, Placidi D, Gelatti U, Carta A, Scotto Di Carlo A, Lodetti P, Picciche A, Orizio G, Campagna M, Arici C, Porru S. Bladder cancer, GSTs, NAT1, NAT2, SULT1A1, XRCC1, XRCC3, XPD genetic polymorphisms and coffee consumption: a case-control study. Eur J Epidemiol. 2008;23:355–62.PubMedCrossRef
75.
Zurück zum Zitat Golka K, Schmidt T, Seidel T, Dietrich H, Roemer HC, Lohlein D, Reckwitz T, Sokeland J, Weistenhofer W, Blaszkewicz M, Selinski S. The influence of polymorphisms of glutathione S-transferases M1 and M3 on the development of human urothelial cancer. J Toxicol Environ Health A. 2008;71:881–6.PubMedCrossRef Golka K, Schmidt T, Seidel T, Dietrich H, Roemer HC, Lohlein D, Reckwitz T, Sokeland J, Weistenhofer W, Blaszkewicz M, Selinski S. The influence of polymorphisms of glutathione S-transferases M1 and M3 on the development of human urothelial cancer. J Toxicol Environ Health A. 2008;71:881–6.PubMedCrossRef
76.
Zurück zum Zitat Altayli E, Gunes S, Yilmaz AF, Goktas S, Bek Y. CYP1A2, CYP2D6, GSTM1, GSTP1, and GSTT1 gene polymorphisms in patients with bladder cancer in a Turkish population. Int Urol Nephrol. 2009;41:259–66.PubMedCrossRef Altayli E, Gunes S, Yilmaz AF, Goktas S, Bek Y. CYP1A2, CYP2D6, GSTM1, GSTP1, and GSTT1 gene polymorphisms in patients with bladder cancer in a Turkish population. Int Urol Nephrol. 2009;41:259–66.PubMedCrossRef
77.
Zurück zum Zitat Grando JP, Kuasne H, Losi-Guembarovski R, Sant'ana Rodrigues I, Matsuda HM, Fuganti PE, Gregorio EP, Junior FL, de Menezes RP, de Freitas Rodrigues MA, de Syllos Colus IM. Association between polymorphisms in the biometabolism genes CYP1A1, GSTM1, GSTT1 and GSTP1 in bladder cancer. Clin Exp Med. 2009;9:21–8.PubMedCrossRef Grando JP, Kuasne H, Losi-Guembarovski R, Sant'ana Rodrigues I, Matsuda HM, Fuganti PE, Gregorio EP, Junior FL, de Menezes RP, de Freitas Rodrigues MA, de Syllos Colus IM. Association between polymorphisms in the biometabolism genes CYP1A1, GSTM1, GSTT1 and GSTP1 in bladder cancer. Clin Exp Med. 2009;9:21–8.PubMedCrossRef
78.
Zurück zum Zitat Lin J, Kamat A, Gu J, Chen M, Dinney CP, Forman MR, Wu X. Dietary intake of vegetables and fruits and the modification effects of GSTM1 and NAT2 genotypes on bladder cancer risk. Cancer Epidemiol Biomark Prev. 2009;18:2090–7.CrossRef Lin J, Kamat A, Gu J, Chen M, Dinney CP, Forman MR, Wu X. Dietary intake of vegetables and fruits and the modification effects of GSTM1 and NAT2 genotypes on bladder cancer risk. Cancer Epidemiol Biomark Prev. 2009;18:2090–7.CrossRef
79.
Zurück zum Zitat Song DK, Xing DL, Zhang LR, Li ZX, Liu J, Qiao BP. Association of NAT2, GSTM1, GSTT1, CYP2A6, and CYP2A13 gene polymorphisms with susceptibility and clinicopathologic characteristics of bladder cancer in Central China. Cancer Detect Prev. 2009;32:416–23.PubMedCrossRef Song DK, Xing DL, Zhang LR, Li ZX, Liu J, Qiao BP. Association of NAT2, GSTM1, GSTT1, CYP2A6, and CYP2A13 gene polymorphisms with susceptibility and clinicopathologic characteristics of bladder cancer in Central China. Cancer Detect Prev. 2009;32:416–23.PubMedCrossRef
80.
