Skip to main content
Erschienen in: Odontology 3/2020

23.01.2020 | Original Article

Effects of heat conduction of implant surface at thermal stimulation on implant placement

verfasst von: Rina Ohtaki, Kazuhiko Ueda, Fumihiko Watanabe

Erschienen in: Odontology | Ausgabe 3/2020

Einloggen, um Zugang zu erhalten

Abstract

The purpose of this study is to investigate, in vitro, how two different implant placement methods (one and two-stage implant placement) affect implant surface temperature after thermal stimulation. Two titanium screw implants were used and three thermocouples were attached to the implant surface at 0.5 mm (ch1), 5.5 mm (ch2) and 9.0 mm (ch3) under each platform. Experimental devices were fabricated pouring polymerization resin under a condition that imitated the two embedded technique with the one-stage implant placement model (1-stage) and the two-stage implant placement model (2-stage). A hot water storage device was installed in each model and hot water at three temperatures (60 °C, 70 °C and 100 °C) was flowed. The temperature change over time at the implant surface by the thermocouple was recorded. From the measurement data, the maximum temperature (Max-temp) at the implant surface, the time to reach 47 °C (47 °C r-time), and the duration of 47 °C or more (47 °C c-time) were calculated, and the test was repeated 26 times using the same method. The mean of repeated measurements was determined and statistical analysis was performed. Max-temp showed significant differences between each implant placement method, each channel and each thermal stimulation (p < 0.01). In this study suggested that the implant surface could reach 47 °C with 60 °C thermal stimulation in a 1-stage. In addition, it rose over 47 °C at 70 °C. The 2-stage implant surface did not rise to 47 °C.
Literatur
1.
Zurück zum Zitat Duyck J, Naert I. Failure of oral implants: aetiology, symptoms and influencing factors. Clin Oral Investig. 1998;2:102–14.CrossRef Duyck J, Naert I. Failure of oral implants: aetiology, symptoms and influencing factors. Clin Oral Investig. 1998;2:102–14.CrossRef
2.
Zurück zum Zitat Smith DE, Zarb GA. Criteria for success of osseointegrated endosseous implants. J Prosthet Dent. 1989;62:567–72.CrossRef Smith DE, Zarb GA. Criteria for success of osseointegrated endosseous implants. J Prosthet Dent. 1989;62:567–72.CrossRef
3.
Zurück zum Zitat Chen YC, Hsiao CK, Ciou JS, Tsai YJ, Tu YK. Effects of implant drilling parameters for pilot and twist drills on temperature rise in bone analog and alveolar bones. Med Eng Phys. 2016;38:1314–21.CrossRef Chen YC, Hsiao CK, Ciou JS, Tsai YJ, Tu YK. Effects of implant drilling parameters for pilot and twist drills on temperature rise in bone analog and alveolar bones. Med Eng Phys. 2016;38:1314–21.CrossRef
4.
Zurück zum Zitat Eriksson AR, Albrektsson T. Temperature threshold levels for heat-induced bone tissue injury: a vital-microscopic study in the rabbit. J Prosthet Dent. 1983;50:101–7.CrossRef Eriksson AR, Albrektsson T. Temperature threshold levels for heat-induced bone tissue injury: a vital-microscopic study in the rabbit. J Prosthet Dent. 1983;50:101–7.CrossRef
5.
Zurück zum Zitat Li S, Chien S, Branemark PI. Heat shock-induced necrosis and apoptosis in osteoblasts. J Orthop Res. 1999;17:891–9.CrossRef Li S, Chien S, Branemark PI. Heat shock-induced necrosis and apoptosis in osteoblasts. J Orthop Res. 1999;17:891–9.CrossRef
6.
Zurück zum Zitat Panyayong KC, Chanchayanon B, Panyayong W. Heat stress induces both apoptosis and necrosis in normal human osteoblasts without heat shock protein-60 (HSP60) release. Songklanakarin J Sci Technol. 2013;35:123–9. Panyayong KC, Chanchayanon B, Panyayong W. Heat stress induces both apoptosis and necrosis in normal human osteoblasts without heat shock protein-60 (HSP60) release. Songklanakarin J Sci Technol. 2013;35:123–9.
7.
Zurück zum Zitat Nissan J, Gross M, Ormianer Z, Barnea E, Assif D. Heat transfer of impression plasters to an implant-bone interface. Implant Dent. 2006;15:83–8.CrossRef Nissan J, Gross M, Ormianer Z, Barnea E, Assif D. Heat transfer of impression plasters to an implant-bone interface. Implant Dent. 2006;15:83–8.CrossRef
8.
