Skip to main content
Erschienen in: Journal of Clinical Immunology 1/2024

01.01.2024 | Original Article

Evaluation of Clinical and Immunological Alterations Associated with ICF Syndrome

verfasst von: Sevgi Bilgic Eltan, Ercan Nain, Mehmet Cihangir Catak, Ege Ezen, Asena Pınar Sefer, Nastaran Karimi, Ayca Kiykim, Burcu Kolukisa, Dilek Baser, Alper Bulutoglu, Nurhan Kasap, Melek Yorgun Altunbas, Ezgi Yalcin Gungoren, Yasemin Kendir Demirkol, Seyhan Kutlug, Gonca Hancioglu, Fatih Dilek, Alisan Yildiran, Ahmet Ozen, Elif Karakoc-Aydiner, Batu Erman, Safa Baris

Erschienen in: Journal of Clinical Immunology | Ausgabe 1/2024

Einloggen, um Zugang zu erhalten

Abstract

Purpose

Immunodeficiency with centromeric instability and facial anomalies (ICF) syndrome is a rare autosomal recessive combined immunodeficiency. The detailed immune responses are not explored widely. We investigated known and novel immune alterations in lymphocyte subpopulations and their association with clinical symptoms in a well-defined ICF cohort.

Methods

We recruited the clinical findings from twelve ICF1 and ICF2 patients. We performed detailed immunological evaluation, including lymphocyte subset analyses, upregulation, and proliferation of T cells. We also determined the frequency of circulating T follicular helper (cTFH) and regulatory T (Treg) cells and their subtypes by flow cytometry.

Results

There were ten ICF1 and two ICF2 patients. We identified two novel homozygous missense mutations in the ZBTB24 gene. Respiratory tract infections were the most common recurrent infections among the patients. Gastrointestinal system (GIS) involvements were observed in seven patients. All patients received intravenous immunoglobulin replacement therapy and antibacterial prophylaxis; two died during the follow-up period. Immunologically, CD4+ T-cell counts, percentages of recent thymic emigrant T cells, and naive CD4+ T decreased in two, five, and four patients, respectively. Impaired T-cell proliferation and reduced CD25 upregulation were detected in all patients. These changes were more prominent in CD8+ T cells. GIS involvements negatively correlated with CD3+ T-, CD3+CD4+ T-, CD16+CD56+ NK-cell counts, and CD4+/CD8+ T-cell ratios. Further, we observed expanded cTFH cells and reduced Treg and follicular regulatory T cells with a skewing to a TH2-like phenotype in all tested subpopulations.

