Skip to main content
Erschienen in: Neurotherapeutics 3/2022

01.04.2022 | Original Article

Bezafibrate Rescues Mitochondrial Encephalopathy in Mice via Induction of Daily Torpor and Hypometabolic State

verfasst von: Jingwei Lyu, Yuying Zhao, Na Zhang, Xuebi Xu, Rui Zheng, Wenfei Yu, Wang Xin, Chuanzhu Yan, Kunqian Ji

Erschienen in: Neurotherapeutics | Ausgabe 3/2022

Einloggen, um Zugang zu erhalten

Abstract

Leigh syndrome (LS) is one of the most common mitochondrial encephalopathy diseases in infants. To date, there is still an absence of effective therapy. Bezafibrate (BEZ), a pan-peroxisome proliferator-activated receptor (PPAR) agonist, ameliorates the phenotype of the mouse model of mitochondrial disease via an unclear mechanism. Here, we applied it to Ndufs4 knockout (KO) mice, a widely used LS animal model, to observe the therapeutic effects and metabolic changes associated with BEZ treatment to explore the therapeutic strategies for mitochondrial diseases. Administration of BEZ significantly enhances survival and attenuates disease progression in Ndufs4 KO mice. Decreased oxidative stress and stunted growth were also observed. As a PPAR agonist, we did not find mitochondrial biogenesis or enhanced metabolism upon BEZ treatment. On the contrary, mice with dietary BEZ showed daily torpor bouts and lower metabolic rates. We speculate that activating energy-saving metabolism in mice may be associated with the therapeutic effects of BEZ, but the exact mechanism of action requires further study.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
2.
Zurück zum Zitat Darin N, Oldfors A, Moslemi AR, Holme E, Tulinius M. The incidence of mitochondrial encephalomyopathies in childhood: clinical features and morphological, biochemical, and DNA abnormalities. Ann Neurol. 2001;49(3):377–83.PubMedCrossRef Darin N, Oldfors A, Moslemi AR, Holme E, Tulinius M. The incidence of mitochondrial encephalomyopathies in childhood: clinical features and morphological, biochemical, and DNA abnormalities. Ann Neurol. 2001;49(3):377–83.PubMedCrossRef
3.
Zurück zum Zitat Rahman S, Blok RB, Dahl HH, et al. Leigh syndrome: clinical features and biochemical and DNA abnormalities. Ann Neurol. 1996;39(3):343–51.PubMedCrossRef Rahman S, Blok RB, Dahl HH, et al. Leigh syndrome: clinical features and biochemical and DNA abnormalities. Ann Neurol. 1996;39(3):343–51.PubMedCrossRef
4.
Zurück zum Zitat Lake NJ, Compton AG, Rahman S, Thorburn DR. Leigh syndrome: one disorder, more than 75 monogenic causes. Ann Neurol. 2016;79(2):190–203.PubMedCrossRef Lake NJ, Compton AG, Rahman S, Thorburn DR. Leigh syndrome: one disorder, more than 75 monogenic causes. Ann Neurol. 2016;79(2):190–203.PubMedCrossRef
5.
Zurück zum Zitat Lake NJ, Bird MJ, Isohanni P, Paetau A. Leigh syndrome: neuropathology and pathogenesis. J Neuropathol Exp Neurol. 2015;74(6):482–92.PubMedCrossRef Lake NJ, Bird MJ, Isohanni P, Paetau A. Leigh syndrome: neuropathology and pathogenesis. J Neuropathol Exp Neurol. 2015;74(6):482–92.PubMedCrossRef
6.
Zurück zum Zitat Nagashima T, Mori M, Katayama K, et al. Adult Leigh syndrome with mitochondrial DNA mutation at 8993. Acta Neuropathol. 1999;97(4):416–22.PubMedCrossRef Nagashima T, Mori M, Katayama K, et al. Adult Leigh syndrome with mitochondrial DNA mutation at 8993. Acta Neuropathol. 1999;97(4):416–22.PubMedCrossRef
7.
Zurück zum Zitat Han JY, Sung JJ, Park HK, Yoon BN, Lee KW. Adult onset Leigh syndrome with mitochondrial DNA 8344 A>G mutation. J Clin Neurosci. 2014;21(11):2009–11.PubMedCrossRef Han JY, Sung JJ, Park HK, Yoon BN, Lee KW. Adult onset Leigh syndrome with mitochondrial DNA 8344 A>G mutation. J Clin Neurosci. 2014;21(11):2009–11.PubMedCrossRef
