Skip to main content
Erschienen in: BMC Cancer 1/2020

Open Access 01.12.2020 | Research article

Body mass index increases the lymph node metastasis risk of breast cancer: a dose-response meta-analysis with 52904 subjects from 20 cohort studies

verfasst von: Junyi Wang, Yaning Cai, Fangfang Yu, Zhiguang Ping, Li Liu

Erschienen in: BMC Cancer | Ausgabe 1/2020

Abstract

Background

Since body mass index (BMI) is a convincing risk factor for breast cancer, it is speculated to be associated with lymph node metastasis. However, epidemiological studies are inconclusive. Therefore, this study was conducted to investigate the effect of BMI on the lymph node metastasis risk of breast cancer.

Methods

Cohort studies that evaluating BMI and lymph node metastasis in breast cancer were selected through various databases including PubMed, PubMed Central (PMC), Web of science, the China National Knowledge Infrastructure (CNKI), Chinese Scientific Journals (VIP) and Wanfang Data Knowledge Service Platform (WanFang) until November 30, 2019. The two-stage, random effect meta-analysis was performed to assess the dose-response relationship between BMI and lymph node metastasis risk. Between-study heterogeneity was assessed using I2. Subgroup analysis was done to find possible sources of heterogeneity.

Results

We included a total of 20 studies enrolling 52,904 participants. The summary relative risk (RR) (1.10, 95%CI: 1.06–1.15) suggested a significant effect of BMI on the lymph node metastasis risk of breast cancer. The dose-response meta-analysis (RR = 1.01, 95%CI: 1.00–1.01) indicated a positive linear association between BMI and lymph node metastasis risk. For every 1 kg/m2 increment of BMI, the risk of lymph node metastasis increased by 0.89%. In subgroup analyses, positive linear dose-response relationships between BMI and lymph node metastasis risk were observed among Asian, European, American, premenopausal, postmenopausal, study period less than 5 years, and more than 5 years groups. For every 1 kg/m2 increment of BMI, the risk of lymph node metastasis increased by 0.99, 0.85, 0.61, 1.44, 1.45, 2.22, and 0.61%, respectively.

Conclusion

BMI significantly increases the lymph node metastasis risk of breast cancer as linear dose-response reaction. Further studies are needed to identify this association.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
BMI
Body Mass Index
OR
Odds ratio
PMC
PubMed Central
CNKI
The China National Knowledge Infrastructure
VIP
Chinese Scientific Journals
WanFang
Wanfang Data Knowledge Service Platform
NOS
Newcastle-Ottawa’s Scale
RR
Relative risk
TNBC
Triple-negative breast cancer
IL-6
Interleukin-6
TNF-α
Tumor necrosis factor-α
ER
Estrogen receptor

Background

Breast cancer is one of the most common malignant tumors among females worldwide. According to the International Agency for Research on Cancer’s GLOBOCAN 2018 [1], breast cancer was the second most common cancer only after lung cancer and the most frequent cancer among women with an estimated 2.09 million new cases diagnosed worldwide, making up 11.6% of all new cancer cases. Relative to cases, breast cancer ranked as the fourth cause of death from cancer overall (627 thousands), accounting for 6.6% of all cancer deaths. In China, it was estimated that there were 67,328 new breast cancer cases (16.3% of all cancer cases) and 16,178 deaths (7.8% of all deaths) occurred in 2015 [2]. In addition, over the past decades, the prevalence of breast cancer is rising and getting younger gradually [35], which has caused serious economic burden and become an important global public health issue.
Although the rise in obesity and overweight showed some signs of leveling off, data from several countries indicated that obesity has become a worldwide epidemic [6]. Based on linear time trend analysis, a 33% increase in obesity (body mass index, BMI ≥ 30 kg/m2) prevalence was estimated, and obesity rates will be exceed 50% by 2030 [7]. It was regarded as a modifiable lifestyle risk factor for several chronic diseases in a growing body of literature, such as coronary heart disease [8], hypertension [9], type 2 diabetes mellitus [10], hyperlipidemia [11], stroke [12] and some cancers [13, 14]. Among them, several studies have found that overweight or obese women have an increased risk of breast cancer as compared to normal weight women, especially in postmenopausal women. A case-control study [15] conducted in Iran reported that obese postmenopausal women had a threefold increased risk of breast cancer (odds ratio, OR = 3.21, 95% CI: 1.15–8.47). In a pooled analysis [16] of eight representative large-scale cohort studies, the increased risk of breast cancer with higher BMIs was confirmed among Japanese postmenopausal women. Yanzi Chen’s [17] dose-response meta-analysis was performed on BMI and breast cancer incidence, which showed that the breast cancer risk increased by 3.4% for every 1 kg/m2 increment of BMI in postmenopausal women. Furthermore, women who are obese with breast cancer diagnosis were reported to have greater disease mortality, higher recurrence rate and adverse overall and disease-free survival [18, 19]. So obesity also plays an important role in the prognosis of breast cancer.
Despite accumulated evidence that obesity may increase breast cancer risk, question remain, whether obesity is associated with lymph node metastasis, the most common form of metastasis in breast cancer? However, there was limited study focused on the relationship between obesity and lymph node metastasis in breast cancer, and the conclusions were inconsistent. For example, in a retrospective review of 1352 breast cancer patients [20], obese patients were more likely to have lymph node metastases compared with non-obese patients (P = 0.026). In another study [21] supporting this viewpoint, obesity was associated with increased number of involved axillary nodes (P = 0.003). On the contrary, Yadong Cui’s [22] case series study found that there was no statistically significant association between BMI and axillary node involvement (adjusted OR = 1.28, 95% CI: 0.90–1.81). Therefore, the present dose-response meta-analysis was conducted to investigate the association between obesity, as measured by BMI, and lymph node metastasis in breast cancer, and sub-analyses by different areas, menopausal status, study period were done to explore potential factors that influence the associations deeply.

Methods

Search strategy

In this study, we searched PubMed, PubMed Central (PMC), Web of science and Chinese academic databases including the China National Knowledge Infrastructure (CNKI), VIP database of Chinese Scientific Journals (VIP) and Wanfang Data Knowledge Service Platform (WanFang) for publications on the association between BMI and lymph node metastasis in breast cancer in humans up to November 30, 2019. The following combination of keywords was used to identify studies from electronic databases: (obesity OR “body mass index” OR BMI) AND (“breast cancer”) AND (“metastasis”). To avoid missing any relevant studies, all reference lists of eligible articles and related reviews were searched for additional publications. We did not include unpublished documents and grey literature, such as conference abstracts, theses (including dissertations) and patents.

Study selection

Studies were included according to the following criteria: (1) full-text articles were available as Chinese or English language; (2) study design was a cohort study; (3) the height and weight of patients were measured at the time of diagnosis; (4) studies had BMI categories of no fewer than three, and provided the number of cases for each BMI category; (5) studies reported the metastasis type of patients, such as lymph node metastasis, positive lymph nodes and so on. If more than one publication of a given study exists, only the publication with higher number participants was included.

Data extraction

All potential relevant publications were inserted in EndNote X8 software. Then, qualified studies were obtained for full-text screening. After the final evaluation, the authors extracted and recorded the required data: name of the first author; year of publication; country of origin; age (range) of study population; study period; intervals of each BMI category; cases number of each category and so on.

Quality assessment

Using the Newcastle-Ottawa’s Scale (NOS), the quality of the included studies were assessed. This scale ranges from 0 to 9 stars and awards four stars for selection of study participants, two stars for comparability of studies, and three stars for the adequate ascertainment of outcomes, and each item is assigned with a star if a study meets the criteria. We considered a study to be of high quality if its NOS score was more than six stars.
Study selection, data extraction, and quality assessment were done by two independent reviewers, and any controversies across selecting eligible articles were resolved by mutual discussion.