Conclusion

The ICF syndrome encompasses various manifestations affecting multiple end organs. Perturbed T-cell responses with increased cTFH and decreased Treg cells may provide further insight into the immune aberrations observed in ICF syndrome.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Maraschio P, Zuffardi O, DallaFior T, Tiepolo L. Immunodeficiency, centromeric heterochromatin instability of chromosomes 1, 9, and 16, and facial anomalies: the ICF syndrome. J Med Genet. 1988;25(3):173–80.PubMedPubMedCentralCrossRef Maraschio P, Zuffardi O, DallaFior T, Tiepolo L. Immunodeficiency, centromeric heterochromatin instability of chromosomes 1, 9, and 16, and facial anomalies: the ICF syndrome. J Med Genet. 1988;25(3):173–80.PubMedPubMedCentralCrossRef
2.
Zurück zum Zitat Turleau C, Cabanis MO, Girault D, Ledeist F, Mettey R, Puissant H, et al. Multibranched chromosomes in the ICF syndrome: immunodeficiency, centromeric instability, and facial anomalies. Am J Med Genet. 1989;32(3):420–4.PubMedCrossRef Turleau C, Cabanis MO, Girault D, Ledeist F, Mettey R, Puissant H, et al. Multibranched chromosomes in the ICF syndrome: immunodeficiency, centromeric instability, and facial anomalies. Am J Med Genet. 1989;32(3):420–4.PubMedCrossRef
3.
Zurück zum Zitat Weemaes CM, Van Tol MJ, Wang J, van Ostaijen-Ten Dam MM, Van Eggermond MC, Thijssen PE, et al. Heterogeneous clinical presentation in ICF syndrome: correlation with underlying gene defects. Eur J Hum Genet. 2013;21(11):1219–25.PubMedPubMedCentralCrossRef Weemaes CM, Van Tol MJ, Wang J, van Ostaijen-Ten Dam MM, Van Eggermond MC, Thijssen PE, et al. Heterogeneous clinical presentation in ICF syndrome: correlation with underlying gene defects. Eur J Hum Genet. 2013;21(11):1219–25.PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Tangye SG, Al-Herz W, Bousfiha A, Cunningham-Rundles C, Franco JL, Holland SM, et al. Human inborn errors of immunity: 2022 update on the classification from the international union of immunological societies expert committee. J Clin Immunol. 2022;42(7):1473–507.PubMedPubMedCentralCrossRef Tangye SG, Al-Herz W, Bousfiha A, Cunningham-Rundles C, Franco JL, Holland SM, et al. Human inborn errors of immunity: 2022 update on the classification from the international union of immunological societies expert committee. J Clin Immunol. 2022;42(7):1473–507.PubMedPubMedCentralCrossRef
5.
Zurück zum Zitat Wijesinghe P, Bhagwat AS. Efficient deamination of 5-methylcytosines in DNA by human APOBEC3A, but not by AID or APOBEC3G. Nucleic Acids Res. 2012;40(18):9206–17.PubMedPubMedCentralCrossRef Wijesinghe P, Bhagwat AS. Efficient deamination of 5-methylcytosines in DNA by human APOBEC3A, but not by AID or APOBEC3G. Nucleic Acids Res. 2012;40(18):9206–17.PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat StremenovaSpegarova J, Lawless D, Mohamad SMB, Engelhardt KR, Doody G, Shrimpton J, et al. Germline TET2 loss of function causes childhood immunodeficiency and lymphoma. Blood, J Am Soc Hematol. 2020;136(9):1055–66. StremenovaSpegarova J, Lawless D, Mohamad SMB, Engelhardt KR, Doody G, Shrimpton J, et al. Germline TET2 loss of function causes childhood immunodeficiency and lymphoma. Blood, J Am Soc Hematol. 2020;136(9):1055–66.
7.
Zurück zum Zitat Campos-Sanchez E, Martínez-Cano J, del Pino ML, López-Granados E, Cobaleda C. Epigenetic deregulation in human primary immunodeficiencies. Trends Immunol. 2019;40(1):49–65.PubMedCrossRef Campos-Sanchez E, Martínez-Cano J, del Pino ML, López-Granados E, Cobaleda C. Epigenetic deregulation in human primary immunodeficiencies. Trends Immunol. 2019;40(1):49–65.PubMedCrossRef
8.
Zurück zum Zitat Kondo T, Bobek MP, Kuick R, Lamb B, Zhu X, Narayan A, et al. Whole-genome methylation scan in ICF syndrome: hypomethylation of non-satellite DNA repeats D4Z4 and NBL2. Hum Mol Genet. 2000;9(4):597–604.PubMedCrossRef Kondo T, Bobek MP, Kuick R, Lamb B, Zhu X, Narayan A, et al. Whole-genome methylation scan in ICF syndrome: hypomethylation of non-satellite DNA repeats D4Z4 and NBL2. Hum Mol Genet. 2000;9(4):597–604.PubMedCrossRef
9.
Zurück zum Zitat Miniou P, Bourc’his D, Gomes DM, Jeanpierre M, Viegas-Péquignot E. Undermethylation of Alu sequences in ICF syndrome: molecular and in situ analysis. Cytogenet Genome Res. 1997;77(3–4):308–13.CrossRef Miniou P, Bourc’his D, Gomes DM, Jeanpierre M, Viegas-Péquignot E. Undermethylation of Alu sequences in ICF syndrome: molecular and in situ analysis. Cytogenet Genome Res. 1997;77(3–4):308–13.CrossRef
10.
Zurück zum Zitat Miniou P, Jeanpierre M, Bourc’his D, Barbosa ACC, Blanquet V, Viegas-Péquignot E. α-Satellite DNA methylation in normal individuals and in ICF patients: heterogeneous methylation of constitutive heterochromatin in adult and fetal tissues. Human Genet. 1997;99:738–45.CrossRef Miniou P, Jeanpierre M, Bourc’his D, Barbosa ACC, Blanquet V, Viegas-Péquignot E. α-Satellite DNA methylation in normal individuals and in ICF patients: heterogeneous methylation of constitutive heterochromatin in adult and fetal tissues. Human Genet. 1997;99:738–45.CrossRef
11.
