Skip to main content
Erschienen in: BMC Medicine 1/2010

Open Access 01.12.2010 | Commentary

Dyskinesias after neural transplantation in Parkinson's disease: what do we know and what is next?

verfasst von: Marios Politis

Erschienen in: BMC Medicine | Ausgabe 1/2010

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

Since the 1980 s, when cell transplantation into the brain as a cure for Parkinson's disease hit the headlines, several patients with Parkinson's disease have received transplantation of cells from aborted fetuses with the aim of replacing the dopamine cells destroyed by the disease. The results in human studies were unpredictable and raised controversy. Some patients showed remarkable improvement, but many of the patients who underwent transplantation experienced serious disabling adverse reactions, putting an end to human trials since the late 1990 s. These side effects consisted of patients' developing troublesome involuntary, uncontrolled movements in the absence of dopaminergic medication, so-called off-phase, graft-induced dyskinesias. Notwithstanding the several mechanisms having been proposed, the pathogenesis of this type of dyskinesias remained unclear and there was no effective treatment. It has been suggested that graft-induced dyskinesias could be related to fiber outgrowth from the graft causing increased dopamine release, that could be related to the failure of grafts to restore a precise distribution of dopaminergic synaptic contacts on host neurons or may also be induced by inflammatory and immune responses around the graft. A recent study, however, hypothesized that an important factor for the development of graft-induced dyskinesias could include the composition of the cell suspension and specifically that a high proportion of serotonergic neurons cografted in these transplants engage in nonphysiological properties such as false transmitter release. The findings from this study showed serotonergic hyperinnervation in the grafted striatum of two patients with Parkinson's disease who exhibited major motor recovery after transplantation with fetal mesencephalic tissue but later developed graft-induced dyskinesias. Moreover, the dyskinesias were significantly attenuated by administration of a serotonin agonist, which activates the inhibitory serotonin autoreceptors and attenuates transmitter release from serotonergic neurons, indicating that graft-induced dyskinesias were caused by the dense serotonergic innervation engaging in false transmitter release. Here the implications of the recent findings for the development of new human trials testing the safety and efficacy of cell transplantation in patients with Parkinson's disease are discussed.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1741-7015-8-80) contains supplementary material, which is available to authorized users.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

MP is entirely responsible for the content of this article.
Abkürzungen
DA
dopamine
DAT
dopamine transporter
GID
graft-induced dyskinesia
5-HT
serotonin
LID
L-DOPA-induced dyskinesia
PD
Parkinson's disease
PET
positron emission tomography
SERT
serotonin transporters
VM
ventral mesencephalic.

Introduction

Parkinson's disease (PD) is a common chronic neurodegenerative disorder characterized by the clinical presentation of motor (tremor, rigidity and bradykinesia) and nonmotor (e.g., autonomic, mood and cognitive) symptoms. Although the aetiology and pathogenetic mechanisms that cause PD remain unknown, classical descriptions of PD pathology mainly focus on the progressive degeneration of the nigrostriatal dopamine (DA) pathway and the pathology in other brainstem, cortical and subcortical structures [1]. PD patients are given DA replacement therapy for symptomatic relief, but these drugs prove beneficial up to a point and after a few years of L-3,4-dihydroxyphenylalanine (L-DOPA) therapy, the majority of PD patients develop motor complications, including abnormal involuntary movements called L-DOPA-induced dyskinesias (LIDs) [2]. As a result of this progressive decline in the clinical course of PD, more sophisticated therapeutic management has been warranted, one of which involves transplantation of fetal ventral mesencephalic (VM) tissue in the striatum of patients with PD. Human trials with fetal VM transplantation for PD have been conducted over the past two decades on the basis of the hypothesis that if PD is caused by degeneration of the nigrostriatal DA pathway and loss of DA innervation in the striatum, then restoration of the lost DA neurons by transplantation could reverse the loss of motor function. However, open-label trials and double-blind sham surgery controlled trials yielded inconsistent results and raised controversy [3]. Although some of the PD patients who underwent transplantation showed remarkable improvement of their motor symptoms, many of them had severe adverse reactions consisting of developing troublesome involuntary movements when off their DA drugs, called off-phase, graft-induced dyskinesias (GIDs) [46]. Whilst the exact mechanisms underlying the development of GIDs have remained unknown and there has been no effective treatment, proposed theories have been subject to extensive debate.