Zurück zum Zitat Zupa A, Sgambato A, Bianchino G, Improta G, Grieco V, LAT G, Campisi B, Traficante A, Aieta M, Cittadini A. GSTM1 and NAT2 polymorphisms and colon, lung and bladder cancer risk: a case-control study. Anticancer Res. 2009;29:1709–14.PubMed Zupa A, Sgambato A, Bianchino G, Improta G, Grieco V, LAT G, Campisi B, Traficante A, Aieta M, Cittadini A. GSTM1 and NAT2 polymorphisms and colon, lung and bladder cancer risk: a case-control study. Anticancer Res. 2009;29:1709–14.PubMed
81.
Zurück zum Zitat Abd El Hameed AH, Negm OE, El-Gamal OM, Hamouda HE, El Nouby KA, Ismail GM. Genetic polymorphism of glutathione S-transferases M1 and T1 in Egyptian patients with bilharzial bladder cancer. Urol Oncol. 2010;28:296–301.PubMedCrossRef Abd El Hameed AH, Negm OE, El-Gamal OM, Hamouda HE, El Nouby KA, Ismail GM. Genetic polymorphism of glutathione S-transferases M1 and T1 in Egyptian patients with bilharzial bladder cancer. Urol Oncol. 2010;28:296–301.PubMedCrossRef
82.
Zurück zum Zitat Ozturk T, Kahraman OT, Toptas B, Kisakesen HI, Cakalir C, Verim L, Ozturk O, Isbir T. The effect of CYP1A1 and GSTM1 gene polymorphisms in bladder cancer development in a Turkish population. In Vivo. 2011;25:663–8.PubMed Ozturk T, Kahraman OT, Toptas B, Kisakesen HI, Cakalir C, Verim L, Ozturk O, Isbir T. The effect of CYP1A1 and GSTM1 gene polymorphisms in bladder cancer development in a Turkish population. In Vivo. 2011;25:663–8.PubMed
83.
Zurück zum Zitat Rouissi K, Ouerhani S, Hamrita B, Bougatef K, Marrakchi R, Cherif M, Ben Slama MR, Bouzouita M, Chebil M, Ben Ammar Elgaaied A. Smoking and polymorphisms in xenobiotic metabolism and DNA repair genes are additive risk factors affecting bladder cancer in Northern Tunisia. Pathol Oncol Res. 2011;17:879–86.PubMedCrossRef Rouissi K, Ouerhani S, Hamrita B, Bougatef K, Marrakchi R, Cherif M, Ben Slama MR, Bouzouita M, Chebil M, Ben Ammar Elgaaied A. Smoking and polymorphisms in xenobiotic metabolism and DNA repair genes are additive risk factors affecting bladder cancer in Northern Tunisia. Pathol Oncol Res. 2011;17:879–86.PubMedCrossRef
84.
Zurück zum Zitat Henriquez-Hernandez LA, Navarro P, Luzardo OP, Alvarez-Leon EE, Boada LD, Zumbado M, Pestano J, Suarez JR, Chesa N, Almeida M, Valeron PF. Polymorphisms of glutathione S-transferase mu and theta, MDR1 and VEGF genes as risk factors of bladder cancer: a case-control study. Urol Oncol. 2012;30:660–5.PubMedCrossRef Henriquez-Hernandez LA, Navarro P, Luzardo OP, Alvarez-Leon EE, Boada LD, Zumbado M, Pestano J, Suarez JR, Chesa N, Almeida M, Valeron PF. Polymorphisms of glutathione S-transferase mu and theta, MDR1 and VEGF genes as risk factors of bladder cancer: a case-control study. Urol Oncol. 2012;30:660–5.PubMedCrossRef
85.