Zurück zum Zitat Hansen RS, Wijmenga C, Luo P, Stanek AM, Canfield TK, Weemaes CM, et al. The DNMT3B DNA methyltransferase gene is mutated in the ICF immunodeficiency syndrome. Proc Natl Acad Sci. 1999;96(25):14412–7.PubMedPubMedCentralCrossRef Hansen RS, Wijmenga C, Luo P, Stanek AM, Canfield TK, Weemaes CM, et al. The DNMT3B DNA methyltransferase gene is mutated in the ICF immunodeficiency syndrome. Proc Natl Acad Sci. 1999;96(25):14412–7.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat De Greef JC, Wang J, Balog J, Den Dunnen JT, Frants RR, Straasheijm KR, et al. Mutations in ZBTB24 are associated with immunodeficiency, centromeric instability, and facial anomalies syndrome type 2. Am J Human Genet. 2011;88(6):796–804.CrossRef De Greef JC, Wang J, Balog J, Den Dunnen JT, Frants RR, Straasheijm KR, et al. Mutations in ZBTB24 are associated with immunodeficiency, centromeric instability, and facial anomalies syndrome type 2. Am J Human Genet. 2011;88(6):796–804.CrossRef
13.
Zurück zum Zitat Jin B, Tao Q, Peng J, Soo HM, Wu W, Ying J, et al. DNA methyltransferase 3B (DNMT3B) mutations in ICF syndrome lead to altered epigenetic modifications and aberrant expression of genes regulating development, neurogenesis and immune function. Hum Mol Genet. 2008;17(5):690–709.PubMedCrossRef Jin B, Tao Q, Peng J, Soo HM, Wu W, Ying J, et al. DNA methyltransferase 3B (DNMT3B) mutations in ICF syndrome lead to altered epigenetic modifications and aberrant expression of genes regulating development, neurogenesis and immune function. Hum Mol Genet. 2008;17(5):690–709.PubMedCrossRef
14.
Zurück zum Zitat Yoon HS, Scharer CD, Majumder P, Davis CW, Butler R, Zinzow-Kramer W, et al. ZBTB32 is an early repressor of the CIITA and MHC class II gene expression during B cell differentiation to plasma cells. J Immunol. 2012;189(5):2393–403.PubMedCrossRef Yoon HS, Scharer CD, Majumder P, Davis CW, Butler R, Zinzow-Kramer W, et al. ZBTB32 is an early repressor of the CIITA and MHC class II gene expression during B cell differentiation to plasma cells. J Immunol. 2012;189(5):2393–403.PubMedCrossRef
15.
Zurück zum Zitat Dent AL, Shaffer AL, Yu X, Allman D, Staudt LM. Control of inflammation, cytokine expression, and germinal center formation by BCL-6. Science. 1997;276(5312):589–92.PubMedCrossRef Dent AL, Shaffer AL, Yu X, Allman D, Staudt LM. Control of inflammation, cytokine expression, and germinal center formation by BCL-6. Science. 1997;276(5312):589–92.PubMedCrossRef
16.
Zurück zum Zitat Nitta H, Unoki M, Ichiyanagi K, Kosho T, Shigemura T, Takahashi H, et al. Three novel ZBTB24 mutations identified in Japanese and Cape Verdean type 2 ICF syndrome patients. J Hum Genet. 2013;58(7):455–60.PubMedCrossRef Nitta H, Unoki M, Ichiyanagi K, Kosho T, Shigemura T, Takahashi H, et al. Three novel ZBTB24 mutations identified in Japanese and Cape Verdean type 2 ICF syndrome patients. J Hum Genet. 2013;58(7):455–60.PubMedCrossRef
17.
Zurück zum Zitat Ren R, Hardikar S, Horton JR, Lu Y, Zeng Y, Singh AK, et al. Structural basis of specific DNA binding by the transcription factor ZBTB24. Nucleic Acids Res. 2019;47(16):8388–98.PubMedPubMedCentralCrossRef Ren R, Hardikar S, Horton JR, Lu Y, Zeng Y, Singh AK, et al. Structural basis of specific DNA binding by the transcription factor ZBTB24. Nucleic Acids Res. 2019;47(16):8388–98.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Thijssen PE, Ito Y, Grillo G, Wang J, Velasco G, Nitta H, et al. Mutations in CDCA7 and HELLS cause immunodeficiency–centromeric instability–facial anomalies syndrome. Nat Commun. 2015;6(1):7870.PubMedCrossRef Thijssen PE, Ito Y, Grillo G, Wang J, Velasco G, Nitta H, et al. Mutations in CDCA7 and HELLS cause immunodeficiency–centromeric instability–facial anomalies syndrome. Nat Commun. 2015;6(1):7870.PubMedCrossRef
19.
Zurück zum Zitat Kiaee F, Zaki-Dizaji M, Hafezi N, Almasi-Hashiani A, Hamedifar H, Sabzevari A, et al. Clinical, immunologic and molecular spectrum of patients with immunodeficiency, centromeric instability, and facial anomalies (ICF) syndrome: a systematic review. Endocr, Metab Immune Disorders-Drug Targets Formerly Curr Drug Targets-Immune, Endocr Metab Dis. 2021;21(4):664–72.CrossRef Kiaee F, Zaki-Dizaji M, Hafezi N, Almasi-Hashiani A, Hamedifar H, Sabzevari A, et al. Clinical, immunologic and molecular spectrum of patients with immunodeficiency, centromeric instability, and facial anomalies (ICF) syndrome: a systematic review. Endocr, Metab Immune Disorders-Drug Targets Formerly Curr Drug Targets-Immune, Endocr Metab Dis. 2021;21(4):664–72.CrossRef
20.
Zurück zum Zitat Hagleitner M, Lankester A, Maraschio P, Hulten M, Fryns J-P, Schuetz C, et al. Clinical spectrum of immunodeficiency, centromeric instability and facial dysmorphism (ICF syndrome). J Med Genet. 2008;45(2):93–9.PubMedCrossRef Hagleitner M, Lankester A, Maraschio P, Hulten M, Fryns J-P, Schuetz C, et al. Clinical spectrum of immunodeficiency, centromeric instability and facial dysmorphism (ICF syndrome). J Med Genet. 2008;45(2):93–9.PubMedCrossRef
21.
Zurück zum Zitat Blanco-Betancourt CE, Moncla A, Milili M, Jiang YL, Viegas-Péquignot EM, Roquelaure B, et al. Defective B-cell-negative selection and terminal differentiation in the ICF syndrome. Blood. 2004;103(7):2683–90.PubMedCrossRef Blanco-Betancourt CE, Moncla A, Milili M, Jiang YL, Viegas-Péquignot EM, Roquelaure B, et al. Defective B-cell-negative selection and terminal differentiation in the ICF syndrome. Blood. 2004;103(7):2683–90.PubMedCrossRef