Zurück zum Zitat Patel Z, Geerts GA. Temperature changes along a dental implant. Int J Prosthodont. 2011;24:58–63.PubMed Patel Z, Geerts GA. Temperature changes along a dental implant. Int J Prosthodont. 2011;24:58–63.PubMed
9.
Zurück zum Zitat Okada K, Tawada Y, Hata Y. Thermal distribution during bone drilling-evaluation of mandibular simulated model. Odontology. 1993;80:1510–24. Okada K, Tawada Y, Hata Y. Thermal distribution during bone drilling-evaluation of mandibular simulated model. Odontology. 1993;80:1510–24.
10.
Zurück zum Zitat Masaki A, Yoshitaka T, Christopher F. Development of epoxy resins with controlled high order structures having excellent heat release properties. IEEJ Trans Fundam Mater. 2003;123:687–92.CrossRef Masaki A, Yoshitaka T, Christopher F. Development of epoxy resins with controlled high order structures having excellent heat release properties. IEEJ Trans Fundam Mater. 2003;123:687–92.CrossRef
11.
Zurück zum Zitat Nakamura T, Hasegawa A. A study on measurement of gingival thickness in periodontal patients. J Jap Soc Periodontol. 2001;43:204–16.CrossRef Nakamura T, Hasegawa A. A study on measurement of gingival thickness in periodontal patients. J Jap Soc Periodontol. 2001;43:204–16.CrossRef
12.
Zurück zum Zitat Susa M, Nagata K, Goto K. Spot heating method for measuring thermal conductivity and thermal diffusivity of thin materials. J Jap Inst Metals. 1989;53:543–9.CrossRef Susa M, Nagata K, Goto K. Spot heating method for measuring thermal conductivity and thermal diffusivity of thin materials. J Jap Inst Metals. 1989;53:543–9.CrossRef
13.
Zurück zum Zitat Maruyama S, Okajima J, Komiya A, Takeda H. Estimation of temperature distribution in biological tissue by using solutions of bioheat transfer equation. Trans JSME (in Japanese). 2007;73:1899–905. Maruyama S, Okajima J, Komiya A, Takeda H. Estimation of temperature distribution in biological tissue by using solutions of bioheat transfer equation. Trans JSME (in Japanese). 2007;73:1899–905.
14.
Zurück zum Zitat Palmer DS, Barco MT, Billy EJ. Temperature extremes produced orally by hot and cold liquids. J Prosthet Dent. 1992;67:325–7.CrossRef Palmer DS, Barco MT, Billy EJ. Temperature extremes produced orally by hot and cold liquids. J Prosthet Dent. 1992;67:325–7.CrossRef
15.
Zurück zum Zitat Barclay CW, Spence D, Laird WR. Intra-oral temperatures during function. J Oral Rehabil. 2005;32:886–94.CrossRef Barclay CW, Spence D, Laird WR. Intra-oral temperatures during function. J Oral Rehabil. 2005;32:886–94.CrossRef
16.
Zurück zum Zitat Buser D, Mericske-Stern R, Dula K, Lang NP. Clinical experience with one-stage, non-submerged dental implants. Adv Dent Res. 1999;13:153–61.CrossRef Buser D, Mericske-Stern R, Dula K, Lang NP. Clinical experience with one-stage, non-submerged dental implants. Adv Dent Res. 1999;13:153–61.CrossRef
17.
Zurück zum Zitat Ericsson I, Nilner K, Klinge B, Glantz PO. Radiographical and histological characteristics of submerged and nonsubmerged titanium implants. An experimental study in the Labrador dog. Clin Oral Implants Res. 1996;7:20–6.CrossRef Ericsson I, Nilner K, Klinge B, Glantz PO. Radiographical and histological characteristics of submerged and nonsubmerged titanium implants. An experimental study in the Labrador dog. Clin Oral Implants Res. 1996;7:20–6.CrossRef
18.
Zurück zum Zitat Fukuoka T, Nomura M. Measurement of thermal contact resistance at the interface composed of titanium and titanium alloy and its application to bolted joints. Trans JSME (in Japanese). 2017;83:1–13.CrossRef Fukuoka T, Nomura M. Measurement of thermal contact resistance at the interface composed of titanium and titanium alloy and its application to bolted joints. Trans JSME (in Japanese). 2017;83:1–13.CrossRef
19.
Zurück zum Zitat Livne S, Harel N, Piek D, Ormianer Z. Evaluation of heat conduction in dental implants after exposure to hot beverages. J Prosthet Dent. 2014;111:228–33.CrossRef Livne S, Harel N, Piek D, Ormianer Z. Evaluation of heat conduction in dental implants after exposure to hot beverages. J Prosthet Dent. 2014;111:228–33.CrossRef
20.