Statistical analysis

The relative risk (RR) and its 95%CI were considered as the effect size of all studies. For the highest versus lowest category meta-analysis, the risk estimates for the highest compared with the lowest categories of BMI was combined using the DerSimonian and Laird random-effects model [23]. For the dose-response meta-analysis, the dosage value corresponding to each BMI was the median or mean of the upper and lower boundaries. When the lowest or the highest category was open-ended, we assumed that the open-ended interval length was same as the adjacent interval [24, 25].
For non-linear dose-response relation, the covariance-adjusted multiple variables regression model was used to estimate and test the overall effect of curvilinear dose-responses. For linear dose-response relationship, a slope for each study was estimated as the first step, then derived an overall estimates by weighted average of the individual slopes [26].
Heterogeneity among studies was assessed by I-square (I2) statistic. An I2 above 50% indicated high heterogeneity, and a random effect model was implemented. Predefined subgroup analyses based on area, menopausal status, study period and study population were conducted to detect potential sources of heterogeneity. To explore the influence of each study on the pooled effect size, a sensitivity analysis was used by omitting one study at a time. Publication bias was identified with the Begg’s rank correlation test and Egger’s regression test [27, 28]. All statistical analyses were performed using Stata software version 14.0 (Stata Corp, College Station, TX, USA). Statistical significance level was set at α = 0.05, except publication bias or heterogeneity test with α = 0.10.

Results

Literature screening results

From the preliminary literature search, a total of 1141 articles were identified, with 9 references traced back. After excluding 123 de-duplicated publications, we read 1027 titles and abstracts. Upon the exclusion of 965 clearly irrelevant records, we obtained 62 full-text articles for further assessment. Finally, a total of 20 articles were initially included in this meta-analysis. Among them, there were one Chinese article and 19 English articles. A detailed description of how studies were selected is presented in Fig. 1.

Characteristics and quality assessment

There were total 20 [2948] articles included, all of which were cohort studies with a sample size of 52,904 people. Among the 20 studies, three studies were conducted in Asia, eight in Europe, eight in America and one from the International Breast Cancer Study Group, which covering the population from the whole world. Besides, four studies provided information on premenopausal and postmenopausal women separately, one study provided data on premenopausal women, and two studies provided data on postmenopausal women only. In terms of study period, there were six studies less than or equal to 5 years, and 14 studies more than 5 years. As for study population, two studies focused on triple-negative breast cancer (TNBC) patients. NOS scale was used to evaluate the included articles with score ranged from 6 to 8. The characteristics and quality score of the individual studies are shown in Table 1.
Table 1
The characteristics of studies included in this meta-analysis
Author
Year
Country
Age (range)
Study period
The categories of BMI
The number of metastatic tumors
The number of non-metastatic tumors
NOS
Xiaoyao Zhang
2014
China
53 (27-92)
2010.1-2012.11
BMI <18.5 (underweight)/ 18.5-22.9 (normal)/ 23-24.9 (overweight)/ 25-29.9 (obese)/ BMI≥30 (severe obese)
2/27/21/85/25
7/56/51/115/35
6
Nicoletta Biglia
2013
Italy
45/65
1999.1-2009.12
BMI < 19 (underweight)/ 19-24.9 (normal)/ 25-29.9 (overweight)/ BMI≥30 (obese)
20/141/49/29 (premenopausal) 20/247/217/97 (postmenopausal)
37/200/44/20 (premenopausal) 35/372/243/125 (postmenopausal)
7
Orsolya Hankó-Bauer
2017
Romania
58.29 (27-80) 52.81/60.38/62.8
2012-2015
BMI < 25 (normal weight)/ 25-29.9 (overweight)/ BMI≥30 (obese)
32/40/40
54/48/31
6
Ahmad Kaviani
2013
Iran
49.62 (21-88)
2003-2011
BMI < 24.9 (normal weight)/ 25<BMI<29.9 (overweight)/ BMI<BMI30 (obese)
64/77/42 (premenopausal) 45/68/60 (postmenopausal)
60/52/22 (premenopausal) 39/70/31 (postmenopausal)
7
O.Keskin
2013
Turkey
48.9±10.7 44.5±11.1/ 49.6±11.1/ 52.7±10.0
2001-2011
20-24.9 (normal weight)/ 25-29.9 (overweight)/ BMI≥30 (obese)
231/266/226
198/205/169
7
Geoffrey A. Porter
2006
Canada
60±15.5
2002.2.15- 2004.2.15
BMI <25 (normal/underweight)/ 25-29.9 (overweight)/ BMI≥30 (obese/severely obese)
36/33/46
130/144/130
8
Marianne Ewertz
2011
Denmark
---
1977-2006
BMI <25/ 25-29/ 30+
6867/3201/1489
4621/1937/849
7
Vincent C. Herlevic
2015
US
61.3 60.5/61.7/61.3
1997-2013
BMI<25 (normal weight)/ 25-30 (overweight)/ BMI>30 (obese)
40/71/142
47/79/144
8
Marian L. Neuhouser
2016
US
50-79
1993-1998
BMI<25 (normal weight)/ 25-30 (overweight)/ 30-35 (obese, Grade 1)/ BMI≥35 (obese, Grade 2+3)
168/245/184/138 (postmenopausal)
579/825/547/345 (postmenopausal)
8
G. Berclaz
2004
International Breast Cancer Study Group
48 (21-84)/ 53 (25-80)/ 55 (26-80)
1978-1993
BMI<24.9 (normal weight)/ 25.0-29.9 (intermediate)/ BMI≥30.0 (obese)
2613/1652/833
695/386/191
6
Vito Michele Garrisi
2012
Italy
---
2004-2006
BMI<24.9 (normal)/ 25-29.99 (overweight)/ BMI≥30 (obese)
43/63/38
63/38/24
6
Luca Mazzarella
2013
European Institute of Oncology
---
1995-2005
BMI <25 (under/normal weight)/ 25-29.99 (overweight)/ BMI≥30 (obese)
258/77/28 (ER positive) 149/66/29 (ER negative)
283/67/31 (ER positive) 159/63/18 (ER negative)
7
Amelia Smith
2018
US
67 (63,73)
1993-2009
BMI < 18.5 (underweight)/ 18.5-24.9 (normal weight)/ 25-29.9 (overweight)/ BMI≥30 (obese)
3/282/261/197 (postmenopausal)
19/869/819/561 (postmenopausal)
6
Kang Wang
2019
China
50.0±11.2 48.5±13.7/ 49.1±11.1/ 52.6±10.7
2005.1-2015.12
BMI<18.5 (underweight)/ 18.5-24.9 (normal weight)/ BMI≥25 (overweight and obese)
114/1644/537 (premenopausal) 70/1120/627 (postmenopausal)
100/1316/422 (premenopausal) 107/1184/559 (postmenopausal)
6
E.R. Copson
2014
UK
36 (18-40) 36 (18-40)/ 37 (18-40)/ 37 (24-40)
2000-2008
BMI<25 (under/healthy weight)/ 25-30 (overweight)/ BMI≥30 (obese)
736/419/284 (premenopausal)
766/354/236 (premenopausal)
7
Aruna Kamineni
2013
US
64.5 (40-93)
1988.1.1- 1993.12.31
BMI<25 (normal weight)/ 25-30 (overweight)/ BMI≥30 (obese)
32/27/12
174/102/66
6
Ronny Mowad
2013
US
49.8 53.2/49.1/49.3
1998.3-2011.9
BMI<25 (normal/underweight)/ 25-29.9 (overweight)/ BMI>30 (obese)
9/18/47
15/24/70
8
Foluso O. Ademuyiwa
2011
US
54 (26-92) 52.9/56.3/56.1
1996.7-2010.7
BMI≤24.9 (normal/underweight)/ 25-29.9 (overweight)/ BMI>30 (obese)
44/49/68
80/81/96
7
Shaheenah Dawood
2008
US
46 (23-76)/ 48 (23-78)/ 52 (28-78)
1974-2000
BMI≤24.9 (normal/underweight)/ 25-29.9 (overweight)/ BMI≥30 (obese)
186/175/186
21/19/16
7
Ozan Yazici
2015
Turkey
48 (18-92)
2002.1-2013.10
18.5-24.9 (normal weight)/ 25-29.9 (overweight)/ BMI≥30.0 (obese)
20/14/7 (premenopausal) 7/5/10 (postmenopausal)
549/393/226 (premenopausal) 228/419/409 (postmenopausal)
7
BMI Body mass index, NOS Newcastle-Ottawa's Scale

Highest versus lowest BMI meta-analysis

In this study, we selected the RRs corresponding to the highest BMI categories as the highest dose, and the RRs corresponding to the lowest BMI categories as the lowest dose. Heterogeneity among these 20 included articles was statistically significant (P = 0.022, I2 = 43.0%), and the random effect model was used for meta-analysis. The results showed that there was a link between BMI and the lymph node metastasis risk of breast cancer, with a summary RR of 1.10 (95%CI: 1.06–1.15) (Fig. 2).