22.
Zurück zum Zitat Ehrlich M, Buchanan KL, Tsien F, Jiang G, Sun B, Uicker W, et al. DNA methyltransferase 3B mutations linked to the ICF syndrome cause dysregulation of lymphogenesis genes. Hum Mol Genet. 2001;10(25):2917–31.PubMedCrossRef Ehrlich M, Buchanan KL, Tsien F, Jiang G, Sun B, Uicker W, et al. DNA methyltransferase 3B mutations linked to the ICF syndrome cause dysregulation of lymphogenesis genes. Hum Mol Genet. 2001;10(25):2917–31.PubMedCrossRef
23.
Zurück zum Zitat Sterlin D, Velasco G, Moshous D, Touzot F, Mahlaoui N, Fischer A, et al. Genetic, cellular and clinical features of ICF syndrome: a French national survey. J Clin Immunol. 2016;36:149–59.PubMedCrossRef Sterlin D, Velasco G, Moshous D, Touzot F, Mahlaoui N, Fischer A, et al. Genetic, cellular and clinical features of ICF syndrome: a French national survey. J Clin Immunol. 2016;36:149–59.PubMedCrossRef
24.
Zurück zum Zitat Ueda Y, Okano M, Williams C, Chen T, Georgopoulos K, Li E. Roles for Dnmt3b in mammalian development: a mouse model for the ICF syndrome. Development. 2006;133(6):1183–92.PubMedCrossRef Ueda Y, Okano M, Williams C, Chen T, Georgopoulos K, Li E. Roles for Dnmt3b in mammalian development: a mouse model for the ICF syndrome. Development. 2006;133(6):1183–92.PubMedCrossRef
25.
Zurück zum Zitat Rechavi E, Lev A, Eyal E, Barel O, Kol N, Barhom SF, et al. A novel mutation in a critical region for the methyl donor binding in DNMT3B causes immunodeficiency, centromeric instability, and facial anomalies syndrome (ICF). J Clin Immunol. 2016;36:801–9.PubMedCrossRef Rechavi E, Lev A, Eyal E, Barel O, Kol N, Barhom SF, et al. A novel mutation in a critical region for the methyl donor binding in DNMT3B causes immunodeficiency, centromeric instability, and facial anomalies syndrome (ICF). J Clin Immunol. 2016;36:801–9.PubMedCrossRef
26.
Zurück zum Zitat Smeets DF, Moog U, Weemaes CM, Vaes-Peeters G, Merkx GF, Niehof JP, et al. ICF syndrome: a new case and review of the literature. Hum Genet. 1994;94:240–6.PubMedCrossRef Smeets DF, Moog U, Weemaes CM, Vaes-Peeters G, Merkx GF, Niehof JP, et al. ICF syndrome: a new case and review of the literature. Hum Genet. 1994;94:240–6.PubMedCrossRef
27.
Zurück zum Zitat Conrad MA, Dawany N, Sullivan KE, Devoto M, Kelsen JR. Novel ZBTB24 mutation associated with immunodeficiency, centromere instability, and facial anomalies type-2 syndrome identified in a patient with very early onset inflammatory bowel disease. Inflamm Bowel Dis. 2017;23(12):2252–5.PubMedCrossRef Conrad MA, Dawany N, Sullivan KE, Devoto M, Kelsen JR. Novel ZBTB24 mutation associated with immunodeficiency, centromere instability, and facial anomalies type-2 syndrome identified in a patient with very early onset inflammatory bowel disease. Inflamm Bowel Dis. 2017;23(12):2252–5.PubMedCrossRef
28.
Zurück zum Zitat von Bernuth H, Ravindran E, Du H, Fröhler S, Strehl K, Krämer N, et al. Combined immunodeficiency develops with age in immunodeficiency-centromeric instability-facial anomalies syndrome 2 (ICF2). Orphanet J Rare Dis. 2014;9(1):1–6. von Bernuth H, Ravindran E, Du H, Fröhler S, Strehl K, Krämer N, et al. Combined immunodeficiency develops with age in immunodeficiency-centromeric instability-facial anomalies syndrome 2 (ICF2). Orphanet J Rare Dis. 2014;9(1):1–6.
29.
Zurück zum Zitat Thomas RM, Gamper CJ, Ladle BH, Powell JD, Wells AD. De novo DNA methylation is required to restrict T helper lineage plasticity. J Biol Chem. 2012;287(27):22900–9.PubMedPubMedCentralCrossRef Thomas RM, Gamper CJ, Ladle BH, Powell JD, Wells AD. De novo DNA methylation is required to restrict T helper lineage plasticity. J Biol Chem. 2012;287(27):22900–9.PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Gamper CJ, Agoston AT, Nelson WG, Powell JD. Identification of DNA methyltransferase 3a as a T cell receptor-induced regulator of Th1 and Th2 differentiation. J Immunol. 2009;183(4):2267–76.PubMedCrossRef Gamper CJ, Agoston AT, Nelson WG, Powell JD. Identification of DNA methyltransferase 3a as a T cell receptor-induced regulator of Th1 and Th2 differentiation. J Immunol. 2009;183(4):2267–76.PubMedCrossRef
31.
Zurück zum Zitat Wang L, Liu Y, Beier UH, Han R, Bhatti TR, Akimova T, et al. Foxp3+ T-regulatory cells require DNA methyltransferase 1 expression to prevent development of lethal autoimmunity. Blood, J Am Soc Hematol. 2013;121(18):3631–9. Wang L, Liu Y, Beier UH, Han R, Bhatti TR, Akimova T, et al. Foxp3+ T-regulatory cells require DNA methyltransferase 1 expression to prevent development of lethal autoimmunity. Blood, J Am Soc Hematol. 2013;121(18):3631–9.
32.