Discussion

GIDs have been suggested to develop as a result of fiber outgrowth from the graft, causing increased DA release [4], or as the result of unevenly low or intermediate DA release from the striatum due to the imbalanced DA reinnervation [7]. However, two other studies argued against this view and reported no differences in either regional or global levels of striatal DA reinnervation between PD patients who have undergone transplantation with and without GIDs [6] and no correlation between GIDs and excessive DA reinnervation [5].
Other theories have included observations from animal models of PD and suggested that failure of the grafts to restore DA synaptic contacts with the host striatal neurons could result in abnormal signaling and abnormal synaptic plasticity in the transplanted striatum and therefore dyskinesia [8]. Furthermore, the occurrence of GIDs could be a result of inflammatory and immune responses around the graft. Clinical observations have suggested that GIDs develop after early discontinuation of immunosuppressive therapy [6, 9], with signs of an inflammatory reaction around the grafts in autopsied cases [6]. An immunological reaction around the graft may cause a degree of tissue rejection, thereby diminishing the restoration of sustained striatal synaptic DA levels, which can be related to GIDs. Although both of these hypotheses appear plausible, they require experimental verification with animal and human studies.
Recent work from our lab [10] has focused on another population of neurons, namely, the serotonin (5-HT) neurons that appear in developmental stages caudally to the VM and were also transplanted. The hypothesis was based on the ability of 5-HT neurons to convert, store and release DA, as was shown after L-DOPA administration in animal models of PD [11]. Gain of function from a graft-derived, dense 5-HT terminal network in an otherwise restored striatal DA neuron function would lead to mishandling of the extracellular levels of striatal DA from the 5-HT neurons and would be responsible for the occurrence of GIDs.
Two patients with PD showing remarkable improvement of their motor symptoms more than a decade after striatal transplantation with fetal VM tissue, who received no DA drugs but developed disabling GIDs, were studied clinically and with positron emission tomography (PET) and radioligands tagging markers of presynaptic DA and 5-HT neurons. The results indicated excessive striatal 5-HT innervation in all grafted sites. Systemic administration of a 5-HT1A agonist, buspirone, which activates the inhibitory 5-HT autoreceptors and attenuates transmitter release from serotonergic neurons, resulted in significant attenuation of GIDs [10].
The results suggested that the occurrence of GIDs in these patients is caused by a 'dialog' between the graft-derived excess of 5-HT neurons and the normally functioning DA neurons (Figure 1). The hypothesis regarding this mechanism proposes that 5-HT neurons are responsible for dysregulating the DA release in the synapse. This could occur as a result of 5-HT transporters' taking up DA and releasing it as a 'false' transmitter from the 5-HT terminals and also as a result of the excessive 5-HT release acting directly in DA neurons and inducing further DA release by reversing the DA transporters (DAT). Administration of a 5-HT1A agonist (e.g., buspirone) interferes with this 'dialog' and by activating the inhibitory 5-HT autoreceptors attenuates the transmitter release from the 5-HT neurons, thus leaving most of the synaptic DA to be normally regulated from the DA terminals. The clinical correspondence of such interference is the significant attenuation of GIDs.
Animal models of PD have recently demonstrated that removal of striatal 5-HT afferents or the dampening of 5-HT activity with 5-HT1A or 5-HT1B agonists resulted in attenuation of LIDs [12]. However, whether LIDs and GIDs share the exact same mechanism of DA dysregulation from 5-HT neurons is unclear. Patients with PD with peak-dose LIDs experience a radical and short-term increase in striatal synaptic DA levels when exogenous L-DOPA reaches the extensively denervated striatum [13]. In patients with PD who have restored DA innervation from transplantation but steady and constant presentation of GIDs, it seems plausible to assume that the 5-HT-driven abnormal release of DA is a phenomenon with prolonged and steady duration and possibly of lower intensity compared to the one observed in LIDs (Figure 2). This scenario is supported by observations of GIDs responding to systemic administration of low doses of 5-HT1A agonists [10], while LIDs responding to large bolus doses of the same drug aim for a more complete block of the concentrated 5-HT neuronal release of neurotransmitters [14].