Subgroup analyses

When subgroup analyses were done for different areas, the results showed significant associations between BMI and lymph node metastasis of breast cancer in Asian (RR = 1.18, 95%CI: 1.08–1.30), European (RR = 1.08, 95%CI: 1.05–1.12) and American (RR = 1.13, 95%CI: 1.04–1.23) women. Interestingly, there were positive associations both in the premenopausal women (RR = 1.12, 95%CI: 1.04–1.20) and postmenopausal women (RR = 1.28, 95%CI: 1.14–1.44). Besides, we conducted a subgroup analysis stratified by study period, the RR (1.31, 95%CI, 1.14–1.50) of less than and equal to 5 years was prominent higher than that of more than 5 years (RR = 1.07, 95%CI: 1.05–1.10). For study population, positive significant associations between BMI and lymph node metastasis were observed in non-TNBC (RR = 1.08, 95%CI: 1.06–1.11), while poor association in TNBC patients (RR = 1.15, 95%CI: 0.88–1.49). The subgroup analyses are shown in Table 2.
Table 2
Subgroup analyses showing difference between studies included in the meta-analysis (highest versus lowest BMI)
Variables
Number of studies
Number of cases
Pooled RR (95%CI)
Test of heterogeneity
Publication bias
I2(%)
P value
Begg's P value
Egger's P value
All
20
30938
1.10 (1.06, 1.15)
43.0
0.022
0.538
0.003
Area
 Asia
3
2968
1.18 (1.08, 1.30)
0.0
0.555
1.000
0.339
 Europe
8
19791
1.08 (1.05, 1.12)
44.6
0.082
0.266
0.116
 America
8
3847
1.13 (1.04, 1.23)
47.4
0.065
0.902
0.079
Menopausal
 Pre
5
4291
1.12 (1.04, 1.20)
31.6
0.211
0.806
0.489
 Post
6
4479
1.28 (1.14, 1.44)
0.0
0.865
0.452
0.656
Study period
 ≤ 5y
6
2250
1.31 (1.14, 1.50)
0.0
0.709
0.707
0.860
 > 5y
14
28688
1.07 (1.05, 1.10)
26.8
0.167
0.743
0.051
Study population
 TNBC
2
429
1.15 (0.88, 1.49)
0.0
0.789
1.000
---
 Non-TNBC
18
30539
1.08 (1.06, 1.11)
48.2
0.012
0.363
0.003
TNBC Triple-negative breast cancer

Dose-response analyses

Figure 3 showed the results of linear and nonlinear dose-response analysis of BMI and relative risk of lymph node metastasis in breast cancer. Firstly, we conducted a regression model test (P = 0.465), which showed no nonlinear dose-response relationship between BMI and lymph node metastasis. Secondly, linear dose-response regression model was used to test the relationship. The goodness of fit test (χ2 = 30.34, P = 0.048) showed there was heterogeneity among the studies, and the random-effect model was used for the meta-analysis. Regression model test (χ2 = 29.30, P < 0.001) revealed a positive linear dose-response association between BMI and lymph node metastasis. The results (RR = 1.01, 95%CI: 1.00–1.01) showed that for every 1 kg/m2 increment of BMI, the risk of lymph node metastasis increased by 0.89%.
The detailed information of the dose-response meta-analysis and subgroup analyses are shown in Table 3. In subgroup analyses, the results showed that the linear dose-response relationship between BMI and lymph node metastasis in Asian (RR = 1.01, 95%CI: 1.00–1.02), European (RR = 1.01, 95%CI: 1.00–1.01), American (RR = 1.01, 95%CI: 1.00–1.01), premenopausal (RR = 1.01, 95%CI: 1.00–1.03), postmenopausal (RR = 1.01, 95%CI: 1.01–1.02), study period ≤5 years (RR = 1.02, 95%CI: 1.01–1.03), study period > 5 years (RR = 1.01, 95%CI: 1.00–1.01) patients were statistically significant, and the risk increased by 0.99, 0.85, 0.61, 1.44, 1.45, 2.22, and 0.61%, respectively. And the results of other two subgroups (TNBC and non-TNBC) were missing because of too small sample size in TNBC.
Table 3
The results of linear dose-response analysis between body mass index (BMI) and lymph node metastasis of breast cancer
Variables
Number of cases
Test of heterogeneity
Model
Regression model test
RR (95%CI)
All
52904
χ 2=30.34, P=0.048
RE
χ 2=29.30, P<0.001
1.0089 (1.0057, 1.0122)
Area
 Asia
8854
χ 2=4.71, P=0.095
FE
χ 2=11.13, P=0.001
1.0099 (1.0041, 1.0157)
 Europe
28979
χ 2=13.70, P=0.057
FE
χ 2=36.31, P<0.001
1.0085 (1.0057, 1.0113)
 America
8701
χ 2=5.16, P=0.641
FE
χ 2=6.01, P=0.014
1.0061 (1.0012, 1.0110)
Menopausal
 Pre
8994
χ 2=10.53, P=0.032
RE
χ 2=5.61, P=0.018
1.0144 (1.0025, 1.0264)
 Post
12456
χ 2=2.57, P=0.766
FE
χ 2=23.48, P<0.001
1.0145 (1.0086, 1.0204)
Study period
     
 ≤ 5y
4901
χ 2=3.66, P=0.600
FE
χ 2=19.94, P<0.001
1.0222 (1.0124, 1.0321)
 > 5y
48003
χ 2=16.61, P=0.218
FE
χ 2=40.88, P<0.001
1.0061 (1.0042, 1.0080)
RE Random effect, FE Fixed effect

Sensitivity analysis

For the sensitivity analysis, we omitted one study at a time in turn to assess the potential studies which may influence the main results. The pooled RRs indicated little variation ranging from 1.09 (95%CI, 1.05–1.13) to 1.13 (95%CI, 1.06–1.19), and the result was not influenced by any single study, indicating that the meta-analysis result was stable.

Publication bias

No publication bias was found for subgroup analyses, except for the overall studies using Egger’s test (P = 0.003) and studies on non-TNBC patients using Egger’s test (P = 0.003).