Zurück zum Zitat Hale JS, Youngblood B, Latner DR, Mohammed AUR, Ye L, Akondy RS, et al. Distinct memory CD4+ T cells with commitment to T follicular helper-and T helper 1-cell lineages are generated after acute viral infection. Immunity. 2013;38(4):805–17.PubMedPubMedCentralCrossRef Hale JS, Youngblood B, Latner DR, Mohammed AUR, Ye L, Akondy RS, et al. Distinct memory CD4+ T cells with commitment to T follicular helper-and T helper 1-cell lineages are generated after acute viral infection. Immunity. 2013;38(4):805–17.PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Piotrowska M, Gliwiński M, Trzonkowski P, Iwaszkiewicz-Grzes D. Regulatory T cells-related genes are under DNA methylation influence. Int J Mol Sci. 2021;22(13):7144.PubMedPubMedCentralCrossRef Piotrowska M, Gliwiński M, Trzonkowski P, Iwaszkiewicz-Grzes D. Regulatory T cells-related genes are under DNA methylation influence. Int J Mol Sci. 2021;22(13):7144.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Helfricht A, Thijssen PE, Rother MB, Shah RG, Du L, Takada S, et al. Loss of ZBTB24 impairs nonhomologous end-joining and class-switch recombination in patients with ICF syndrome. J Exp Med. 2020;217(11):e20191688.PubMedPubMedCentralCrossRef Helfricht A, Thijssen PE, Rother MB, Shah RG, Du L, Takada S, et al. Loss of ZBTB24 impairs nonhomologous end-joining and class-switch recombination in patients with ICF syndrome. J Exp Med. 2020;217(11):e20191688.PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Kiykim A, Ogulur I, Dursun E, Charbonnier LM, Nain E, Cekic S, et al. Abatacept as a long-term targeted therapy for LRBA deficiency. J Allergy Clin Immunol: In Practice. 2019;7(8):2790-800.e15. Kiykim A, Ogulur I, Dursun E, Charbonnier LM, Nain E, Cekic S, et al. Abatacept as a long-term targeted therapy for LRBA deficiency. J Allergy Clin Immunol: In Practice. 2019;7(8):2790-800.e15.
37.
Zurück zum Zitat Kolukisa B, Baser D, Akcam B, Danielson J, BilgicEltan S, Haliloglu Y, et al. Evolution and long-term outcomes of combined immunodeficiency due to CARMIL2 deficiency. Allergy. 2022;77(3):1004–19.PubMedCrossRef Kolukisa B, Baser D, Akcam B, Danielson J, BilgicEltan S, Haliloglu Y, et al. Evolution and long-term outcomes of combined immunodeficiency due to CARMIL2 deficiency. Allergy. 2022;77(3):1004–19.PubMedCrossRef
38.
Zurück zum Zitat Baris S, Benamar M, Chen Q, Catak MC, Martínez-Blanco M, Wang M, et al. Severe allergic dysregulation due to a gain of function mutation in the transcription factor STAT6. J Allergy Clin Immunol. 2023;152(1):182-194.e7.PubMedCrossRef Baris S, Benamar M, Chen Q, Catak MC, Martínez-Blanco M, Wang M, et al. Severe allergic dysregulation due to a gain of function mutation in the transcription factor STAT6. J Allergy Clin Immunol. 2023;152(1):182-194.e7.PubMedCrossRef
39.
Zurück zum Zitat Catak MC, Akcam B, BilgicEltan S, Babayeva R, Karakus IS, Akgun G, et al. Comparing the levels of CTLA-4-dependent biological defects in patients with LRBA deficiency and CTLA-4 insufficiency. Allergy. 2022;77(10):3108–23.PubMedCrossRef Catak MC, Akcam B, BilgicEltan S, Babayeva R, Karakus IS, Akgun G, et al. Comparing the levels of CTLA-4-dependent biological defects in patients with LRBA deficiency and CTLA-4 insufficiency. Allergy. 2022;77(10):3108–23.PubMedCrossRef
40.
Zurück zum Zitat Besci O, Baser D, Ogulur I, Berberoglu AC, Kiykim A, Besci T, et al. Reference values for T and B lymphocyte subpopulations in Turkish children and adults. Turk J Med Sci. 2021;51(4):1814–24.PubMedPubMedCentralCrossRef Besci O, Baser D, Ogulur I, Berberoglu AC, Kiykim A, Besci T, et al. Reference values for T and B lymphocyte subpopulations in Turkish children and adults. Turk J Med Sci. 2021;51(4):1814–24.PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Sefer AP, Abolhassani H, Ober F, Kayaoglu B, BilgicEltan S, Kara A, et al. Expanding the clinical and immunological phenotypes and natural history of MALT1 deficiency. J Clin Immunol. 2022;42(3):634–52.PubMedCrossRef Sefer AP, Abolhassani H, Ober F, Kayaoglu B, BilgicEltan S, Kara A, et al. Expanding the clinical and immunological phenotypes and natural history of MALT1 deficiency. J Clin Immunol. 2022;42(3):634–52.PubMedCrossRef
42.
Zurück zum Zitat Kayaoglu B, Kasap N, Yilmaz NS, Charbonnier LM, Geckin B, Akcay A, et al. Stepwise reversal of immune dysregulation due to STAT1 gain-of-function mutation following ruxolitinib bridge therapy and transplantation. J Clin Immunol. 2021;41:769–79.PubMedCrossRef Kayaoglu B, Kasap N, Yilmaz NS, Charbonnier LM, Geckin B, Akcay A, et al. Stepwise reversal of immune dysregulation due to STAT1 gain-of-function mutation following ruxolitinib bridge therapy and transplantation. J Clin Immunol. 2021;41:769–79.PubMedCrossRef
43.
Zurück zum Zitat Mirdita M, Schutze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M. ColabFold: making protein folding accessible to all. Nat Methods. 2022;19(6):679–82.PubMedPubMedCentralCrossRef Mirdita M, Schutze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M. ColabFold: making protein folding accessible to all. Nat Methods. 2022;19(6):679–82.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Pettersen EF, Goddard TD, Huang CC, Meng EC, Couch GS, Croll TI, et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 2021;30(1):70–82.PubMedCrossRef Pettersen EF, Goddard TD, Huang CC, Meng EC, Couch GS, Croll TI, et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 2021;30(1):70–82.PubMedCrossRef
45.
Zurück zum Zitat Van den Boogaard M, Thijssen P, Aytekin C, Licciardi F, Kıykım A, Spossito L, et al. Expanding the mutation spectrum in ICF syndrome: evidence for a gender bias in ICF2. Clin Genet. 2017;92(4):380–7.PubMedCrossRef Van den Boogaard M, Thijssen P, Aytekin C, Licciardi F, Kıykım A, Spossito L, et al. Expanding the mutation spectrum in ICF syndrome: evidence for a gender bias in ICF2. Clin Genet. 2017;92(4):380–7.PubMedCrossRef
46.