Zurück zum Zitat Ovsiannikov D, Selinski S, Lehmann ML, Blaszkewicz M, Moormann O, Haenel MW, Hengstler JG, Golka K. Polymorphic enzymes, urinary bladder cancer risk, and structural change in the local industry. J Toxicol Environ Health A. 2012;75:557–65.PubMedCrossRef Ovsiannikov D, Selinski S, Lehmann ML, Blaszkewicz M, Moormann O, Haenel MW, Hengstler JG, Golka K. Polymorphic enzymes, urinary bladder cancer risk, and structural change in the local industry. J Toxicol Environ Health A. 2012;75:557–65.PubMedCrossRef
86.
Zurück zum Zitat Lesseur C, Gilbert-Diamond D, Andrew AS, Ekstrom RM, Li Z, Kelsey KT, Marsit CJ, Karagas MR. A case-control study of polymorphisms in xenobiotic and arsenic metabolism genes and arsenic-related bladder cancer in New Hampshire. Toxicol Lett. 2012;210:100–6.PubMedPubMedCentralCrossRef Lesseur C, Gilbert-Diamond D, Andrew AS, Ekstrom RM, Li Z, Kelsey KT, Marsit CJ, Karagas MR. A case-control study of polymorphisms in xenobiotic and arsenic metabolism genes and arsenic-related bladder cancer in New Hampshire. Toxicol Lett. 2012;210:100–6.PubMedPubMedCentralCrossRef
87.
Zurück zum Zitat Schwender H, Selinski S, Blaszkewicz M, Marchan R, Ickstadt K, Golka K, Hengstler JG. Distinct SNP combinations confer susceptibility to urinary bladder cancer in smokers and non-smokers. PLoS One. 2012;7:e51880.PubMedPubMedCentralCrossRef Schwender H, Selinski S, Blaszkewicz M, Marchan R, Ickstadt K, Golka K, Hengstler JG. Distinct SNP combinations confer susceptibility to urinary bladder cancer in smokers and non-smokers. PLoS One. 2012;7:e51880.PubMedPubMedCentralCrossRef
88.
Zurück zum Zitat Zhang X, Lin J, Wu X, Lin Z, Ning B, Kadlubar S, Kadlubar FF. Association between GSTM1 copy number, promoter variants and susceptibility to urinary bladder cancer. Int J Mol Epidemiol Genet. 2012;3:228–36.PubMedPubMedCentral Zhang X, Lin J, Wu X, Lin Z, Ning B, Kadlubar S, Kadlubar FF. Association between GSTM1 copy number, promoter variants and susceptibility to urinary bladder cancer. Int J Mol Epidemiol Genet. 2012;3:228–36.PubMedPubMedCentral
89.
Zurück zum Zitat Berber U, Yilmaz I, Yilmaz O, Haholu A, Kucukodaci Z, Ates F, Demirel D. CYP1A1 (Ile462Val), CYP1B1 (Ala119Ser and Val432Leu), GSTM1 (null), and GSTT1 (null) polymorphisms and bladder cancer risk in a Turkish population. Asian Pac J Cancer Prev. 2013;14:3925–9.PubMedCrossRef Berber U, Yilmaz I, Yilmaz O, Haholu A, Kucukodaci Z, Ates F, Demirel D. CYP1A1 (Ile462Val), CYP1B1 (Ala119Ser and Val432Leu), GSTM1 (null), and GSTT1 (null) polymorphisms and bladder cancer risk in a Turkish population. Asian Pac J Cancer Prev. 2013;14:3925–9.PubMedCrossRef
90.