8.
Zurück zum Zitat Chalmers RM, Lamont PJ, Nelson I, et al. A mitochondrial DNA tRNA(Val) point mutation associated with adult-onset Leigh syndrome. Neurology. 1997;49(2):589–92.PubMedCrossRef Chalmers RM, Lamont PJ, Nelson I, et al. A mitochondrial DNA tRNA(Val) point mutation associated with adult-onset Leigh syndrome. Neurology. 1997;49(2):589–92.PubMedCrossRef
9.
Zurück zum Zitat Baertling F, Rodenburg RJ, Schaper J, et al. A guide to diagnosis and treatment of Leigh syndrome. J Neurol Neurosurg Psychiatry. 2014;85(3):257–65.PubMedCrossRef Baertling F, Rodenburg RJ, Schaper J, et al. A guide to diagnosis and treatment of Leigh syndrome. J Neurol Neurosurg Psychiatry. 2014;85(3):257–65.PubMedCrossRef
10.
Zurück zum Zitat Tenenbaum A, Motro M, Fisman EZ. Dual and pan-peroxisome proliferator-activated receptors (PPAR) co-agonism: the bezafibrate lessons. Cardiovasc Diabetol. 2005;4:14.PubMedPubMedCentralCrossRef Tenenbaum A, Motro M, Fisman EZ. Dual and pan-peroxisome proliferator-activated receptors (PPAR) co-agonism: the bezafibrate lessons. Cardiovasc Diabetol. 2005;4:14.PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Bastin J, Aubey F, Rotig A, Munnich A, Djouadi F. Activation of peroxisome proliferator-activated receptor pathway stimulates the mitochondrial respiratory chain and can correct deficiencies in patients’ cells lacking its components. J Clin Endocrinol Metab. 2008;93(4):1433–41.PubMedCrossRef Bastin J, Aubey F, Rotig A, Munnich A, Djouadi F. Activation of peroxisome proliferator-activated receptor pathway stimulates the mitochondrial respiratory chain and can correct deficiencies in patients’ cells lacking its components. J Clin Endocrinol Metab. 2008;93(4):1433–41.PubMedCrossRef
12.
Zurück zum Zitat Tremblay-Mercier J, Tessier D, Plourde M, et al. Bezafibrate mildly stimulates ketogenesis and fatty acid metabolism in hypertriglyceridemic subjects. J Pharmacol Exp Ther. 2010;334(1):341–6.PubMedCrossRef Tremblay-Mercier J, Tessier D, Plourde M, et al. Bezafibrate mildly stimulates ketogenesis and fatty acid metabolism in hypertriglyceridemic subjects. J Pharmacol Exp Ther. 2010;334(1):341–6.PubMedCrossRef
13.
Zurück zum Zitat Courchesne-Loyer A, St-Pierre V, Hennebelle M, et al. Ketogenic response to cotreatment with bezafibrate and medium chain triacylglycerols in healthy humans. Nutrition. 2015;31(10):1255–9.PubMedCrossRef Courchesne-Loyer A, St-Pierre V, Hennebelle M, et al. Ketogenic response to cotreatment with bezafibrate and medium chain triacylglycerols in healthy humans. Nutrition. 2015;31(10):1255–9.PubMedCrossRef
14.
Zurück zum Zitat Zielinski LP, Smith AC, Smith AG, Robinson AJ. Metabolic flexibility of mitochondrial respiratory chain disorders predicted by computer modelling. Mitochondrion. 2016;31:45–55.PubMedPubMedCentralCrossRef Zielinski LP, Smith AC, Smith AG, Robinson AJ. Metabolic flexibility of mitochondrial respiratory chain disorders predicted by computer modelling. Mitochondrion. 2016;31:45–55.PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Djouadi F, Bastin J. Species differences in the effects of bezafibrate as a potential treatment of mitochondrial disorders. Cell Metab. 2011;14(6):715–716. Djouadi F, Bastin J. Species differences in the effects of bezafibrate as a potential treatment of mitochondrial disorders. Cell Metab. 2011;14(6):715–716.
16.