Discussions

Dose-response meta-analysis results showed that there was a linear dose-response relationship between BMI and lymph node metastasis in breast cancer. For every 1 kg/m2 increment of BMI, the risk of lymph node metastasis increased by 0.89%. After grouping by areas, no significant geographical variation was detected, and the risk of lymph node metastasis increased by 0.99, 0.85, and 0.61% for every 1 kg/m2 increment of BMI in Asian, European, and American women, respectively. Higher proportions of overweight and obese black or African-American breast cancer patients in the United States were mentioned in Ronny’s study [45] and some other researches [49], which also tended to have poorer outcomes than white patients. An observation study of 223,895 women diagnosed with invasive breast cancer classified all patients into 8 race/ethnic groups including non-Hispanic white, Hispanic white, black, Chinese, Japanese, south Asian, other Asian, and other ethnicity [50]. Black women were significantly more likely to present with lymph node metastases than non-Hispanic white women (24.1% vs 18.4, P < 0.001), and lower probability was observed in Japanese women (14.6% vs 18.4%, P < 0.001). Whether this race/ethnicity disparity existed when BMI were assessed remained unknown, although confounding factors, such as socioeconomic status and treatment imbalance, contributed in part. Also, in Chinese Han women, a possible interaction between Interleukin-18-137G/C, −607G/T polymorphisms and BMI in breast cancer patients was identified [51]. Overweight and obese (BMI ≥ 24 kg/m2) patients with G/T genotype had a 5.45-fold (95%CI, 1.74–17.06) increased risk of lymph node metastasis relative to those with T/T homozygotes. Subgroup analyses grouped by race/ethnicity or genotype would be more accurate to explore the linkage between obesity and lymph node metastasis in breast cancer, unfortunately, which was not available in the selected studies.
Besides, the lymph node metastasis risk of breast cancer with BMI in premenopausal women (1.44%/1 kg/m2) was similar to that in postmenopausal women (1.45%/1 kg/m2). In postmenopausal patients, obese women would have a high concentration of circulating estrogen, since most estrogen is produced in the adipose tissue [52]. Moreover, in the peripheral adipose tissue, obese women have a high activity of aromatase enzyme, which converts androstenedione to estrogen and testosterone to estradiol in turn stimulated by both interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) [53]. Elevated levels of estradiol are important to the development and growth of breast cancer, including lymph node metastasis, which are consistent with our results that shown increasing lymph node metastasis risk with BMI in postmenopausal women. Conversely, among premenopausal patients, systemic levels of estrogens are mainly produced by the ovaries, so not influenced by peripheral aromatization. It seems that obesity is not a independent factor in carcinogenesis and tumor metastasis in young breast cancer patients. Nevertheless, BMI was associated with a increased incidence for triple-negative subtype, but no association was shown in postmenopausal patients [54]. Similar findings also indicated that the association between obesity and TNBC was significant only among premenopausal women [55]. In addition to TNBC patients tended to present higher disease grade, more aggressive course, and high rate of recurrences [56], which may partly explained our results of similar lymph node metastasis risk in premenopausal and postmenopausal women. Due to small sample size in TNBC, subgroup analysis were not be conducted, as well as the interaction between triple-negative subtype and menopausal status. On the other hand, estrogen receptor (ER) positive in obese women also associated with menopausal status, although remained a matter of controversy in different studies [57, 58]. Only one included study [40] demonstrated results with ER positive and ER negative separately, and subgroup analysis was also failed.
When subgroup analysis was done for study period, it should be noted that a prominent increased risk (2.22%/1 kg/m2) of lymph node metastasis with BMI occurred in less than 5 years compared with more than 5 years (0.61%/1 kg/m2). A possible explanation is the apparent older participants (Table 1) in three included studies [34, 37, 44] followed less than 5 years, which constitutes approximately 80% of the subgroup patients. Another explanation is the substantial proportions (57–75%) of overweight and obese patients distributed in this subgroup, especially in large sample size study (75%) [37], which mainly resulted in higher lymph node metastasis risk in breast cancer patients.
Generally, lymph nodes involvement has been shown to predict for increased local and distant recurrence, as well as higher breast cancer mortality [59]. On basis of the Surveillance, Epidemiology, and End Results registry data, Brent’s [60] study found a significant association between large lymph node metastasis size and lower breast cancer-specific survival and overall survival even after controlling for other known prognosis factors including number of involved lymph nodes. Moreover, overweight and obesity are not only linked to breast cancer incidence, but women that are obese also have worse outcomes in terms of recurrence and survival. A clinical trial conducted in German [61] showed that obesity constituted an independent, adverse factor in patients with node-positive primary breast cancer. Women who were obese at the time of diagnosis had a shorter disease-free survival and overall survival as compared to women who were non-obese. Thus, BMI, as a modified risk factor, not only plays a crucial role in the occurrence of breast cancer, but also has adverse impact on the outcome and survival of patients. Similarly, we found that BMI had a great influence on the metastasis of various malignant tumors. For example, Zhihong Gong’s case-control study [62], following 752 middle-aged prostate cancer patients, concluded that obesity at the time of diagnosis was associated with an increased risk of developing prostate cancer metastasis, regardless of stage or primary treatment. Changhua Wu’s retrospective cohort study [63], enrolling 796 primary papillary thyroid cancer patients, indicated that the increment of BMI in patients was associated with the lymph node metastases, and other clinic-pathological features, such as tumor size, extrathyroidal invasion and so on.
It could be considered that the harm of tumor metastasis to patients should not be underestimated, but the reason was still unclear. Several hypothetical mechanisms could explain the association between obesity and lymph node metastasis in breast cancer. One is that the breast size of obese patients is larger, the adipose tissue is thicker, and the palpation of the primary tumor or enlarged axillary lymph nodes is more difficult. Therefore, the accuracy and sensitivity of ultrasonography, molybdenum target and other examinations will be reduced, leading to the delayed or even missed diagnosis of patients, so tumors often in advanced stage or have metastasized at the time of diagnosis [64]. Estrogen, most produced in adipose tissue, have a high level in obese or overweight women, via the aromatization of androstenedione to estrone and then converts to estradiol. This process would in turn facilitate tumor growth. In addition, leptin levels are also higher in obese individuals than those of normal weight, which related to tumor cell proliferation [65]. Some other adipocytokines, such as IL-6 and TNF-α released by activated macrophage, results in inflammation, which could be partly responsible for breast cancer development [66]. Other potential mechanisms for obesity-associated pathologic differences include higher insulin levels and insulin-like growth factors among obese women, which may increase estrogen levels and lead to higher proliferative rates [67]. Notably, in obese breast cancer patients, if the actual body surface area exceeds 2 m2, dose reductions during adjuvant chemotherapy are frequently applied [68]. Up to 40% of patients may receive limited chemotherapy doses that are not based on actual body weight to avoid possible side effects and toxicity [69]. Meanwhile, aromatase inhibitors, representing an effective endocrine treatment for hormone receptor positive breast cancer patients, were suspected to be less effective in suppression of estrogen levels enough to prevent recurrence in obese women regardless of menopausal status [70, 71]. Finally, obesity patients often have some unhealthy lifestyle habits, such as excess saturated fat intake and lack of physical activity, resulting in the accumulation of body acid cholesterol, trans fatty acid and other harmful lipid, which are recognized as risk factors for adverse prognosis of breast cancer.
Several limitations existed in our study. Firstly, BMI was calculated by measuring height and weight at the time of diagnosis, which was objective and avoided information bias to some extent. But long-term weight and body composition changes were not take into account, as well as some other potential modifiers (eg. waist circumference and waist-to-hip ratio) for the relationship of BMI and lymph node metastasis in breast cancer. Secondly, some included articles didn’t group BMI according to WHO standards, so the accuracy of the results would be affected in the highest versus lowest BMI meta-analysis. Thirdly, we didn’t have access to other key individual-level information except area, menopausal status, and study period, such as race, breast cancer sub-types, ER status, progesterone receptor (PR) status, human epidermal growth factor receptor 2 (HER2) status, and obesity associated risk factors (eg. dietary habits and physical inactivity), to examine the roles of these factors in lymph node metastasis. Finally, the retrospective nature of this meta-analysis could not be ignored, so the results should be interpreted with cautions.

Conclusions

In conclusion, BMI significantly increases the lymph node metastasis risk of breast cancer. Overweight and obese breast cancer patients might benefit from adhering to a healthy lifestyle aiming at losing or controlling weight, as part of the comprehensive oncologic therapy. Further original studies are warranted to identify the link of BMI and lymph node metastasis in breast cancer.