Zurück zum Zitat Marenne G, Real FX, Rothman N, Rodriguez-Santiago B, Perez-Jurado L, Kogevinas M, Garcia-Closas M, Silverman DT, Chanock SJ, Genin E, Malats N. Genome-wide CNV analysis replicates the association between GSTM1 deletion and bladder cancer: a support for using continuous measurement from SNP-array data. BMC Genomics. 2012;13:326.PubMedPubMedCentralCrossRef Marenne G, Real FX, Rothman N, Rodriguez-Santiago B, Perez-Jurado L, Kogevinas M, Garcia-Closas M, Silverman DT, Chanock SJ, Genin E, Malats N. Genome-wide CNV analysis replicates the association between GSTM1 deletion and bladder cancer: a support for using continuous measurement from SNP-array data. BMC Genomics. 2012;13:326.PubMedPubMedCentralCrossRef
91.
Zurück zum Zitat Kang HW, Song PH, Ha YS, Kim WT, Kim YJ, Yun SJ, Lee SC, Choi YH, Moon SK, Kim WJ. Glutathione S-transferase M1 and T1 polymorphisms: susceptibility and outcomes in muscle invasive bladder cancer patients. Eur J Cancer. 2013;49:3010–9.PubMedCrossRef Kang HW, Song PH, Ha YS, Kim WT, Kim YJ, Yun SJ, Lee SC, Choi YH, Moon SK, Kim WJ. Glutathione S-transferase M1 and T1 polymorphisms: susceptibility and outcomes in muscle invasive bladder cancer patients. Eur J Cancer. 2013;49:3010–9.PubMedCrossRef
92.
Zurück zum Zitat Matic M, Pekmezovic T, Djukic T, Mimic-Oka J, Dragicevic D, Krivic B, Suvakov S, Savic-Radojevic A, Pljesa-Ercegovac M, Tulic C, Coric V, Simic T. GSTA1, GSTM1, GSTP1, and GSTT1 polymorphisms and susceptibility to smoking-related bladder cancer: a case-control study. Urol Oncol. 2013;31:1184–92.PubMedCrossRef Matic M, Pekmezovic T, Djukic T, Mimic-Oka J, Dragicevic D, Krivic B, Suvakov S, Savic-Radojevic A, Pljesa-Ercegovac M, Tulic C, Coric V, Simic T. GSTA1, GSTM1, GSTP1, and GSTT1 polymorphisms and susceptibility to smoking-related bladder cancer: a case-control study. Urol Oncol. 2013;31:1184–92.PubMedCrossRef
93.
Zurück zum Zitat Savic-Radojevic A, Djukic T, Simic T, Pljesa-Ercegovac M, Dragicevic D, Pekmezovic T, Cekerevac M, Santric V, Matic M. GSTM1-null and GSTA1-low activity genotypes are associated with enhanced oxidative damage in bladder cancer. Redox Rep. 2013;18:1–7.PubMedCrossRefPubMedCentral Savic-Radojevic A, Djukic T, Simic T, Pljesa-Ercegovac M, Dragicevic D, Pekmezovic T, Cekerevac M, Santric V, Matic M. GSTM1-null and GSTA1-low activity genotypes are associated with enhanced oxidative damage in bladder cancer. Redox Rep. 2013;18:1–7.PubMedCrossRefPubMedCentral
94.
Zurück zum Zitat Wang Z, Xue L, Chong T, Li H, Chen H. Quantitative assessment of the association between glutathione S-transferase P1 Ile105Val polymorphism and bladder cancer risk. Tumour Biol. 2013;34:1651–7.PubMedCrossRef Wang Z, Xue L, Chong T, Li H, Chen H. Quantitative assessment of the association between glutathione S-transferase P1 Ile105Val polymorphism and bladder cancer risk. Tumour Biol. 2013;34:1651–7.PubMedCrossRef
95.