Zurück zum Zitat Yatsuga S, Suomalainen A. Effect of bezafibrate treatment on late-onset mitochondrial myopathy in mice. Hum Mol Genet. 2012;21(3):526–35.PubMedCrossRef Yatsuga S, Suomalainen A. Effect of bezafibrate treatment on late-onset mitochondrial myopathy in mice. Hum Mol Genet. 2012;21(3):526–35.PubMedCrossRef
17.
Zurück zum Zitat Dillon LM, Hida A, Garcia S, Prolla TA, Moraes CT. Long-term bezafibrate treatment improves skin and spleen phenotypes of the mtDNA mutator mouse. PLoS One. 2012;7(9):e44335. Dillon LM, Hida A, Garcia S, Prolla TA, Moraes CT. Long-term bezafibrate treatment improves skin and spleen phenotypes of the mtDNA mutator mouse. PLoS One. 2012;7(9):e44335.
18.
Zurück zum Zitat Viscomi C, Bottani E, Civiletto G, et al. In vivo correction of COX deficiency by activation of the AMPK/PGC-1alpha axis. Cell Metab. 2011;14(1):80–90.PubMedPubMedCentralCrossRef Viscomi C, Bottani E, Civiletto G, et al. In vivo correction of COX deficiency by activation of the AMPK/PGC-1alpha axis. Cell Metab. 2011;14(1):80–90.PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Frambach S, van de Wal MAE, van den Broek PHH, et al. Effects of clofibrate and KH176 on life span and motor function in mitochondrial complex I-deficient mice. Biochim Biophys Acta Mol Basis Dis. 2020;1866(6):165727. Frambach S, van de Wal MAE, van den Broek PHH, et al. Effects of clofibrate and KH176 on life span and motor function in mitochondrial complex I-deficient mice. Biochim Biophys Acta Mol Basis Dis. 2020;1866(6):165727.
20.
21.
Zurück zum Zitat Quintana A, Kruse SE, Kapur RP, Sanz E, Palmiter RD. Complex I deficiency due to loss of Ndufs4 in the brain results in progressive encephalopathy resembling Leigh syndrome. Proc Natl Acad Sci U S A. 2010;107(24):10996–1001.PubMedPubMedCentralCrossRef Quintana A, Kruse SE, Kapur RP, Sanz E, Palmiter RD. Complex I deficiency due to loss of Ndufs4 in the brain results in progressive encephalopathy resembling Leigh syndrome. Proc Natl Acad Sci U S A. 2010;107(24):10996–1001.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Kruse SE, Watt WC, Marcinek DJ, et al. Mice with mitochondrial complex I deficiency develop a fatal encephalomyopathy. Cell Metab. 2008;7(4):312–20.PubMedPubMedCentralCrossRef Kruse SE, Watt WC, Marcinek DJ, et al. Mice with mitochondrial complex I deficiency develop a fatal encephalomyopathy. Cell Metab. 2008;7(4):312–20.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Leong DW, Komen JC, Hewitt CA, et al. Proteomic and metabolomic analyses of mitochondrial complex I-deficient mouse model generated by spontaneous B2 short interspersed nuclear element (SINE) insertion into NADH dehydrogenase (ubiquinone) Fe-S protein 4 (Ndufs4) gene. J Biol Chem. 2012;287(24):20652–63.PubMedPubMedCentralCrossRef Leong DW, Komen JC, Hewitt CA, et al. Proteomic and metabolomic analyses of mitochondrial complex I-deficient mouse model generated by spontaneous B2 short interspersed nuclear element (SINE) insertion into NADH dehydrogenase (ubiquinone) Fe-S protein 4 (Ndufs4) gene. J Biol Chem. 2012;287(24):20652–63.PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Chikahisa S, Tominaga K, Kawai T, et al. Bezafibrate, a peroxisome proliferator-activated receptors agonist, decreases body temperature and enhances electroencephalogram delta-oscillation during sleep in mice. Endocrinology. 2008;149(10):5262–71.PubMedCrossRef Chikahisa S, Tominaga K, Kawai T, et al. Bezafibrate, a peroxisome proliferator-activated receptors agonist, decreases body temperature and enhances electroencephalogram delta-oscillation during sleep in mice. Endocrinology. 2008;149(10):5262–71.PubMedCrossRef