Zurück zum Zitat Kutluğ S, Ogur G, Yilmaz A, Thijssen PE, Abur U, Yildiran A. Vesicourethral reflux-induced renal failure in a patient with ICF syndrome due to a novel DNMT3B mutation. Am J Med Genet A. 2016;170(12):3253–7.PubMedCrossRef Kutluğ S, Ogur G, Yilmaz A, Thijssen PE, Abur U, Yildiran A. Vesicourethral reflux-induced renal failure in a patient with ICF syndrome due to a novel DNMT3B mutation. Am J Med Genet A. 2016;170(12):3253–7.PubMedCrossRef
47.
Zurück zum Zitat Björck EJ, Bui TH, Wijmenga C, Grandell U, Nordenskjöld M. Early prenatal diagnosis of the ICF syndrome. Prenat Diagn. 2000;20(10):828–31.PubMedCrossRef Björck EJ, Bui TH, Wijmenga C, Grandell U, Nordenskjöld M. Early prenatal diagnosis of the ICF syndrome. Prenat Diagn. 2000;20(10):828–31.PubMedCrossRef
48.
Zurück zum Zitat Gao L, Emperle M, Guo Y, Grimm SA, Ren W, Adam S, et al. Comprehensive structure-function characterization of DNMT3B and DNMT3A reveals distinctive de novo DNA methylation mechanisms. Nat Commun. 2020;11(1):3355.PubMedPubMedCentralCrossRef Gao L, Emperle M, Guo Y, Grimm SA, Ren W, Adam S, et al. Comprehensive structure-function characterization of DNMT3B and DNMT3A reveals distinctive de novo DNA methylation mechanisms. Nat Commun. 2020;11(1):3355.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Lin CC, Chen YP, Yang WZ, Shen JCK, Yuan HS. Structural insights into CpG-specific DNA methylation by human DNA methyltransferase 3B. Nucleic Acids Res. 2020;48(7):3949–61.PubMedPubMedCentralCrossRef Lin CC, Chen YP, Yang WZ, Shen JCK, Yuan HS. Structural insights into CpG-specific DNA methylation by human DNA methyltransferase 3B. Nucleic Acids Res. 2020;48(7):3949–61.PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Gao L, Guo Y, Biswal M, Lu J, Yin J, Fang J, et al. Structure of DNMT3B homo-oligomer reveals vulnerability to impairment by ICF mutations. Nat Commun. 2022;13(1):4249.PubMedPubMedCentralCrossRef Gao L, Guo Y, Biswal M, Lu J, Yin J, Fang J, et al. Structure of DNMT3B homo-oligomer reveals vulnerability to impairment by ICF mutations. Nat Commun. 2022;13(1):4249.PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Ren R, Hardikar S, Horton JR, Lu Y, Zeng Y, Singh AK, et al. Structural basis of specific DNA binding by the transcription factor ZBTB24. Nucleic Acids Res. 2019;47(16):8388–98.PubMedPubMedCentralCrossRef Ren R, Hardikar S, Horton JR, Lu Y, Zeng Y, Singh AK, et al. Structural basis of specific DNA binding by the transcription factor ZBTB24. Nucleic Acids Res. 2019;47(16):8388–98.PubMedPubMedCentralCrossRef
53.
Zurück zum Zitat Lal G, Zhang N, Van Der Touw W, Ding Y, Ju W, Bottinger EP, et al. Epigenetic regulation of Foxp3 expression in regulatory T cells by DNA methylation. J Immunol. 2009;182(1):259–73.PubMedCrossRef Lal G, Zhang N, Van Der Touw W, Ding Y, Ju W, Bottinger EP, et al. Epigenetic regulation of Foxp3 expression in regulatory T cells by DNA methylation. J Immunol. 2009;182(1):259–73.PubMedCrossRef
54.
Zurück zum Zitat Wijmenga C, Hansen RS, Gimelli G, Björck EJ, Davies EG, Valentine D, et al. Genetic variation in ICF syndrome: evidence for genetic heterogeneity. Hum Mutat. 2000;16(6):509–17.PubMedCrossRef Wijmenga C, Hansen RS, Gimelli G, Björck EJ, Davies EG, Valentine D, et al. Genetic variation in ICF syndrome: evidence for genetic heterogeneity. Hum Mutat. 2000;16(6):509–17.PubMedCrossRef
55.
Zurück zum Zitat Gowher H, Jeltsch A. Molecular enzymology of the catalytic domains of the Dnmt3a and Dnmt3b DNA methyltransferases. J Biol Chem. 2002;277(23):20409–14.PubMedCrossRef Gowher H, Jeltsch A. Molecular enzymology of the catalytic domains of the Dnmt3a and Dnmt3b DNA methyltransferases. J Biol Chem. 2002;277(23):20409–14.PubMedCrossRef
56.
Zurück zum Zitat Moarefi AH, Chédin F. ICF syndrome mutations cause a broad spectrum of biochemical defects in DNMT3B-mediated de novo DNA methylation. J Mol Biol. 2011;409(5):758–72.PubMedCrossRef Moarefi AH, Chédin F. ICF syndrome mutations cause a broad spectrum of biochemical defects in DNMT3B-mediated de novo DNA methylation. J Mol Biol. 2011;409(5):758–72.PubMedCrossRef
57.
Zurück zum Zitat Nielsen JV, Thomassen M, Møllgård K, Noraberg J, Jensen NA. Zbtb20 defines a hippocampal neuronal identity through direct repression of genes that control projection neuron development in the isocortex. Cereb Cortex. 2014;24(5):1216–29.PubMedCrossRef Nielsen JV, Thomassen M, Møllgård K, Noraberg J, Jensen NA. Zbtb20 defines a hippocampal neuronal identity through direct repression of genes that control projection neuron development in the isocortex. Cereb Cortex. 2014;24(5):1216–29.PubMedCrossRef
58.
Zurück zum Zitat Mitchelmore C, Kjærulff KM, Pedersen HC, Nielsen JV, Rasmussen TE, Fisker MF, et al. Characterization of two novel nuclear BTB/POZ domain zinc finger isoforms: association with differentiation of hippocampal neurons, cerebellar granule cells, and macroglia. J Biol Chem. 2002;277(9):7598–609.PubMedCrossRef Mitchelmore C, Kjærulff KM, Pedersen HC, Nielsen JV, Rasmussen TE, Fisker MF, et al. Characterization of two novel nuclear BTB/POZ domain zinc finger isoforms: association with differentiation of hippocampal neurons, cerebellar granule cells, and macroglia. J Biol Chem. 2002;277(9):7598–609.PubMedCrossRef
59.