Zurück zum Zitat Reszka E, Jablonowski Z, Wieczorek E, Jablonska E, Krol MB, Gromadzinska J, Grzegorczyk A, Sosnowski M, Wasowicz W. Polymorphisms of NRF2 and NRF2 target genes in urinary bladder cancer patients. J Cancer Res Clin Oncol. 2014;140:1723–31.PubMedPubMedCentralCrossRef Reszka E, Jablonowski Z, Wieczorek E, Jablonska E, Krol MB, Gromadzinska J, Grzegorczyk A, Sosnowski M, Wasowicz W. Polymorphisms of NRF2 and NRF2 target genes in urinary bladder cancer patients. J Cancer Res Clin Oncol. 2014;140:1723–31.PubMedPubMedCentralCrossRef
96.
Zurück zum Zitat Ceylan GG, Ceylan C, Tasdemir S, Gozalan A. The effect of glutathione-S-transferases in the susceptibility to bladder cancer. Ir J Med Sci. 2015;184:851–4.PubMedCrossRef Ceylan GG, Ceylan C, Tasdemir S, Gozalan A. The effect of glutathione-S-transferases in the susceptibility to bladder cancer. Ir J Med Sci. 2015;184:851–4.PubMedCrossRef
97.
Zurück zum Zitat Chen YC, Xu L, Guo YL, Su HJ, Smith TJ, Ryan LM, Lee MS, Christiani DC. Polymorphisms in GSTT1 and p53 and urinary transitional cell carcinoma in South-Western Taiwan: a preliminary study. Biomarkers. 2004;9:386–94.PubMedCrossRef Chen YC, Xu L, Guo YL, Su HJ, Smith TJ, Ryan LM, Lee MS, Christiani DC. Polymorphisms in GSTT1 and p53 and urinary transitional cell carcinoma in South-Western Taiwan: a preliminary study. Biomarkers. 2004;9:386–94.PubMedCrossRef
98.
Zurück zum Zitat Kempkes M, Golka K, Reich S, Reckwitz T, Bolt HM. Glutathione S-transferase GSTM1 and GSTT1 null genotypes as potential risk factors for urothelial cancer of the bladder. Arch Toxicol. 1996;71:123–6.PubMedCrossRef Kempkes M, Golka K, Reich S, Reckwitz T, Bolt HM. Glutathione S-transferase GSTM1 and GSTT1 null genotypes as potential risk factors for urothelial cancer of the bladder. Arch Toxicol. 1996;71:123–6.PubMedCrossRef
99.
Zurück zum Zitat Kim H, Kim W, Lee H. A case-control study on the effects of the genetic polymorphisms of N-acetyltransferase 2 and glutathione Stransferase mu and theta on the risk of bladder cancer. Korean J Prevent Med. 1998;31:275–84. Kim H, Kim W, Lee H. A case-control study on the effects of the genetic polymorphisms of N-acetyltransferase 2 and glutathione Stransferase mu and theta on the risk of bladder cancer. Korean J Prevent Med. 1998;31:275–84.
100.
Zurück zum Zitat Lee S, Kang D, Cho S. Association of genetic polymorphism of glutathione s-transferase M1 and T1 and bladder cancer. J Korean Cancer Assoc. 1999;31:548–55. Lee S, Kang D, Cho S. Association of genetic polymorphism of glutathione s-transferase M1 and T1 and bladder cancer. J Korean Cancer Assoc. 1999;31:548–55.
101.
Zurück zum Zitat Gago-Dominguez M, Bell DA, Watson MA, Yuan JM, Castelao JE, Hein DW, Chan KK, Coetzee GA, Ross RK, Yu MC. Permanent hair dyes and bladder cancer: risk modification by cytochrome P4501A2 and N-acetyltransferases 1 and 2. Carcinogenesis. 2003;24:483–9.PubMedCrossRef Gago-Dominguez M, Bell DA, Watson MA, Yuan JM, Castelao JE, Hein DW, Chan KK, Coetzee GA, Ross RK, Yu MC. Permanent hair dyes and bladder cancer: risk modification by cytochrome P4501A2 and N-acetyltransferases 1 and 2. Carcinogenesis. 2003;24:483–9.PubMedCrossRef
102.