25.
Zurück zum Zitat Zhang J, Jia PP, Liu QL, et al. Low ketolytic enzyme levels in tumors predict ketogenic diet responses in cancer cell lines in vitro and in vivo. J Lipid Res. 2018;59(4):625–34.PubMedPubMedCentralCrossRef Zhang J, Jia PP, Liu QL, et al. Low ketolytic enzyme levels in tumors predict ketogenic diet responses in cancer cell lines in vitro and in vivo. J Lipid Res. 2018;59(4):625–34.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Luo Y, Burrington CM, Graff EC, et al. Metabolic phenotype and adipose and liver features in a high-fat Western diet-induced mouse model of obesity-linked NAFLD. Am J Physiol Endocrinol Metab. 2016;310(6):E418–39.PubMedCrossRef Luo Y, Burrington CM, Graff EC, et al. Metabolic phenotype and adipose and liver features in a high-fat Western diet-induced mouse model of obesity-linked NAFLD. Am J Physiol Endocrinol Metab. 2016;310(6):E418–39.PubMedCrossRef
27.
Zurück zum Zitat Venegas V, Halberg MC. Measurement of mitochondrial DNA copy number. Methods Mol Biol. 2012;837:327–35.PubMedCrossRef Venegas V, Halberg MC. Measurement of mitochondrial DNA copy number. Methods Mol Biol. 2012;837:327–35.PubMedCrossRef
28.
Zurück zum Zitat Ding Q, Tian Y, Wang X, et al. Oxidative damage of tryptophan hydroxylase-2 mediated by peroxisomal superoxide anion radical in brains of mouse with depression. J Am Chem Soc. 2020;142(49):20735–43.PubMedCrossRef Ding Q, Tian Y, Wang X, et al. Oxidative damage of tryptophan hydroxylase-2 mediated by peroxisomal superoxide anion radical in brains of mouse with depression. J Am Chem Soc. 2020;142(49):20735–43.PubMedCrossRef
30.
Zurück zum Zitat Johnson SC, Yanos ME, Kayser EB, et al. mTOR inhibition alleviates mitochondrial disease in a mouse model of Leigh syndrome. Science. 2013;342(6165):1524–8.PubMedPubMedCentralCrossRef Johnson SC, Yanos ME, Kayser EB, et al. mTOR inhibition alleviates mitochondrial disease in a mouse model of Leigh syndrome. Science. 2013;342(6165):1524–8.PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Johri A, Calingasan NY, Hennessey TM, et al. Pharmacologic activation of mitochondrial biogenesis exerts widespread beneficial effects in a transgenic mouse model of Huntington’s disease. Hum Mol Genet. 2012;21(5):1124–37.PubMedCrossRef Johri A, Calingasan NY, Hennessey TM, et al. Pharmacologic activation of mitochondrial biogenesis exerts widespread beneficial effects in a transgenic mouse model of Huntington’s disease. Hum Mol Genet. 2012;21(5):1124–37.PubMedCrossRef
32.
Zurück zum Zitat Dumont M, Stack C, Elipenahli C, et al. Bezafibrate administration improves behavioral deficits and tau pathology in P301S mice. Hum Mol Genet. 2012;21(23):5091–105.PubMedPubMedCentralCrossRef Dumont M, Stack C, Elipenahli C, et al. Bezafibrate administration improves behavioral deficits and tau pathology in P301S mice. Hum Mol Genet. 2012;21(23):5091–105.PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Lisa P, Chu SJS. Oral bezafibrate induces daily torpor and FGF21 in mice in a PPAR alpha dependent manner. J Therm Biol. 2012;37(4):291–6.CrossRef Lisa P, Chu SJS. Oral bezafibrate induces daily torpor and FGF21 in mice in a PPAR alpha dependent manner. J Therm Biol. 2012;37(4):291–6.CrossRef
34.
35.
Zurück zum Zitat Ott M, Gogvadze V, Orrenius S, Zhivotovsky B. Mitochondria, oxidative stress and cell death. Apoptosis. 2007;12(5):913–22.PubMedCrossRef Ott M, Gogvadze V, Orrenius S, Zhivotovsky B. Mitochondria, oxidative stress and cell death. Apoptosis. 2007;12(5):913–22.PubMedCrossRef