Acknowledgements

Not applicable.
Not applicable.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.CrossRef Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.CrossRef
2.
Zurück zum Zitat He J, Chen W. 2017 Chinese cancer registry annual report. Beijing: People’s Medical Publishing House; 2017. He J, Chen W. 2017 Chinese cancer registry annual report. Beijing: People’s Medical Publishing House; 2017.
3.
Zurück zum Zitat Sun KX, Zheng RS, Gu XY, et al. Incidence trend and change in the age distribution of female breast cancer in cancer registration areas of China from 2000 to 2014. Zhonghua Yu Fang Yi Xue Za Zhi. 2018;52(6):567–72.PubMed Sun KX, Zheng RS, Gu XY, et al. Incidence trend and change in the age distribution of female breast cancer in cancer registration areas of China from 2000 to 2014. Zhonghua Yu Fang Yi Xue Za Zhi. 2018;52(6):567–72.PubMed
4.
Zurück zum Zitat Baeyens-Fernandez JA, Molina-Portillo E, Pollan M, et al. Trends in incidence, mortality and survival in women with breast cancer from 1985 to 2012 in Granada, Spain: a population-based study. BMC Cancer. 2018;18(1):781.PubMedPubMedCentral Baeyens-Fernandez JA, Molina-Portillo E, Pollan M, et al. Trends in incidence, mortality and survival in women with breast cancer from 1985 to 2012 in Granada, Spain: a population-based study. BMC Cancer. 2018;18(1):781.PubMedPubMedCentral
5.
Zurück zum Zitat Virani S, Chindaprasirt J, Wirasorn K, et al. Breast Cancer incidence trends and projections in northeastern Thailand. J Epidemiol. 2018;28(7):323–30.PubMedPubMedCentral Virani S, Chindaprasirt J, Wirasorn K, et al. Breast Cancer incidence trends and projections in northeastern Thailand. J Epidemiol. 2018;28(7):323–30.PubMedPubMedCentral
6.
Zurück zum Zitat Williams EP, Mesidor M, Winters K, et al. Overweight and obesity: prevalence, consequences, and causes of a growing public health problem. Curr Obes Rep. 2015;4(3):363–70.PubMed Williams EP, Mesidor M, Winters K, et al. Overweight and obesity: prevalence, consequences, and causes of a growing public health problem. Curr Obes Rep. 2015;4(3):363–70.PubMed
7.
Zurück zum Zitat Finkelstein EA, Khavjou OA, Thompson H, et al. Obesity and severe obesity forecasts through 2030. Am J Prev Med. 2012;42(6):563–70.PubMed Finkelstein EA, Khavjou OA, Thompson H, et al. Obesity and severe obesity forecasts through 2030. Am J Prev Med. 2012;42(6):563–70.PubMed
8.
Zurück zum Zitat Choi S, Kim K, Kim SM, et al. Association of Obesity or weight change with coronary heart disease among young adults in South Korea. JAMA Intern Med. 2018;178(8):1060–8.PubMedPubMedCentral Choi S, Kim K, Kim SM, et al. Association of Obesity or weight change with coronary heart disease among young adults in South Korea. JAMA Intern Med. 2018;178(8):1060–8.PubMedPubMedCentral
9.
Zurück zum Zitat Ryu S, Frith E, Pedisic Z, et al. Secular trends in the association between obesity and hypertension among adults in the United States, 1999-2014. Eur J Intern Med. 2019;62:37–42.PubMed Ryu S, Frith E, Pedisic Z, et al. Secular trends in the association between obesity and hypertension among adults in the United States, 1999-2014. Eur J Intern Med. 2019;62:37–42.PubMed
10.
Zurück zum Zitat Tuei VC, Maiyoh GK, Ha CE. Type 2 diabetes mellitus and obesity in sub-Saharan Africa. Diabetes Metab Res Rev. 2010;26(6):433–45.PubMed Tuei VC, Maiyoh GK, Ha CE. Type 2 diabetes mellitus and obesity in sub-Saharan Africa. Diabetes Metab Res Rev. 2010;26(6):433–45.PubMed
11.
Zurück zum Zitat Sullivan PW, Ghushchyan VH, Ben-Joseph R. The impact of obesity on diabetes, hyperlipidemia and hypertension in the United States. Qual Life Res. 2008;17(8):1063–71.PubMed Sullivan PW, Ghushchyan VH, Ben-Joseph R. The impact of obesity on diabetes, hyperlipidemia and hypertension in the United States. Qual Life Res. 2008;17(8):1063–71.PubMed
12.
Zurück zum Zitat Shakiba M, Mansournia MA, Kaufman JS. Estimating Effect of Obesity on Stroke Using G-Estimation: The ARIC study. Obesity (Silver Spring). 2019;27(2):304–8. Shakiba M, Mansournia MA, Kaufman JS. Estimating Effect of Obesity on Stroke Using G-Estimation: The ARIC study. Obesity (Silver Spring). 2019;27(2):304–8.
13.
Zurück zum Zitat Lai SW. The relationship between obesity in adolescence and pancreatic cancer in adulthood. Cancer. 2019;125(12):2132.PubMed Lai SW. The relationship between obesity in adolescence and pancreatic cancer in adulthood. Cancer. 2019;125(12):2132.PubMed
14.
Zurück zum Zitat Irani J, Lefebvre O, Murat F, et al. Obesity in relation to prostate cancer risk: comparison with a population having benign prostatic hyperplasia. BJU Int. 2003;91(6):482–4.PubMed Irani J, Lefebvre O, Murat F, et al. Obesity in relation to prostate cancer risk: comparison with a population having benign prostatic hyperplasia. BJU Int. 2003;91(6):482–4.PubMed
15.
Zurück zum Zitat Montazeri A, Sadighi J, Farzadi F, et al. Weight, height, body mass index and risk of breast cancer in postmenopausal women: a case-control study. BMC Cancer. 2008;8(1):278–80.PubMedPubMedCentral Montazeri A, Sadighi J, Farzadi F, et al. Weight, height, body mass index and risk of breast cancer in postmenopausal women: a case-control study. BMC Cancer. 2008;8(1):278–80.PubMedPubMedCentral
16.
Zurück zum Zitat Wada K, Nagata C, Tamakoshi A, et al. Body mass index and breast cancer risk in Japan: a pooled analysis of eight population-based cohort studies. Ann Oncol. 2014;25(2):519–254.PubMed Wada K, Nagata C, Tamakoshi A, et al. Body mass index and breast cancer risk in Japan: a pooled analysis of eight population-based cohort studies. Ann Oncol. 2014;25(2):519–254.PubMed
17.
Zurück zum Zitat Chen Y, Liu L, Zhou Q, et al. Body mass index had different effects on premenopausal and postmenopausal breast cancer risks: a dose-response meta-analysis with 3,318,796 subjects from 31 cohort studies. BMC Public Health. 2017;17(1):936.PubMedPubMedCentral Chen Y, Liu L, Zhou Q, et al. Body mass index had different effects on premenopausal and postmenopausal breast cancer risks: a dose-response meta-analysis with 3,318,796 subjects from 31 cohort studies. BMC Public Health. 2017;17(1):936.PubMedPubMedCentral
18.
Zurück zum Zitat Kawai M, Tomotaki A, Miyata H, et al. Body mass index and survival after diagnosis of invasive breast cancer: a study based on the Japanese National Clinical Database-Breast Cancer Registry. Cancer Med. 2016;5(6):1328–40.PubMedPubMedCentral Kawai M, Tomotaki A, Miyata H, et al. Body mass index and survival after diagnosis of invasive breast cancer: a study based on the Japanese National Clinical Database-Breast Cancer Registry. Cancer Med. 2016;5(6):1328–40.PubMedPubMedCentral
19.
Zurück zum Zitat Chan DS, Vieira AR, Aune D, et al. Body mass index and survival in women with breast cancer-systematic literature review and meta-analysis of 82 follow-up studies. Ann Oncol. 2014;25(10):1901–14.PubMedPubMedCentral Chan DS, Vieira AR, Aune D, et al. Body mass index and survival in women with breast cancer-systematic literature review and meta-analysis of 82 follow-up studies. Ann Oncol. 2014;25(10):1901–14.PubMedPubMedCentral
20.
Zurück zum Zitat Haakinson DJ, Leeds SG, Dueck AC, et al. The impact of obesity on breast cancer: a retrospective review. Ann Surg Oncol. 2012;19(9):3012–8.PubMed Haakinson DJ, Leeds SG, Dueck AC, et al. The impact of obesity on breast cancer: a retrospective review. Ann Surg Oncol. 2012;19(9):3012–8.PubMed
21.
Zurück zum Zitat Loi S, Milne RL, Friedlander ML, et al. Obesity and outcomes in premenopausal and postmenopausal breast cancer. Cancer Epidemiol Biomark Prev. 2005;14(7):1686–91. Loi S, Milne RL, Friedlander ML, et al. Obesity and outcomes in premenopausal and postmenopausal breast cancer. Cancer Epidemiol Biomark Prev. 2005;14(7):1686–91.
22.
Zurück zum Zitat Cui Y, Whiteman MK, Flaws JA, et al. Body mass and stage of breast cancer at diagnosis. Int J Cancer. 2002;98(2):279–83.PubMed Cui Y, Whiteman MK, Flaws JA, et al. Body mass and stage of breast cancer at diagnosis. Int J Cancer. 2002;98(2):279–83.PubMed
23.
Zurück zum Zitat DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7(3):177–88. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7(3):177–88.
24.
Zurück zum Zitat Aune D, Saugstad OD, Henriksen T, et al. Maternal body mass index and the risk of fetal death, stillbirth, and infant death: a systematic review and meta-analysis. JAMA. 2014;311(15):1536–46.PubMed Aune D, Saugstad OD, Henriksen T, et al. Maternal body mass index and the risk of fetal death, stillbirth, and infant death: a systematic review and meta-analysis. JAMA. 2014;311(15):1536–46.PubMed
25.
Zurück zum Zitat Bagnardi V, Rota M, Botteri E, et al. Light alcohol drinking and cancer: a meta-analysis. Ann Oncol. 2013;24(2):301–8.PubMed Bagnardi V, Rota M, Botteri E, et al. Light alcohol drinking and cancer: a meta-analysis. Ann Oncol. 2013;24(2):301–8.PubMed
26.
Zurück zum Zitat Bradford B, Cronin R, McKinlay C, et al. Maternally perceived fetal movement patterns: the influence of body mass index. Early Hum Dev. 2019;140:104922.PubMed Bradford B, Cronin R, McKinlay C, et al. Maternally perceived fetal movement patterns: the influence of body mass index. Early Hum Dev. 2019;140:104922.PubMed