Zurück zum Zitat Sanyal S, Festa F, Sakano S, Zhang Z, Steineck G, Norming U, Wijkstrom H, Larsson P, Kumar R, Hemminki K. Polymorphisms in DNA repair and metabolic genes in bladder cancer. Carcinogenesis. 2004;25:729–34.PubMedCrossRef Sanyal S, Festa F, Sakano S, Zhang Z, Steineck G, Norming U, Wijkstrom H, Larsson P, Kumar R, Hemminki K. Polymorphisms in DNA repair and metabolic genes in bladder cancer. Carcinogenesis. 2004;25:729–34.PubMedCrossRef
103.
Zurück zum Zitat Broberg K, Bjork J, Paulsson K, Hoglund M, Albin M. Constitutional short telomeres are strong genetic susceptibility markers for bladder cancer. Carcinogenesis. 2005;26:1263–71.PubMedCrossRef Broberg K, Bjork J, Paulsson K, Hoglund M, Albin M. Constitutional short telomeres are strong genetic susceptibility markers for bladder cancer. Carcinogenesis. 2005;26:1263–71.PubMedCrossRef
104.
Zurück zum Zitat Golka K, Seidel T, Dietrich H, Roth G, Rotzel C, Thier R, Geller F, Reckwitz T, Schulze H. Occupational and non-occupational risk factors in bladder cancer patients in an industrialized area located in former East-Germany. Aktuelle Urol. 2005;36:417–22.PubMedCrossRef Golka K, Seidel T, Dietrich H, Roth G, Rotzel C, Thier R, Geller F, Reckwitz T, Schulze H. Occupational and non-occupational risk factors in bladder cancer patients in an industrialized area located in former East-Germany. Aktuelle Urol. 2005;36:417–22.PubMedCrossRef
105.
Zurück zum Zitat Shao C, Xiang Y, Zhang W. Polymorphisms of GSTM1 and GSTT1 with smoking and bladder cancer risk: a population-based case control study. Tumori. 2006;26:346–51. Shao C, Xiang Y, Zhang W. Polymorphisms of GSTM1 and GSTT1 with smoking and bladder cancer risk: a population-based case control study. Tumori. 2006;26:346–51.
106.
Zurück zum Zitat Kogevinas M, Fernandez F, Garcia-Closas M, Tardon A, Garcia-Closas R, Serra C, Carrato A, Castano-Vinyals G, Yeager M, Chanock SJ, Lloreta J, Rothman N, Real FX, Dosemeci M, Malats N, Silverman D. Hair dye use is not associated with risk for bladder cancer: evidence from a case-control study in Spain. Eur J Cancer. 2006;42:1448–54.PubMedCrossRef Kogevinas M, Fernandez F, Garcia-Closas M, Tardon A, Garcia-Closas R, Serra C, Carrato A, Castano-Vinyals G, Yeager M, Chanock SJ, Lloreta J, Rothman N, Real FX, Dosemeci M, Malats N, Silverman D. Hair dye use is not associated with risk for bladder cancer: evidence from a case-control study in Spain. Eur J Cancer. 2006;42:1448–54.PubMedCrossRef
107.
Zurück zum Zitat Song D, Xing D, Zhang L. Relationship between polymorphism of glutathione stransferase and genetic susceptibility to bladder cancer. Chin J Urol. 2008;29:80–3. Song D, Xing D, Zhang L. Relationship between polymorphism of glutathione stransferase and genetic susceptibility to bladder cancer. Chin J Urol. 2008;29:80–3.
108.