36.
Zurück zum Zitat Misra HP, Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem. 1972;247(10):3170–5.PubMedCrossRef Misra HP, Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem. 1972;247(10):3170–5.PubMedCrossRef
37.
Zurück zum Zitat Kim T, Yang Q. Peroxisome-proliferator-activated receptors regulate redox signaling in the cardiovascular system. World J Cardiol. 2013;5(6):164–74.PubMedPubMedCentralCrossRef Kim T, Yang Q. Peroxisome-proliferator-activated receptors regulate redox signaling in the cardiovascular system. World J Cardiol. 2013;5(6):164–74.PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Suomalainen A, Elo JM, Pietilainen KH, et al. FGF-21 as a biomarker for muscle-manifesting mitochondrial respiratory chain deficiencies: a diagnostic study. Lancet Neurol. 2011;10(9):806–18.PubMedPubMedCentralCrossRef Suomalainen A, Elo JM, Pietilainen KH, et al. FGF-21 as a biomarker for muscle-manifesting mitochondrial respiratory chain deficiencies: a diagnostic study. Lancet Neurol. 2011;10(9):806–18.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Davis RL, Liang C, Edema-Hildebrand F, et al. Fibroblast growth factor 21 is a sensitive biomarker of mitochondrial disease. Neurology. 2013;81(21):1819–26.PubMedCrossRef Davis RL, Liang C, Edema-Hildebrand F, et al. Fibroblast growth factor 21 is a sensitive biomarker of mitochondrial disease. Neurology. 2013;81(21):1819–26.PubMedCrossRef
40.
Zurück zum Zitat Ji X, Zhao L, Ji K, et al. Growth differentiation factor 15 is a novel diagnostic biomarker of mitochondrial diseases. Mol Neurobiol. 2017;54(10):8110–6.PubMedCrossRef Ji X, Zhao L, Ji K, et al. Growth differentiation factor 15 is a novel diagnostic biomarker of mitochondrial diseases. Mol Neurobiol. 2017;54(10):8110–6.PubMedCrossRef
41.
Zurück zum Zitat LeRoith D, Yakar S. Mechanisms of disease: metabolic effects of growth hormone and insulin-like growth factor 1. Nat Clin Pract Endocrinol Metab. 2007;3(3):302–10.PubMedCrossRef LeRoith D, Yakar S. Mechanisms of disease: metabolic effects of growth hormone and insulin-like growth factor 1. Nat Clin Pract Endocrinol Metab. 2007;3(3):302–10.PubMedCrossRef
42.
Zurück zum Zitat Underwood LE, Thissen JP, Lemozy S, Ketelslegers JM, Clemmons DR. Hormonal and nutritional regulation of IGF-I and its binding proteins. Horm Res. 1994;42(4–5):145–51.PubMedCrossRef Underwood LE, Thissen JP, Lemozy S, Ketelslegers JM, Clemmons DR. Hormonal and nutritional regulation of IGF-I and its binding proteins. Horm Res. 1994;42(4–5):145–51.PubMedCrossRef
43.
Zurück zum Zitat Silha JV, Murphy LJ. Insights from insulin-like growth factor binding protein transgenic mice. Endocrinology. 2002;143(10):3711–4.PubMedCrossRef Silha JV, Murphy LJ. Insights from insulin-like growth factor binding protein transgenic mice. Endocrinology. 2002;143(10):3711–4.PubMedCrossRef
44.
Zurück zum Zitat Schoonjans K, Staels B, Auwerx J. Role of the peroxisome proliferator-activated receptor (PPAR) in mediating the effects of fibrates and fatty acids on gene expression. J Lipid Res. 1996;37(5):907–25.PubMedCrossRef Schoonjans K, Staels B, Auwerx J. Role of the peroxisome proliferator-activated receptor (PPAR) in mediating the effects of fibrates and fatty acids on gene expression. J Lipid Res. 1996;37(5):907–25.PubMedCrossRef
45.
Zurück zum Zitat Maki KC. Fibrates for treatment of the metabolic syndrome. Curr Atheroscler Rep. 2004;6(1):45–51.PubMedCrossRef Maki KC. Fibrates for treatment of the metabolic syndrome. Curr Atheroscler Rep. 2004;6(1):45–51.PubMedCrossRef
47.