Zurück zum Zitat Kamae C, Imai K, Kato T, Okano T, Honma K, Nakagawa N, et al. Clinical and immunological characterization of ICF syndrome in Japan. J Clin Immunol. 2018;38:927–37.PubMedCrossRef Kamae C, Imai K, Kato T, Okano T, Honma K, Nakagawa N, et al. Clinical and immunological characterization of ICF syndrome in Japan. J Clin Immunol. 2018;38:927–37.PubMedCrossRef
60.
Zurück zum Zitat Harnisch E, Buddingh EP, Thijssen PE, Brooks AS, Driessen GJ, Kersseboom R, et al. Hematopoietic stem cell transplantation in a patient with ICF2 syndrome presenting with EBV-induced hemophagocytic lymphohystiocytosis. Transplantation. 2016;100(7):e35–6.PubMedCrossRef Harnisch E, Buddingh EP, Thijssen PE, Brooks AS, Driessen GJ, Kersseboom R, et al. Hematopoietic stem cell transplantation in a patient with ICF2 syndrome presenting with EBV-induced hemophagocytic lymphohystiocytosis. Transplantation. 2016;100(7):e35–6.PubMedCrossRef
61.
Zurück zum Zitat Gennery AR, Slatter MA, Bredius RG, Hagleitner MM, Weemaes C, Cant AJ, et al. Hematopoietic stem cell transplantation corrects the immunologic abnormalities associated with immunodeficiency-centromeric instability-facial dysmorphism syndrome. Pediatrics. 2007;120(5):e1341–4.PubMedCrossRef Gennery AR, Slatter MA, Bredius RG, Hagleitner MM, Weemaes C, Cant AJ, et al. Hematopoietic stem cell transplantation corrects the immunologic abnormalities associated with immunodeficiency-centromeric instability-facial dysmorphism syndrome. Pediatrics. 2007;120(5):e1341–4.PubMedCrossRef
62.
Zurück zum Zitat Kraft MT, Mehyar LS, Prince BT, Reshmi SC, Abraham RS, Abu-Arja R. Immune reconstitution after hematopoietic stem cell transplantation in immunodeficiency-centromeric instability-facial anomalies syndrome type 1. J Clin Immunol. 2021;41(5):1089–94.PubMedPubMedCentralCrossRef Kraft MT, Mehyar LS, Prince BT, Reshmi SC, Abraham RS, Abu-Arja R. Immune reconstitution after hematopoietic stem cell transplantation in immunodeficiency-centromeric instability-facial anomalies syndrome type 1. J Clin Immunol. 2021;41(5):1089–94.PubMedPubMedCentralCrossRef
63.
Zurück zum Zitat Burk CM, Coffey KE, Mace EM, Bostwick BL, Chinn IK, Coban-Akdemir ZH, et al. Immunodeficiency, centromeric instability, and facial anomalies (ICF) syndrome with NK dysfunction and EBV-driven malignancy treated with stem cell transplantation. J Allergy Clin Immunol Pract. 2020;8(3):1103-6.e3.PubMedCrossRef Burk CM, Coffey KE, Mace EM, Bostwick BL, Chinn IK, Coban-Akdemir ZH, et al. Immunodeficiency, centromeric instability, and facial anomalies (ICF) syndrome with NK dysfunction and EBV-driven malignancy treated with stem cell transplantation. J Allergy Clin Immunol Pract. 2020;8(3):1103-6.e3.PubMedCrossRef
64.
Zurück zum Zitat Gossling KL, Schipp C, Fischer U, Babor F, Koch G, Schuster FR, et al. Hematopoietic stem cell transplantation in an infant with immunodeficiency, centromeric instability, and facial anomaly syndrome. Front Immunol. 2017;8:773.PubMedPubMedCentralCrossRef Gossling KL, Schipp C, Fischer U, Babor F, Koch G, Schuster FR, et al. Hematopoietic stem cell transplantation in an infant with immunodeficiency, centromeric instability, and facial anomaly syndrome. Front Immunol. 2017;8:773.PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Ehrlich M, Jackson K, Weemaes C. Immunodeficiency, centromeric region instability, facial anomalies syndrome (ICF). Orphanet J Rare Dis. 2006;1(1):1–9.CrossRef Ehrlich M, Jackson K, Weemaes C. Immunodeficiency, centromeric region instability, facial anomalies syndrome (ICF). Orphanet J Rare Dis. 2006;1(1):1–9.CrossRef
66.
Zurück zum Zitat Sogkas G, Dubrowinskaja N, Bergmann AK, Lentes J, Ripperger T, Fedchenko M, et al. Progressive immunodeficiency with gradual depletion of B and CD4+ T cells in immunodeficiency, centromeric instability and facial anomalies syndrome 2 (ICF2). Diseases. 2019;7(2):34.PubMedPubMedCentralCrossRef Sogkas G, Dubrowinskaja N, Bergmann AK, Lentes J, Ripperger T, Fedchenko M, et al. Progressive immunodeficiency with gradual depletion of B and CD4+ T cells in immunodeficiency, centromeric instability and facial anomalies syndrome 2 (ICF2). Diseases. 2019;7(2):34.PubMedPubMedCentralCrossRef
67.
Zurück zum Zitat Yehezkel S, Segev Y, Viegas-Pequignot E, Skorecki K, Selig S. Hypomethylation of subtelomeric regions in ICF syndrome is associated with abnormally short telomeres and enhanced transcription from telomeric regions. Hum Mol Genet. 2008;17(18):2776–89.PubMedCrossRef Yehezkel S, Segev Y, Viegas-Pequignot E, Skorecki K, Selig S. Hypomethylation of subtelomeric regions in ICF syndrome is associated with abnormally short telomeres and enhanced transcription from telomeric regions. Hum Mol Genet. 2008;17(18):2776–89.PubMedCrossRef
68.
Zurück zum Zitat Pezzolo A, Prigione I, Facchetti P, Castellano E, Viale M, Gimelli G, et al. T-cell apoptosis in ICF syndrome. J Allergy Clin Immunol. 2001;108(2):310–2.PubMedCrossRef Pezzolo A, Prigione I, Facchetti P, Castellano E, Viale M, Gimelli G, et al. T-cell apoptosis in ICF syndrome. J Allergy Clin Immunol. 2001;108(2):310–2.PubMedCrossRef
69.