27.
Zurück zum Zitat Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50(4):1088–101.PubMed Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50(4):1088–101.PubMed
28.
Zurück zum Zitat Egger M, Davey SG, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315(7109):629–34.PubMedPubMedCentral Egger M, Davey SG, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315(7109):629–34.PubMedPubMedCentral
29.
Zurück zum Zitat Zhang X, Shi L, Li J, et al. Relationship between body mass index and lymph node metastasis of breast cancer. J Clin Surg. 2014;22(4):299–300. Zhang X, Shi L, Li J, et al. Relationship between body mass index and lymph node metastasis of breast cancer. J Clin Surg. 2014;22(4):299–300.
30.
Zurück zum Zitat Biglia N, Peano E, Sgandurra P, et al. Body mass index (BMI) and breast cancer: impact on tumor histopathologic features, cancer subtypes and recurrence rate in pre and postmenopausal women. Gynecol Endocrinol. 2013;29(3):263–7.PubMed Biglia N, Peano E, Sgandurra P, et al. Body mass index (BMI) and breast cancer: impact on tumor histopathologic features, cancer subtypes and recurrence rate in pre and postmenopausal women. Gynecol Endocrinol. 2013;29(3):263–7.PubMed
31.
Zurück zum Zitat Hanko-Bauer O, Georgescu R, Coros MF, et al. Correlation between obesity and prognostic/predictive parameters with emphasis on the importance of lymph node metastases in patients with invasive breast carcinoma. Pol J Pathol. 2017;68(1):33–9.PubMed Hanko-Bauer O, Georgescu R, Coros MF, et al. Correlation between obesity and prognostic/predictive parameters with emphasis on the importance of lymph node metastases in patients with invasive breast carcinoma. Pol J Pathol. 2017;68(1):33–9.PubMed
32.
Zurück zum Zitat Kaviani A, Neishaboury M, Mohammadzadeh N, et al. Effects of obesity on presentation of breast cancer, lymph node metastasis and patient survival: a retrospective review. Asian Pac J Cancer Prev. 2013;14(4):2225–9.PubMed Kaviani A, Neishaboury M, Mohammadzadeh N, et al. Effects of obesity on presentation of breast cancer, lymph node metastasis and patient survival: a retrospective review. Asian Pac J Cancer Prev. 2013;14(4):2225–9.PubMed
33.
Zurück zum Zitat Keskin O, Aksoy S, Babacan T, et al. Impact of the obesity on lymph node status in operable breast cancer patients. J BUON. 2013;18(4):824–30.PubMed Keskin O, Aksoy S, Babacan T, et al. Impact of the obesity on lymph node status in operable breast cancer patients. J BUON. 2013;18(4):824–30.PubMed
34.
Zurück zum Zitat Porter GA, Inglis KM, Wood LA, et al. Effect of obesity on presentation of breast cancer. Ann Surg Oncol. 2006;13(3):327–32.PubMed Porter GA, Inglis KM, Wood LA, et al. Effect of obesity on presentation of breast cancer. Ann Surg Oncol. 2006;13(3):327–32.PubMed
35.
Zurück zum Zitat Ewertz M, Jensen MB, Gunnarsdottir KA, et al. Effect of obesity on prognosis after early-stage breast cancer. J Clin Oncol. 2011;29(1):25–31.PubMed Ewertz M, Jensen MB, Gunnarsdottir KA, et al. Effect of obesity on prognosis after early-stage breast cancer. J Clin Oncol. 2011;29(1):25–31.PubMed
36.
Zurück zum Zitat Herlevic VC, Mowad R, Miller JK, et al. Breast cancer outcomes in a population with high prevalence of obesity. J Surg Res. 2015;198(2):371–6.PubMed Herlevic VC, Mowad R, Miller JK, et al. Breast cancer outcomes in a population with high prevalence of obesity. J Surg Res. 2015;198(2):371–6.PubMed
37.
Zurück zum Zitat Neuhouser ML, Aragaki AK, Prentice RL, et al. Overweight, obesity, and postmenopausal invasive breast Cancer risk: a secondary analysis of the Women's Health Initiative randomized clinical trials. JAMA Oncol. 2015;1(5):611–21.PubMedPubMedCentral Neuhouser ML, Aragaki AK, Prentice RL, et al. Overweight, obesity, and postmenopausal invasive breast Cancer risk: a secondary analysis of the Women's Health Initiative randomized clinical trials. JAMA Oncol. 2015;1(5):611–21.PubMedPubMedCentral
38.
Zurück zum Zitat Berclaz G, Li S, Price KN, et al. Body mass index as a prognostic feature in operable breast cancer: the international breast Cancer study group experience. Ann Oncol. 2004;15(6):875–84.PubMed Berclaz G, Li S, Price KN, et al. Body mass index as a prognostic feature in operable breast cancer: the international breast Cancer study group experience. Ann Oncol. 2004;15(6):875–84.PubMed
39.
Zurück zum Zitat Garrisi VM, Tufaro A, Trerotoli P, et al. Body mass index and serum proteomic profile in breast cancer and healthy women: a prospective study. PLoS One. 2012;7(11):e49631.PubMedPubMedCentral Garrisi VM, Tufaro A, Trerotoli P, et al. Body mass index and serum proteomic profile in breast cancer and healthy women: a prospective study. PLoS One. 2012;7(11):e49631.PubMedPubMedCentral
40.
Zurück zum Zitat Mazzarella L, Disalvatore D, Bagnardi V, et al. Obesity increases the incidence of distant metastases in oestrogen receptor-negative human epidermal growth factor receptor 2-positive breast cancer patients. Eur J Cancer. 2013;49(17):3588–97.PubMed Mazzarella L, Disalvatore D, Bagnardi V, et al. Obesity increases the incidence of distant metastases in oestrogen receptor-negative human epidermal growth factor receptor 2-positive breast cancer patients. Eur J Cancer. 2013;49(17):3588–97.PubMed
41.
Zurück zum Zitat Smith A, Mullooly M, Murphy L, et al. Associations between obesity, smoking and lymph node status at breast cancer diagnosis in the prostate, lung, colorectal and ovarian (PLCO) Cancer screening trial. PLoS One. 2018;13(8):e0202291.PubMedPubMedCentral Smith A, Mullooly M, Murphy L, et al. Associations between obesity, smoking and lymph node status at breast cancer diagnosis in the prostate, lung, colorectal and ovarian (PLCO) Cancer screening trial. PLoS One. 2018;13(8):e0202291.PubMedPubMedCentral
42.
Zurück zum Zitat Wang K, Wu YT, Zhang X, et al. Clinicopathologic and prognostic significance of body mass index (BMI) among breast Cancer patients in Western China: a retrospective multicenter cohort based on Western China clinical cooperation group (WCCCG). Biomed Res Int. 2019;2019:3692093.PubMedPubMedCentral Wang K, Wu YT, Zhang X, et al. Clinicopathologic and prognostic significance of body mass index (BMI) among breast Cancer patients in Western China: a retrospective multicenter cohort based on Western China clinical cooperation group (WCCCG). Biomed Res Int. 2019;2019:3692093.PubMedPubMedCentral
43.
Zurück zum Zitat Copson ER, Cutress RI, Maishman T, et al. Obesity and the outcome of young breast cancer patients in the UK: the POSH study. Ann Oncol. 2015;26(1):101–12.PubMed Copson ER, Cutress RI, Maishman T, et al. Obesity and the outcome of young breast cancer patients in the UK: the POSH study. Ann Oncol. 2015;26(1):101–12.PubMed
44.
Zurück zum Zitat Kamineni A, Anderson ML, White E, et al. Body mass index, tumor characteristics, and prognosis following diagnosis of early-stage breast cancer in a mammographically screened population. Cancer Causes Control. 2013;24(2):305–12.PubMed Kamineni A, Anderson ML, White E, et al. Body mass index, tumor characteristics, and prognosis following diagnosis of early-stage breast cancer in a mammographically screened population. Cancer Causes Control. 2013;24(2):305–12.PubMed
45.
Zurück zum Zitat Mowad R, Chu QD, Li BD, et al. Does obesity have an effect on outcomes in triple-negative breast cancer? J Surg Res. 2013;184(1):253–9.PubMed Mowad R, Chu QD, Li BD, et al. Does obesity have an effect on outcomes in triple-negative breast cancer? J Surg Res. 2013;184(1):253–9.PubMed
46.
Zurück zum Zitat Ademuyiwa FO, Groman A, O'Connor T, et al. Impact of body mass index on clinical outcomes in triple-negative breast cancer. Cancer. 2011;117(18):4132–40.PubMed Ademuyiwa FO, Groman A, O'Connor T, et al. Impact of body mass index on clinical outcomes in triple-negative breast cancer. Cancer. 2011;117(18):4132–40.PubMed
47.
Zurück zum Zitat Dawood S, Broglio K, Gonzalez-Angulo AM, et al. Prognostic value of body mass index in locally advanced breast cancer. Clin Cancer Res. 2008;14(6):1718–25.PubMed Dawood S, Broglio K, Gonzalez-Angulo AM, et al. Prognostic value of body mass index in locally advanced breast cancer. Clin Cancer Res. 2008;14(6):1718–25.PubMed
48.
Zurück zum Zitat Yazici O, Aksoy S, Sendur MA, et al. The effect of obesity on recurrence pattern in early breast cancer patients. J BUON. 2015;20(4):954–62.PubMed Yazici O, Aksoy S, Sendur MA, et al. The effect of obesity on recurrence pattern in early breast cancer patients. J BUON. 2015;20(4):954–62.PubMed
49.
Zurück zum Zitat Schmitz KH, Neuhouser ML, Agurs-Collins T, et al. Impact of obesity on cancer survivorship and the potential relevance of race and ethnicity. J Natl Cancer Inst. 2013;105(18):1344–54.PubMedPubMedCentral Schmitz KH, Neuhouser ML, Agurs-Collins T, et al. Impact of obesity on cancer survivorship and the potential relevance of race and ethnicity. J Natl Cancer Inst. 2013;105(18):1344–54.PubMedPubMedCentral
50.