Zurück zum Zitat Milder J, Patel M. Modulation of oxidative stress and mitochondrial function by the ketogenic diet. Epilepsy Res. 2012;100(3):295–303.PubMedCrossRef Milder J, Patel M. Modulation of oxidative stress and mitochondrial function by the ketogenic diet. Epilepsy Res. 2012;100(3):295–303.PubMedCrossRef
48.
Zurück zum Zitat Wall CE, Whyte J, Suh JM, et al. High-fat diet and FGF21 cooperatively promote aerobic thermogenesis in mtDNA mutator mice. Proc Natl Acad Sci U S A. 2015;112(28):8714–9.PubMedPubMedCentralCrossRef Wall CE, Whyte J, Suh JM, et al. High-fat diet and FGF21 cooperatively promote aerobic thermogenesis in mtDNA mutator mice. Proc Natl Acad Sci U S A. 2015;112(28):8714–9.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Srivastava S, Diaz F, Iommarini L, et al. PGC-1alpha/beta induced expression partially compensates for respiratory chain defects in cells from patients with mitochondrial disorders. Hum Mol Genet. 2009;18(10):1805–12.PubMedPubMedCentralCrossRef Srivastava S, Diaz F, Iommarini L, et al. PGC-1alpha/beta induced expression partially compensates for respiratory chain defects in cells from patients with mitochondrial disorders. Hum Mol Genet. 2009;18(10):1805–12.PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Casarin A, Giorgi G, Pertegato V, et al. Copper and bezafibrate cooperate to rescue cytochrome c oxidase deficiency in cells of patients with SCO2 mutations. Orphanet J Rare Dis. 2012;7:21.PubMedPubMedCentralCrossRef Casarin A, Giorgi G, Pertegato V, et al. Copper and bezafibrate cooperate to rescue cytochrome c oxidase deficiency in cells of patients with SCO2 mutations. Orphanet J Rare Dis. 2012;7:21.PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Grings M, Moura AP, Parmeggiani B, et al. Bezafibrate prevents mitochondrial dysfunction, antioxidant system disturbance, glial reactivity and neuronal damage induced by sulfite administration in striatum of rats: implications for a possible therapeutic strategy for sulfite oxidase deficiency. Biochim Biophys Acta Mol Basis Dis. 2017;1863(9):2135–48.PubMedCrossRef Grings M, Moura AP, Parmeggiani B, et al. Bezafibrate prevents mitochondrial dysfunction, antioxidant system disturbance, glial reactivity and neuronal damage induced by sulfite administration in striatum of rats: implications for a possible therapeutic strategy for sulfite oxidase deficiency. Biochim Biophys Acta Mol Basis Dis. 2017;1863(9):2135–48.PubMedCrossRef
52.
53.
Zurück zum Zitat Swoap SJ, Gutilla MJ. Cardiovascular changes during daily torpor in the laboratory mouse. Am J Physiol Regul Integr Comp Physiol. 2009;297(3):R769–74.PubMedPubMedCentralCrossRef Swoap SJ, Gutilla MJ. Cardiovascular changes during daily torpor in the laboratory mouse. Am J Physiol Regul Integr Comp Physiol. 2009;297(3):R769–74.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Heldmaier G, Ortmann S, Elvert R. Natural hypometabolism during hibernation and daily torpor in mammals. Respir Physiol Neurobiol. 2004;141(3):317–29.PubMedCrossRef Heldmaier G, Ortmann S, Elvert R. Natural hypometabolism during hibernation and daily torpor in mammals. Respir Physiol Neurobiol. 2004;141(3):317–29.PubMedCrossRef
55.
Zurück zum Zitat Parmeggiani B, Grings M, da Rosa-Junior NT, et al. Bezafibrate prevents glycine-induced increase of antioxidant enzyme activities in rat striatum. Mol Neurobiol. 2019;56(1):29–38.PubMedCrossRef Parmeggiani B, Grings M, da Rosa-Junior NT, et al. Bezafibrate prevents glycine-induced increase of antioxidant enzyme activities in rat striatum. Mol Neurobiol. 2019;56(1):29–38.PubMedCrossRef