Zurück zum Zitat Cantor KP, Villanueva CM, Silverman DT, Figueroa JD, Real FX, Garcia-Closas M, Malats N, Chanock S, Yeager M, Tardon A, Garcia-Closas R, Serra C, Carrato A, Castano-Vinyals G, Samanic C, Rothman N, Kogevinas M. Polymorphisms in GSTT1, GSTZ1, and CYP2E1, disinfection by-products, and risk of bladder cancer in Spain. Environ Health Perspect. 2010;118:1545–50.PubMedPubMedCentralCrossRef Cantor KP, Villanueva CM, Silverman DT, Figueroa JD, Real FX, Garcia-Closas M, Malats N, Chanock S, Yeager M, Tardon A, Garcia-Closas R, Serra C, Carrato A, Castano-Vinyals G, Samanic C, Rothman N, Kogevinas M. Polymorphisms in GSTT1, GSTZ1, and CYP2E1, disinfection by-products, and risk of bladder cancer in Spain. Environ Health Perspect. 2010;118:1545–50.PubMedPubMedCentralCrossRef
109.
Zurück zum Zitat Wu MY, Huang SJ, Yang F, Qin XT, Liu D, Ding Y, Yang S, Wang XC. Detection of nasopharyngeal carcinoma susceptibility with single nucleotide polymorphism analysis using next-generation sequencing technology. Oncotarget. 2017;8:52708–23.PubMedPubMedCentral Wu MY, Huang SJ, Yang F, Qin XT, Liu D, Ding Y, Yang S, Wang XC. Detection of nasopharyngeal carcinoma susceptibility with single nucleotide polymorphism analysis using next-generation sequencing technology. Oncotarget. 2017;8:52708–23.PubMedPubMedCentral
110.
Zurück zum Zitat Engel LS, Taioli E, Pfeiffer R, Garcia-Closas M, Marcus PM, Lan Q, Boffetta P, Vineis P, Autrup H, Bell DA, Branch RA, Brockmoller J, Daly AK, Heckbert SR, Kalina I, Kang D, Katoh T, Lafuente A, Lin HJ, Romkes M, Taylor JA, Rothman N. Pooled analysis and meta-analysis of glutathione S-transferase M1 and bladder cancer: a HuGE review. Am J Epidemiol. 2002;156:95–109.PubMedCrossRef Engel LS, Taioli E, Pfeiffer R, Garcia-Closas M, Marcus PM, Lan Q, Boffetta P, Vineis P, Autrup H, Bell DA, Branch RA, Brockmoller J, Daly AK, Heckbert SR, Kalina I, Kang D, Katoh T, Lafuente A, Lin HJ, Romkes M, Taylor JA, Rothman N. Pooled analysis and meta-analysis of glutathione S-transferase M1 and bladder cancer: a HuGE review. Am J Epidemiol. 2002;156:95–109.PubMedCrossRef
111.
Zurück zum Zitat Yu C, Hequn C, Longfei L, Long W, Zhi C, Feng Z, Jinbo C, Chao L, Xiongbing Z. GSTM1 and GSTT1 polymorphisms are associated with increased bladder cancer risk: evidence from updated meta-analysis. Oncotarget. 2017;8:3246–58.PubMed Yu C, Hequn C, Longfei L, Long W, Zhi C, Feng Z, Jinbo C, Chao L, Xiongbing Z. GSTM1 and GSTT1 polymorphisms are associated with increased bladder cancer risk: evidence from updated meta-analysis. Oncotarget. 2017;8:3246–58.PubMed
112.
Zurück zum Zitat Yu Y, Li X, Liang C, Tang J, Qin Z, Wang C, Xu W, Hua Y, Shao P, Xu T. The relationship between GSTA1, GSTM1, GSTP1, and GSTT1 genetic polymorphisms and bladder cancer susceptibility: A meta-analysis. Medicine (Baltimore). 2016;95:e4900.CrossRef Yu Y, Li X, Liang C, Tang J, Qin Z, Wang C, Xu W, Hua Y, Shao P, Xu T. The relationship between GSTA1, GSTM1, GSTP1, and GSTT1 genetic polymorphisms and bladder cancer susceptibility: A meta-analysis. Medicine (Baltimore). 2016;95:e4900.CrossRef
113.