Zurück zum Zitat Iqbal J, Ginsburg O, Rochon PA, Sun P, Narod SA. Differences in breast cancer stage at diagnosis and cancer-specific survival by race and ethnicity in the United States. JAMA. 2015;313(2):165–73.PubMed Iqbal J, Ginsburg O, Rochon PA, Sun P, Narod SA. Differences in breast cancer stage at diagnosis and cancer-specific survival by race and ethnicity in the United States. JAMA. 2015;313(2):165–73.PubMed
51.
Zurück zum Zitat Qiao X, Xu D, Sun D, Sun S, Huang Z, Cui W. Association analysis of interleukin-18 gene promoter region polymorphisms and susceptibility to sporadic breast cancer in Chinese Han women. J Clin Lab Anal. 2018;32(9):e22591.PubMedPubMedCentral Qiao X, Xu D, Sun D, Sun S, Huang Z, Cui W. Association analysis of interleukin-18 gene promoter region polymorphisms and susceptibility to sporadic breast cancer in Chinese Han women. J Clin Lab Anal. 2018;32(9):e22591.PubMedPubMedCentral
52.
Zurück zum Zitat Simone V, D'Avenia M, Argentiero A, et al. Obesity and breast Cancer: molecular interconnections and potential clinical applications. Oncologist. 2016;21(4):404–17.PubMedPubMedCentral Simone V, D'Avenia M, Argentiero A, et al. Obesity and breast Cancer: molecular interconnections and potential clinical applications. Oncologist. 2016;21(4):404–17.PubMedPubMedCentral
53.
Zurück zum Zitat Rose DP, Vona-Davis L. Biochemical and molecular mechanisms for the association between obesity, chronic inflammation, and breast cancer. Biofactors. 2014;40(1):1–12.PubMed Rose DP, Vona-Davis L. Biochemical and molecular mechanisms for the association between obesity, chronic inflammation, and breast cancer. Biofactors. 2014;40(1):1–12.PubMed
54.
Zurück zum Zitat Sahin S, Erdem GU, Karatas F, et al. The association between body mass index and immunohistochemical subtypes in breast cancer. Breast. 2017;32:227–36. Sahin S, Erdem GU, Karatas F, et al. The association between body mass index and immunohistochemical subtypes in breast cancer. Breast. 2017;32:227–36.
55.
Zurück zum Zitat Pierobon M, Frankenfeld CL. Obesity as a risk factor for triple-negative breast cancers: a systematic review and meta-analysis. Breast Cancer Res Treat. 2013;137(1):307–14.PubMed Pierobon M, Frankenfeld CL. Obesity as a risk factor for triple-negative breast cancers: a systematic review and meta-analysis. Breast Cancer Res Treat. 2013;137(1):307–14.PubMed
56.
Zurück zum Zitat Dent R, Trudeau M, Pritchard KI, et al. Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res. 2007;13:4429–34.PubMed Dent R, Trudeau M, Pritchard KI, et al. Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res. 2007;13:4429–34.PubMed
57.
Zurück zum Zitat Yoo K, Tajima K, Park S, et al. Postmenopausal obesity as a breast cancer risk factor according to estrogen and progesterone receptor status (Japan). Cancer Lett. 2001;167(1):57–63.PubMed Yoo K, Tajima K, Park S, et al. Postmenopausal obesity as a breast cancer risk factor according to estrogen and progesterone receptor status (Japan). Cancer Lett. 2001;167(1):57–63.PubMed
58.
Zurück zum Zitat Gillespie EF, Sorbero ME, Hanauer DA, et al. Obesity and angiolymphatic invasion in primary breast cancer. Ann Surg Oncol. 2010;17(3):752–9.PubMed Gillespie EF, Sorbero ME, Hanauer DA, et al. Obesity and angiolymphatic invasion in primary breast cancer. Ann Surg Oncol. 2010;17(3):752–9.PubMed
59.
Zurück zum Zitat McGale P, Taylor C, Correa C, et al. Effect of radiotherapy after mastectomy and axillary surgery on 10-year recurrence and 20-year breast cancer mortality: meta-analysis of individual patient data for 8135 women in 22 randomised trials. Lancet. 2014;383(9935):2127–35.PubMed McGale P, Taylor C, Correa C, et al. Effect of radiotherapy after mastectomy and axillary surgery on 10-year recurrence and 20-year breast cancer mortality: meta-analysis of individual patient data for 8135 women in 22 randomised trials. Lancet. 2014;383(9935):2127–35.PubMed
60.
Zurück zum Zitat Rose BS, Jiang W, Punglia RS. Effect of lymph node metastasis size on breast cancer-specific and overall survival in women with node-positive breast cancer. Breast Cancer Res Treat. 2015;152(1):209–16.PubMed Rose BS, Jiang W, Punglia RS. Effect of lymph node metastasis size on breast cancer-specific and overall survival in women with node-positive breast cancer. Breast Cancer Res Treat. 2015;152(1):209–16.PubMed
61.
Zurück zum Zitat Scholz C, Andergassen U, Hepp P, et al. Obesity as an independent risk factor for decreased survival in node-positive high-risk breast cancer. Breast Cancer Res Treat. 2015;151(3):569–76.PubMed Scholz C, Andergassen U, Hepp P, et al. Obesity as an independent risk factor for decreased survival in node-positive high-risk breast cancer. Breast Cancer Res Treat. 2015;151(3):569–76.PubMed
62.
Zurück zum Zitat Gong Z, Agalliu I, Lin DW, et al. Obesity is associated with increased risks of prostate cancer metastasis and death after initial cancer diagnosis in middle-aged men. Cancer. 2007;109(6):1192–202.PubMed Gong Z, Agalliu I, Lin DW, et al. Obesity is associated with increased risks of prostate cancer metastasis and death after initial cancer diagnosis in middle-aged men. Cancer. 2007;109(6):1192–202.PubMed
63.
Zurück zum Zitat Wu C, Wang L, Chen W, et al. Associations between body mass index and lymph node metastases of patients with papillary thyroid cancer: a retrospective study. Medicine (Baltimore). 2017;96(9):e6202. Wu C, Wang L, Chen W, et al. Associations between body mass index and lymph node metastases of patients with papillary thyroid cancer: a retrospective study. Medicine (Baltimore). 2017;96(9):e6202.
64.
Zurück zum Zitat Arndt V, Stürmer T, Stegmaier C, et al. Patient delay and stage of diagnosis among breast cancer patients in Germany -- a population based study. Br J Cancer. 2002;86(7):1034–40.PubMedPubMedCentral Arndt V, Stürmer T, Stegmaier C, et al. Patient delay and stage of diagnosis among breast cancer patients in Germany -- a population based study. Br J Cancer. 2002;86(7):1034–40.PubMedPubMedCentral
65.
Zurück zum Zitat Geisler J, Haynes B, Ekse D, et al. Total body aromatization in postmenopausal breast cancer patients is strongly correlated to plasma leptin levels. J Steroid Biochem Mol Biol. 2007;104(1–2):27–34.PubMed Geisler J, Haynes B, Ekse D, et al. Total body aromatization in postmenopausal breast cancer patients is strongly correlated to plasma leptin levels. J Steroid Biochem Mol Biol. 2007;104(1–2):27–34.PubMed
66.
Zurück zum Zitat Olefsky JM, Glass CK. Macrophages, inflammation, and insulin resistance. Annu Rev Physiol. 2010;72(1):219–46.PubMed Olefsky JM, Glass CK. Macrophages, inflammation, and insulin resistance. Annu Rev Physiol. 2010;72(1):219–46.PubMed
67.
Zurück zum Zitat Goodwin PJ, Ennis M, Pritchard KI, et al. Fasting insulin and outcome in early-stage breast cancer: results of a prospective cohort study. J Clin Oncol. 2002;20(1):42–51.PubMed Goodwin PJ, Ennis M, Pritchard KI, et al. Fasting insulin and outcome in early-stage breast cancer: results of a prospective cohort study. J Clin Oncol. 2002;20(1):42–51.PubMed
68.
Zurück zum Zitat Madarnas Y, Sawka CA, Franssen E, Bjarnason GA. Are medical oncologists biased in their treatment of the large woman with breast cancer? Breast Cancer Res Treat. 2001;66(2):123–33.PubMed Madarnas Y, Sawka CA, Franssen E, Bjarnason GA. Are medical oncologists biased in their treatment of the large woman with breast cancer? Breast Cancer Res Treat. 2001;66(2):123–33.PubMed
69.
Zurück zum Zitat Griggs JJ, Mangu PB, Anderson H, et al. Appropriate chemotherapy dosing for obese adult patients with cancer: American Society of Clinical Oncology clinical practice guideline. J Clin Oncol. 2012;30(13):1553–61.PubMed Griggs JJ, Mangu PB, Anderson H, et al. Appropriate chemotherapy dosing for obese adult patients with cancer: American Society of Clinical Oncology clinical practice guideline. J Clin Oncol. 2012;30(13):1553–61.PubMed
70.
Zurück zum Zitat Pfeiler G, Königsberg R, Fesl C, et al. Impact of body mass index on the efficacy of endocrine therapy in premenopausal patients with breast cancer: an analysis of the prospective ABCSG-12 trial. J Clin Oncol. 2011;29(19):2653–9.PubMed Pfeiler G, Königsberg R, Fesl C, et al. Impact of body mass index on the efficacy of endocrine therapy in premenopausal patients with breast cancer: an analysis of the prospective ABCSG-12 trial. J Clin Oncol. 2011;29(19):2653–9.PubMed
71.
Zurück zum Zitat Folkerd EJ, Dixon JM, Renshaw L, A'Hern RP, Dowsett M. Suppression of plasma estrogen levels by letrozole and anastrozole is related to body mass index in patients with breast cancer. J Clin Oncol. 2012;30(24):2977–80.PubMed Folkerd EJ, Dixon JM, Renshaw L, A'Hern RP, Dowsett M. Suppression of plasma estrogen levels by letrozole and anastrozole is related to body mass index in patients with breast cancer. J Clin Oncol. 2012;30(24):2977–80.PubMed
Metadaten
Titel
Body mass index increases the lymph node metastasis risk of breast cancer: a dose-response meta-analysis with 52904 subjects from 20 cohort studies
verfasst von
Junyi Wang
Yaning Cai
Fangfang Yu
Zhiguang Ping
Li Liu
Publikationsdatum
01.12.2020
Verlag
BioMed Central
Erschienen in
BMC Cancer / Ausgabe 1/2020
Elektronische ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-020-07064-0