56.
Zurück zum Zitat Ishida N. Role of PPARα in the control of torpor through FGF21-NPY pathway: From circadian clock to seasonal change in mammals. PPAR Res. 2009;412949. Ishida N. Role of PPARα in the control of torpor through FGF21-NPY pathway: From circadian clock to seasonal change in mammals. PPAR Res. 2009;412949.
57.
Zurück zum Zitat Fisher FM, Maratos-Flier E. Understanding the physiology of FGF21. Annu Rev Physiol. 2016;78:223–41.PubMedCrossRef Fisher FM, Maratos-Flier E. Understanding the physiology of FGF21. Annu Rev Physiol. 2016;78:223–41.PubMedCrossRef
58.
Zurück zum Zitat Gälman C, Lundåsen T, Kharitonenkov A, et al. The circulating metabolic regulator FGF21 is induced by prolonged fasting and PPARalpha activation in man. Cell Metab. 2008;8(2):169–74.PubMedCrossRef Gälman C, Lundåsen T, Kharitonenkov A, et al. The circulating metabolic regulator FGF21 is induced by prolonged fasting and PPARalpha activation in man. Cell Metab. 2008;8(2):169–74.PubMedCrossRef
59.
Zurück zum Zitat Steele H, Gomez-Duran A, Pyle A, et al. Metabolic effects of bezafibrate in mitochondrial disease. EMBO Mol Med. 2020;12(3):e11589. Steele H, Gomez-Duran A, Pyle A, et al. Metabolic effects of bezafibrate in mitochondrial disease. EMBO Mol Med. 2020;12(3):e11589.
60.
Zurück zum Zitat Mullican SE, Lin-Schmidt X, Chin CN, et al. GFRAL is the receptor for GDF15 and the ligand promotes weight loss in mice and nonhuman primates. Nat Med. 2017;23(10):1150–7.PubMedCrossRef Mullican SE, Lin-Schmidt X, Chin CN, et al. GFRAL is the receptor for GDF15 and the ligand promotes weight loss in mice and nonhuman primates. Nat Med. 2017;23(10):1150–7.PubMedCrossRef
61.
Zurück zum Zitat Emmerson PJ, Wang F, Du Y, et al. The metabolic effects of GDF15 are mediated by the orphan receptor GFRAL. Nat Med. 2017;23(10):1215–9.PubMedCrossRef Emmerson PJ, Wang F, Du Y, et al. The metabolic effects of GDF15 are mediated by the orphan receptor GFRAL. Nat Med. 2017;23(10):1215–9.PubMedCrossRef
62.
Zurück zum Zitat Yang L, Chang CC, Sun Z, et al. GFRAL is the receptor for GDF15 and is required for the anti-obesity effects of the ligand. Nat Med. 2017;23(10):1158–66.PubMedCrossRef Yang L, Chang CC, Sun Z, et al. GFRAL is the receptor for GDF15 and is required for the anti-obesity effects of the ligand. Nat Med. 2017;23(10):1158–66.PubMedCrossRef
63.
Zurück zum Zitat Branco AF, Ferreira A, Simoes RF, et al. Ketogenic diets: from cancer to mitochondrial diseases and beyond. Eur J Clin Invest. 2016;46(3):285–98.PubMedCrossRef Branco AF, Ferreira A, Simoes RF, et al. Ketogenic diets: from cancer to mitochondrial diseases and beyond. Eur J Clin Invest. 2016;46(3):285–98.PubMedCrossRef
64.
65.
Zurück zum Zitat Felici R, Cavone L, Lapucci A, et al. PARP inhibition delays progression of mitochondrial encephalopathy in mice. Neurotherapeutics. 2014;11(3):651–64.PubMedPubMedCentralCrossRef Felici R, Cavone L, Lapucci A, et al. PARP inhibition delays progression of mitochondrial encephalopathy in mice. Neurotherapeutics. 2014;11(3):651–64.PubMedPubMedCentralCrossRef
Metadaten
Titel
Bezafibrate Rescues Mitochondrial Encephalopathy in Mice via Induction of Daily Torpor and Hypometabolic State
verfasst von
Jingwei Lyu
Yuying Zhao
Na Zhang
Xuebi Xu
Rui Zheng
Wenfei Yu
Wang Xin
Chuanzhu Yan
Kunqian Ji
Publikationsdatum
01.04.2022
Verlag
Springer International Publishing
Erschienen in
Neurotherapeutics / Ausgabe 3/2022
Print ISSN: 1933-7213
Elektronische ISSN: 1878-7479
DOI
https://doi.org/10.1007/s13311-022-01216-9