Conclusions

The occurrence of GIDs is a serious adverse reaction of striatal transplantation with fetal VM tissue in patients with PD hindering the development of future cell replacement therapies. The 5-HT hypothesis underlying the development of GIDs is the first hypothesis with experimental verification [10]. These recent findings have also supported a causative relationship between the striatal 5-HT hyperinnervation and the intensity of GIDs. According to these recent findings, GIDs could be prevented or treated. Patients with PD in its early stages lose about 15% and patients with advanced PD lose about 30%-35% of putaminal 5-HT neurons [15] compared to the profound DA denervation. Therefore, GIDs may be prevented by minimizing the serotonergic component in the grafted tissue during the dissection of VM, which should be very low in patients in the early stages of PD. Additionally, the use of fresh tissue should be applied because storage and culturing is expected to alter the proportion of cells in favor of non-DA cells such as 5-HT. GIDs could also be treated by the administration of 5-HT1A agonists, but the benefit could be greater and more practical by developing 5-HT1A agonists with sustained release.
However, more data are needed to fully establish the 'terms' of 5-HT/DA neuron 'dialog'. These data should come from transplanted PD patients with different degree of 5-HT/DA striatal reinnervation and should include those with incomplete DA reinnervation and those who do not experience GIDs.
The verification of the 5-HT hypothesis in the development of GIDs alongside the intense animal and human research of the past decade since the abandonment of fetal cell therapy in PD, indicates that we have come closer to designing new optimized protocols for the safer and more effective application of fetal cell transplantation in patients with PD.
Open AccessThis article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://​creativecommons.​org/​licenses/​by/​2.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