Zurück zum Zitat Feuerstein O, Zeichner K, Imbari C, Ormianer Z, Samet N, Weiss EI. Temperature changes in dental implants following exposure to hot substances in an ex vivo model. Clin Oral Implants Res. 2008;19:629–33.CrossRef Feuerstein O, Zeichner K, Imbari C, Ormianer Z, Samet N, Weiss EI. Temperature changes in dental implants following exposure to hot substances in an ex vivo model. Clin Oral Implants Res. 2008;19:629–33.CrossRef
21.
Zurück zum Zitat Wong K, Boyde A, Howell PG. A model of temperature transients in dental implants. Biomaterials. 2001;22:2795–7.CrossRef Wong K, Boyde A, Howell PG. A model of temperature transients in dental implants. Biomaterials. 2001;22:2795–7.CrossRef
22.
Zurück zum Zitat Saitoh M, Yamanaka N, Kaneko K, Horie Y, Hatashi J, Mori T, Nishiyama M. Thermal Properties of Dental Materials. Jap Soc Dent Mater Device. 1994;13:340–5. Saitoh M, Yamanaka N, Kaneko K, Horie Y, Hatashi J, Mori T, Nishiyama M. Thermal Properties of Dental Materials. Jap Soc Dent Mater Device. 1994;13:340–5.
23.
Zurück zum Zitat Rabbani Arshad S, Zoljanahi Oskui I, Hashemi A. Thermal analysis of dental implants in mandibular premolar region: 3D FEM study. J Prosthodont. 2018;27:284–9.CrossRef Rabbani Arshad S, Zoljanahi Oskui I, Hashemi A. Thermal analysis of dental implants in mandibular premolar region: 3D FEM study. J Prosthodont. 2018;27:284–9.CrossRef
24.
Zurück zum Zitat Fenner DN, Robinson PB, Cheung PM. Three-dimensional finite element analysis of thermal shock in a premolar with a composite resin MOD restoration. Med Eng Phys. 1998;20:269–75.CrossRef Fenner DN, Robinson PB, Cheung PM. Three-dimensional finite element analysis of thermal shock in a premolar with a composite resin MOD restoration. Med Eng Phys. 1998;20:269–75.CrossRef
25.
Zurück zum Zitat Oskui IZ, Ashtiani MN, Hashemi A, Jafarzadeh H. Thermal analysis of the intact mandibular premolar: a finite element analysis. Int Endod J. 2013;46:841–6.CrossRef Oskui IZ, Ashtiani MN, Hashemi A, Jafarzadeh H. Thermal analysis of the intact mandibular premolar: a finite element analysis. Int Endod J. 2013;46:841–6.CrossRef
26.
Zurück zum Zitat Spierings TA, Peters MC, Bosman F, Plasschaert AJ. The influence of cavity geometry on heat transmission in restored teeth. J Dent. 1986;14:47–51.CrossRef Spierings TA, Peters MC, Bosman F, Plasschaert AJ. The influence of cavity geometry on heat transmission in restored teeth. J Dent. 1986;14:47–51.CrossRef
27.
Zurück zum Zitat Vree JHP, Spierings TAM, Plasschaert AJM. A simulation model for transient thermal analysis of restored teeth. J Dent Res. 1983;62:756–9.CrossRef Vree JHP, Spierings TAM, Plasschaert AJM. A simulation model for transient thermal analysis of restored teeth. J Dent Res. 1983;62:756–9.CrossRef
28.
Zurück zum Zitat Flanagan D. Heat generated during seating of dental implant fixtures. J Oral Implantol. 2014;40:174–81.CrossRef Flanagan D. Heat generated during seating of dental implant fixtures. J Oral Implantol. 2014;40:174–81.CrossRef
29.
Zurück zum Zitat Hasanoglu Erbasar GN, Hocaoğlu TP, Erbasar RC. Risk factors associated with short dental implant success: a long-term retrospective evaluation of patients followed up for up to 9 years. Braz Oral Res. 2019;33:e30.CrossRef Hasanoglu Erbasar GN, Hocaoğlu TP, Erbasar RC. Risk factors associated with short dental implant success: a long-term retrospective evaluation of patients followed up for up to 9 years. Braz Oral Res. 2019;33:e30.CrossRef
30.
Zurück zum Zitat Papaspyridakos P, De Souza A, Vazouras K, Gholami H, Pagni S, Weber HP. Survival rates of short dental implants (%3c/=6 mm) compared with implants longer than 6 mm in posterior jaw areas: a meta-analysis. Clin Oral Implants Res. 2018;29(Suppl 16):8–20.CrossRef Papaspyridakos P, De Souza A, Vazouras K, Gholami H, Pagni S, Weber HP. Survival rates of short dental implants (%3c/=6 mm) compared with implants longer than 6 mm in posterior jaw areas: a meta-analysis. Clin Oral Implants Res. 2018;29(Suppl 16):8–20.CrossRef
Metadaten
Titel
Effects of heat conduction of implant surface at thermal stimulation on implant placement
verfasst von
Rina Ohtaki
Kazuhiko Ueda
Fumihiko Watanabe
Publikationsdatum
23.01.2020
Verlag
Springer Singapore
Erschienen in
Odontology / Ausgabe 3/2020
Print ISSN: 1618-1247
Elektronische ISSN: 1618-1255
DOI
https://doi.org/10.1007/s10266-020-00482-3