Weitere Artikel der Ausgabe 3/2022

Neurotherapeutics 3/2022 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Thrombektomie auch bei großen Infarkten von Vorteil

16.05.2024 Ischämischer Schlaganfall Nachrichten

Auch ein sehr ausgedehnter ischämischer Schlaganfall scheint an sich kein Grund zu sein, von einer mechanischen Thrombektomie abzusehen. Dafür spricht die LASTE-Studie, an der Patienten und Patientinnen mit einem ASPECTS von maximal 5 beteiligt waren.

Schwindelursache: Massagepistole lässt Otholiten tanzen

14.05.2024 Benigner Lagerungsschwindel Nachrichten

Wenn jüngere Menschen über ständig rezidivierenden Lagerungsschwindel klagen, könnte eine Massagepistole der Auslöser sein. In JAMA Otolaryngology warnt ein Team vor der Anwendung hochpotenter Geräte im Bereich des Nackens.

Schützt Olivenöl vor dem Tod durch Demenz?

10.05.2024 Morbus Alzheimer Nachrichten

Konsumieren Menschen täglich 7 Gramm Olivenöl, ist ihr Risiko, an einer Demenz zu sterben, um mehr als ein Viertel reduziert – und dies weitgehend unabhängig von ihrer sonstigen Ernährung. Dafür sprechen Auswertungen zweier großer US-Studien.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.