MP is entirely responsible for the content of this article.
Anhänge

Authors’ original submitted files for images

Below are the links to the authors’ original submitted files for images.
Literatur
1.
Zurück zum Zitat Braak H, Del Tredici K, Rüb U, de Vos RA, Jansen Steur EN, Braak E: Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol Aging. 2003, 24: 197-211. 10.1016/S0197-4580(02)00065-9.CrossRefPubMed Braak H, Del Tredici K, Rüb U, de Vos RA, Jansen Steur EN, Braak E: Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol Aging. 2003, 24: 197-211. 10.1016/S0197-4580(02)00065-9.CrossRefPubMed
2.
Zurück zum Zitat Cotzias GC, Papavasiliou PS, Gellene R: Modification of Parkinsonism-chronic treatment with L-DOPA. N Engl J Med. 1969, 280: 337-345. 10.1056/NEJM196902132800701.CrossRefPubMed Cotzias GC, Papavasiliou PS, Gellene R: Modification of Parkinsonism-chronic treatment with L-DOPA. N Engl J Med. 1969, 280: 337-345. 10.1056/NEJM196902132800701.CrossRefPubMed
4.
Zurück zum Zitat Freed CR, Greene PE, Breeze RE, Tsai WY, DuMouchel W, Kao R, Dillon S, Winfield H, Culver S, Trojanowski JQ, Eidelberg D, Fahn S: Transplantation of embryonic dopamine neurons for severe Parkinson's disease. N Engl J Med. 2001, 344: 710-719. 10.1056/NEJM200103083441002.CrossRefPubMed Freed CR, Greene PE, Breeze RE, Tsai WY, DuMouchel W, Kao R, Dillon S, Winfield H, Culver S, Trojanowski JQ, Eidelberg D, Fahn S: Transplantation of embryonic dopamine neurons for severe Parkinson's disease. N Engl J Med. 2001, 344: 710-719. 10.1056/NEJM200103083441002.CrossRefPubMed
5.
Zurück zum Zitat Hagell P, Piccini P, Björklund A, Brundin P, Rehncrona S, Widner H, Crabb L, Pavese N, Oertel WH, Quinn N, Brooks DJ, Lindvall O: Dyskinesias following neural transplantation in Parkinson's disease. Nat Neurosci. 2002, 5: 627-628.PubMed Hagell P, Piccini P, Björklund A, Brundin P, Rehncrona S, Widner H, Crabb L, Pavese N, Oertel WH, Quinn N, Brooks DJ, Lindvall O: Dyskinesias following neural transplantation in Parkinson's disease. Nat Neurosci. 2002, 5: 627-628.PubMed
6.
Zurück zum Zitat Olanow CW, Goetz CG, Kordower JH, Stoessl AJ, Sossi V, Brin MF, Shannon KM, Nauert GM, Perl DP, Godbold J, Freeman TB: A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson's disease. Ann Neurol. 2003, 54: 403-414. 10.1002/ana.10720.CrossRefPubMed Olanow CW, Goetz CG, Kordower JH, Stoessl AJ, Sossi V, Brin MF, Shannon KM, Nauert GM, Perl DP, Godbold J, Freeman TB: A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson's disease. Ann Neurol. 2003, 54: 403-414. 10.1002/ana.10720.CrossRefPubMed
7.
Zurück zum Zitat Ma Y, Feigin A, Dhawan V, Fukuda M, Shi Q, Greene P, Breeze R, Fahn S, Freed C, Eidelberg D: Dyskinesia after fetal cell transplantation for parkinsonism: a PET study. Ann Neurol. 2002, 52: 628-634. 10.1002/ana.10359.CrossRefPubMed Ma Y, Feigin A, Dhawan V, Fukuda M, Shi Q, Greene P, Breeze R, Fahn S, Freed C, Eidelberg D: Dyskinesia after fetal cell transplantation for parkinsonism: a PET study. Ann Neurol. 2002, 52: 628-634. 10.1002/ana.10359.CrossRefPubMed
8.
Zurück zum Zitat Hagell P, Cenci MA: Dyskinesias and dopamine cell replacement in Parkinson's disease: a clinical perspective. Brain Res Bull. 2005, 68: 4-15. 10.1016/j.brainresbull.2004.10.013.CrossRefPubMed Hagell P, Cenci MA: Dyskinesias and dopamine cell replacement in Parkinson's disease: a clinical perspective. Brain Res Bull. 2005, 68: 4-15. 10.1016/j.brainresbull.2004.10.013.CrossRefPubMed
9.
Zurück zum Zitat Piccini P, Pavese N, Hagell P, Reimer J, Björklund A, Oertel WH, Quinn NP, Brooks DJ, Lindvall O: Factors affecting the clinical outcome after neural transplantation in Parkinson's disease. Brain. 2005, 128: 2977-2986. 10.1093/brain/awh649.CrossRefPubMed Piccini P, Pavese N, Hagell P, Reimer J, Björklund A, Oertel WH, Quinn NP, Brooks DJ, Lindvall O: Factors affecting the clinical outcome after neural transplantation in Parkinson's disease. Brain. 2005, 128: 2977-2986. 10.1093/brain/awh649.CrossRefPubMed
10.
Zurück zum Zitat Politis M, Wu K, Loane C, Quinn NP, Brooks DJ, Rehncrona S, Bjorklund A, Lindvall O, Piccini P: Serotonergic neurons mediate dyskinesia side effects in Parkinson's patients with neural transplants. Sci Transl Med. 2010, 2: 38ra46.CrossRefPubMed Politis M, Wu K, Loane C, Quinn NP, Brooks DJ, Rehncrona S, Bjorklund A, Lindvall O, Piccini P: Serotonergic neurons mediate dyskinesia side effects in Parkinson's patients with neural transplants. Sci Transl Med. 2010, 2: 38ra46.CrossRefPubMed
11.
Zurück zum Zitat Tanaka H, Kannari K, Maeda T, Tomiyama M, Suda T, Matsunaga M: Role of serotonergic neurons in L-DOPA-derived extracellular dopamine in the striatum of 6-OHDA-lesioned rats. Neuroreport. 1999, 10: 631-634. 10.1097/00001756-199902250-00034.CrossRefPubMed Tanaka H, Kannari K, Maeda T, Tomiyama M, Suda T, Matsunaga M: Role of serotonergic neurons in L-DOPA-derived extracellular dopamine in the striatum of 6-OHDA-lesioned rats. Neuroreport. 1999, 10: 631-634. 10.1097/00001756-199902250-00034.CrossRefPubMed
12.
Zurück zum Zitat Carta M, Carlsson T, Kirik D, Björklund A: Dopamine released from 5-HT terminals is the cause of L-DOPA-induced dyskinesia in parkinsonian rats. Brain. 2007, 130: 1819-1833. 10.1093/brain/awm082.CrossRefPubMed Carta M, Carlsson T, Kirik D, Björklund A: Dopamine released from 5-HT terminals is the cause of L-DOPA-induced dyskinesia in parkinsonian rats. Brain. 2007, 130: 1819-1833. 10.1093/brain/awm082.CrossRefPubMed
13.
Zurück zum Zitat De la Fuente-Fernández R, Sossi V, Huang Z, Furtado S, Lu JQ, Calne DB, Ruth TJ, Stoessl AJ: Levodopa-induced changes in synaptic dopamine levels increase with progression of Parkinson's disease: implications for dyskinesias. Brain. 2004, 127: 2747-2754. 10.1093/brain/awh290.CrossRefPubMed De la Fuente-Fernández R, Sossi V, Huang Z, Furtado S, Lu JQ, Calne DB, Ruth TJ, Stoessl AJ: Levodopa-induced changes in synaptic dopamine levels increase with progression of Parkinson's disease: implications for dyskinesias. Brain. 2004, 127: 2747-2754. 10.1093/brain/awh290.CrossRefPubMed
14.
Zurück zum Zitat Politis M, Wu K, Loane C, Kiferle L, Molloy S, Bain P, Brooks DJ, Piccini P: Serotonergic involvement in L-DOPA-induced dyskinesia [abstract]. Mov Disord. 2010, 25 (Suppl 3): S658. Politis M, Wu K, Loane C, Kiferle L, Molloy S, Bain P, Brooks DJ, Piccini P: Serotonergic involvement in L-DOPA-induced dyskinesia [abstract]. Mov Disord. 2010, 25 (Suppl 3): S658.
15.
Zurück zum Zitat Politis M, Wu K, Loane C, Kiferle L, Molloy S, Brooks DJ, Piccini P: Staging of serotonergic dysfunction in Parkinson's disease: an in vivo 11C-DASB PET study. Neurobiol Dis. 2010, 40: 216-221. 10.1016/j.nbd.2010.05.028.CrossRefPubMed Politis M, Wu K, Loane C, Kiferle L, Molloy S, Brooks DJ, Piccini P: Staging of serotonergic dysfunction in Parkinson's disease: an in vivo 11C-DASB PET study. Neurobiol Dis. 2010, 40: 216-221. 10.1016/j.nbd.2010.05.028.CrossRefPubMed
Metadaten
Titel
Dyskinesias after neural transplantation in Parkinson's disease: what do we know and what is next?
verfasst von
Marios Politis
Publikationsdatum
01.12.2010
Verlag
BioMed Central
Erschienen in
BMC Medicine / Ausgabe 1/2010
Elektronische ISSN: 1741-7015
DOI
https://doi.org/10.1186/1741-7015-8-80