Weitere Artikel der Ausgabe 3/2020

Odontology 3/2020 Zur Ausgabe

„Übersichtlicher Wegweiser“: Lauterbachs umstrittener Klinik-Atlas ist online

17.05.2024 Klinik aktuell Nachrichten

Sie sei „ethisch geboten“, meint Gesundheitsminister Karl Lauterbach: mehr Transparenz über die Qualität von Klinikbehandlungen. Um sie abzubilden, lässt er gegen den Widerstand vieler Länder einen virtuellen Klinik-Atlas freischalten.

Klinikreform soll zehntausende Menschenleben retten

15.05.2024 Klinik aktuell Nachrichten

Gesundheitsminister Lauterbach hat die vom Bundeskabinett beschlossene Klinikreform verteidigt. Kritik an den Plänen kommt vom Marburger Bund. Und in den Ländern wird über den Gang zum Vermittlungsausschuss spekuliert.

Darf man die Behandlung eines Neonazis ablehnen?

08.05.2024 Gesellschaft Nachrichten

In einer Leseranfrage in der Zeitschrift Journal of the American Academy of Dermatology möchte ein anonymer Dermatologe bzw. eine anonyme Dermatologin wissen, ob er oder sie einen Patienten behandeln muss, der eine rassistische Tätowierung trägt.

Ein Drittel der jungen Ärztinnen und Ärzte erwägt abzuwandern

07.05.2024 Klinik aktuell Nachrichten

Extreme Arbeitsverdichtung und kaum Supervision: Dr. Andrea Martini, Sprecherin des Bündnisses Junge Ärztinnen und Ärzte (BJÄ) über den Frust des ärztlichen Nachwuchses und die Vorteile des Rucksack-Modells.

Update Zahnmedizin

Bestellen Sie unseren kostenlosen Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.