Zurück zum Zitat Giardino G, Radwan N, Koletsi P, Morrogh DM, Adams S, Ip W, et al. Clinical and immunological features in a cohort of patients with partial DiGeorge syndrome followed at a single center. Blood, J Am Soc Hematol. 2019;133(24):2586–96. Giardino G, Radwan N, Koletsi P, Morrogh DM, Adams S, Ip W, et al. Clinical and immunological features in a cohort of patients with partial DiGeorge syndrome followed at a single center. Blood, J Am Soc Hematol. 2019;133(24):2586–96.
70.
Zurück zum Zitat Ogulur I, Kiykim A, Baser D, Karakoc-Aydiner E, Ozen A, Baris S. Lymphocyte subset abnormalities in pediatric-onset common variable immunodeficiency. Int Arch Allergy Immunol. 2020;181(3):228–37.PubMedCrossRef Ogulur I, Kiykim A, Baser D, Karakoc-Aydiner E, Ozen A, Baris S. Lymphocyte subset abnormalities in pediatric-onset common variable immunodeficiency. Int Arch Allergy Immunol. 2020;181(3):228–37.PubMedCrossRef
71.
Zurück zum Zitat Alroqi FJ, Charbonnier L-M, Baris S, Kiykim A, Chou J, Platt CD, et al. Exaggerated follicular helper T-cell responses in patients with LRBA deficiency caused by failure of CTLA4-mediated regulation. J Allergy Clin Immunol. 2018;141(3):1050-9.e10.PubMedCrossRef Alroqi FJ, Charbonnier L-M, Baris S, Kiykim A, Chou J, Platt CD, et al. Exaggerated follicular helper T-cell responses in patients with LRBA deficiency caused by failure of CTLA4-mediated regulation. J Allergy Clin Immunol. 2018;141(3):1050-9.e10.PubMedCrossRef
72.
Zurück zum Zitat Ma CS, Wong N, Rao G, Avery DT, Torpy J, Hambridge T, et al. Monogenic mutations differentially affect the quantity and quality of T follicular helper cells in patients with human primary immunodeficiencies. J Allergy Clin Immunol. 2015;136(4):993-1006.e1.PubMedPubMedCentralCrossRef Ma CS, Wong N, Rao G, Avery DT, Torpy J, Hambridge T, et al. Monogenic mutations differentially affect the quantity and quality of T follicular helper cells in patients with human primary immunodeficiencies. J Allergy Clin Immunol. 2015;136(4):993-1006.e1.PubMedPubMedCentralCrossRef
73.
Zurück zum Zitat Guo L, Hu-Li J, Zhu J, Watson CJ, Difilippantonio MJ, Pannetier C, et al. In TH2 cells the Il4 gene has a series of accessibility states associated with distinctive probabilities of IL-4 production. Proc Natl Acad Sci. 2002;99(16):10623–8.PubMedPubMedCentralCrossRef Guo L, Hu-Li J, Zhu J, Watson CJ, Difilippantonio MJ, Pannetier C, et al. In TH2 cells the Il4 gene has a series of accessibility states associated with distinctive probabilities of IL-4 production. Proc Natl Acad Sci. 2002;99(16):10623–8.PubMedPubMedCentralCrossRef
74.
Zurück zum Zitat Tangye SG, Liu Y-J, Aversa G, Phillips JH, de Vries JE. Identification of functional human splenic memory B cells by expression of CD148 and CD27. J Exp Med. 1998;188(9):1691–703.PubMedPubMedCentralCrossRef Tangye SG, Liu Y-J, Aversa G, Phillips JH, de Vries JE. Identification of functional human splenic memory B cells by expression of CD148 and CD27. J Exp Med. 1998;188(9):1691–703.PubMedPubMedCentralCrossRef
75.
Zurück zum Zitat Klein U, Rajewsky K, Küppers R. Human immunoglobulin (Ig) M+ IgD+ peripheral blood B cells expressing the CD27 cell surface antigen carry somatically mutated variable region genes: CD27 as a general marker for somatically mutated (memory) B cells. J Exp Med. 1998;188(9):1679–89.PubMedPubMedCentralCrossRef Klein U, Rajewsky K, Küppers R. Human immunoglobulin (Ig) M+ IgD+ peripheral blood B cells expressing the CD27 cell surface antigen carry somatically mutated variable region genes: CD27 as a general marker for somatically mutated (memory) B cells. J Exp Med. 1998;188(9):1679–89.PubMedPubMedCentralCrossRef
76.
Zurück zum Zitat Ehrlich M, Sanchez C, Shao C, Nishiyama R, Kehrl J, Kuick R, et al. ICF, an immunodeficiency syndrome: DNA methyltransferase 3B involvement, chromosome anomalies, and gene dysregulation. Autoimmunity. 2008;41(4):253–71.PubMedPubMedCentralCrossRef Ehrlich M, Sanchez C, Shao C, Nishiyama R, Kehrl J, Kuick R, et al. ICF, an immunodeficiency syndrome: DNA methyltransferase 3B involvement, chromosome anomalies, and gene dysregulation. Autoimmunity. 2008;41(4):253–71.PubMedPubMedCentralCrossRef
77.
Zurück zum Zitat Staudacher O, Klein J, Thee S, Ullrich J, Wahn V, Unterwalder N, et al. TREC newborn screening fails to detect immunodeficiency, centromeric instability, and facial anomalies syndrome. J Allergy Clin Immunol Pract. 2023;11(9):2872–83.PubMedCrossRef Staudacher O, Klein J, Thee S, Ullrich J, Wahn V, Unterwalder N, et al. TREC newborn screening fails to detect immunodeficiency, centromeric instability, and facial anomalies syndrome. J Allergy Clin Immunol Pract. 2023;11(9):2872–83.PubMedCrossRef
Metadaten
Titel
Evaluation of Clinical and Immunological Alterations Associated with ICF Syndrome
verfasst von
Sevgi Bilgic Eltan
Ercan Nain
Mehmet Cihangir Catak
Ege Ezen
Asena Pınar Sefer
Nastaran Karimi
Ayca Kiykim
Burcu Kolukisa
Dilek Baser
Alper Bulutoglu
Nurhan Kasap
Melek Yorgun Altunbas
Ezgi Yalcin Gungoren
Yasemin Kendir Demirkol
Seyhan Kutlug
Gonca Hancioglu
Fatih Dilek
Alisan Yildiran
Ahmet Ozen
Elif Karakoc-Aydiner
Batu Erman
Safa Baris
Publikationsdatum
01.01.2024
Verlag
Springer US
Erschienen in
Journal of Clinical Immunology / Ausgabe 1/2024
Print ISSN: 0271-9142
Elektronische ISSN: 1573-2592
DOI
https://doi.org/10.1007/s10875-023-01620-6

Weitere Artikel der Ausgabe 1/2024

Journal of Clinical Immunology 1/2024 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.