Weitere Artikel der Ausgabe 1/2020

BMC Cancer 1/2020 Zur Ausgabe

Blutdrucksenkung könnte Uterusmyome verhindern

Frauen mit unbehandelter oder neu auftretender Hypertonie haben ein deutlich erhöhtes Risiko für Uterusmyome. Eine Therapie mit Antihypertensiva geht hingegen mit einer verringerten Inzidenz der gutartigen Tumoren einher.

Alphablocker schützt vor Miktionsproblemen nach der Biopsie

16.05.2024 alpha-1-Rezeptorantagonisten Nachrichten

Nach einer Prostatabiopsie treten häufig Probleme beim Wasserlassen auf. Ob sich das durch den periinterventionellen Einsatz von Alphablockern verhindern lässt, haben australische Mediziner im Zuge einer Metaanalyse untersucht.

Antikörper-Wirkstoff-Konjugat hält solide Tumoren in Schach

16.05.2024 Zielgerichtete Therapie Nachrichten

Trastuzumab deruxtecan scheint auch jenseits von Lungenkrebs gut gegen solide Tumoren mit HER2-Mutationen zu wirken. Dafür sprechen die Daten einer offenen Pan-Tumor-Studie.

Mammakarzinom: Senken Statine das krebsbedingte Sterberisiko?

15.05.2024 Mammakarzinom Nachrichten

Frauen mit lokalem oder metastasiertem Brustkrebs, die Statine einnehmen, haben eine niedrigere krebsspezifische Mortalität als Patientinnen, die dies nicht tun, legen neue Daten aus den USA nahe.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.