Weitere Artikel der Ausgabe 1/2010

BMC Medicine 1/2010 Zur Ausgabe

Leitlinien kompakt für die Allgemeinmedizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Facharzt-Training Allgemeinmedizin

Die ideale Vorbereitung zur anstehenden Prüfung mit den ersten 49 von 100 klinischen Fallbeispielen verschiedener Themenfelder

Mehr erfahren

Sechs Maßnahmen gegen Regelschmerzen – von Krafttraining bis Yoga

05.06.2024 Dysmenorrhö Nachrichten

Um herauszufinden, wie gut sich körperliche Übungen dafür eignen, primäre Dysmenorrhö zu lindern, hat eine Studiengruppe sechs verschiedene Verfahren untersucht. Alle wirkten, doch eine Methode war Favorit.

Intoxikation ohne Alkoholaufnahme: An das Eigenbrauer-Syndrom denken!

05.06.2024 Internistische Diagnostik Nachrichten

Betrunken trotz Alkoholabstinenz? Der Fall einer 50-jährigen Patientin zeigt, dass dies möglich ist. Denn die Frau litt unter dem Eigenbrauer-Syndrom, bei dem durch Darmpilze eine alkoholische Gärung in Gang gesetzt wird.

Diplom, Diplom an der Wand: Wie man in der Telemedizin seriös wirkt

04.06.2024 Telemedizin Nachrichten

Seit den Zeiten der Coronapandemie sind telemedizinische Arztkonsultationen zur Normalität geworden. Wie Frau oder Herr Doktor dabei im günstigsten Licht erscheinen, hat eine Patientenbefragung eruiert.

Typ-2-Diabetes: Ernährungsunsicherheit vervierfacht Risiko für schwere Hypoglykämien

04.06.2024 Typ-2-Diabetes Nachrichten

Wenn ältere Menschen mit Typ-2-Diabetes Schwierigkeiten beim Beschaffen und Zubereiten von Mahlzeiten haben, geht dies mit einem deutlich gesteigerten Risiko für schwere Hypoglykämien einher.

Update Allgemeinmedizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.