Zurück zum Zitat Fu D, Li P, Cheng W, Tian F, Xu X, Yi X, Tang C, Wang Y, Hu Q, Zhang Z. Impact of vascular endothelial growth factor gene-gene and gene-smoking interaction and haplotype combination on bladder cancer risk in Chinese population. Oncotarget. 2017;8:22927–35.PubMedPubMedCentral Fu D, Li P, Cheng W, Tian F, Xu X, Yi X, Tang C, Wang Y, Hu Q, Zhang Z. Impact of vascular endothelial growth factor gene-gene and gene-smoking interaction and haplotype combination on bladder cancer risk in Chinese population. Oncotarget. 2017;8:22927–35.PubMedPubMedCentral
114.
Zurück zum Zitat Lacombe L, Fradet V, Levesque E, Pouliot F, Larue H, Bergeron A, Hovington H, Caron A, Nguile-Makao M, Harvey M, Fradet Y, Guillemette C. Phase II drug-metabolizing polymorphisms and smoking predict recurrence of non-muscle-invasive bladder Cancer: a gene-smoking interaction. Cancer Prev Res (Phila). 2016;9:189–95.CrossRef Lacombe L, Fradet V, Levesque E, Pouliot F, Larue H, Bergeron A, Hovington H, Caron A, Nguile-Makao M, Harvey M, Fradet Y, Guillemette C. Phase II drug-metabolizing polymorphisms and smoking predict recurrence of non-muscle-invasive bladder Cancer: a gene-smoking interaction. Cancer Prev Res (Phila). 2016;9:189–95.CrossRef
Metadaten
Titel
Association of Glutathione S-transferase gene polymorphism with bladder Cancer susceptibility
verfasst von
Tianbiao Zhou
Hong-Yan Li
Wei-Ji Xie
Zhiqing Zhong
Hongzhen Zhong
Zhi-Jun Lin
Publikationsdatum
01.12.2018
Verlag
BioMed Central
Erschienen in
BMC Cancer / Ausgabe 1/2018
Elektronische ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-018-5014-1

Weitere Artikel der Ausgabe 1/2018

BMC Cancer 1/2018 Zur Ausgabe

Hodgkin Lymphom: BrECADD-Regime übertrifft die Erwartungen

05.06.2024 ASCO 2024 Kongressbericht

Das Kombinationsregime BrECADD mit Brentuximab vedotin ermöglichte in der Studie HD21 beim fortgeschrittenen klassischen Hodgkin-Lymphom eine unerwartet hohe progressionsfreie Überlebensrate von 94,3% nach vier Jahren. Gleichzeitig war das Regime besser tolerabel als der bisherige Standard eBEACOPP.

Antikörper-Drug-Konjugat verdoppelt PFS bei Multiplem Myelom

05.06.2024 ASCO 2024 Nachrichten

Zwei Phase-3-Studien deuten auf erhebliche Vorteile des Antikörper-Wirkstoff-Konjugats Belantamab-Mafodotin bei vorbehandelten Personen mit Multiplem Myelom: Im Vergleich mit einer Standard-Tripeltherapie wurde das progressionsfreie Überleben teilweise mehr als verdoppelt.

Neuer TKI gegen CML: Höhere Wirksamkeit, seltener Nebenwirkungen

05.06.2024 Chronische myeloische Leukämie Nachrichten

Der Tyrosinkinasehemmer (TKI) Asciminib ist älteren Vertretern dieser Gruppe bei CML offenbar überlegen: Personen mit frisch diagnostizierter CML entwickelten damit in einer Phase-3-Studie häufiger eine gut molekulare Response, aber seltener ernste Nebenwirkungen.

Brustkrebs-Prävention wird neu gedacht

04.06.2024 ASCO 2024 Kongressbericht

Zurzeit untersuchen Forschende verschiedene neue Ansätze zur Prävention von Brustkrebs bei Personen mit hohem Risiko. Darunter Denosumab, die prophylaktische Bestrahlung der Brust – und Impfungen.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.