Skip to main content
Erschienen in: BMC Pulmonary Medicine 1/2021

Open Access 01.12.2021 | Research

Factors associated with delirium among survivors of acute respiratory distress syndrome: a nationwide cohort study

verfasst von: Tak Kyu Oh, Hye Youn Park, In-Ae Song

Erschienen in: BMC Pulmonary Medicine | Ausgabe 1/2021

Abstract

Background

The prevalence of delirium, its associated factors, and its impact on long-term mortality among survivors of acute respiratory distress syndrome (ARDS) is unclear.

Methods

Since this was a population-based study, data were extracted from the National Health Insurance database in South Korea. All adults who were admitted to intensive care units with a diagnosis of ARDS between January 1, 2010, and December 31, 2019, and who survived for ≥ 60 days were included. The International Statistical Classification of Diseases and Related Health Problems, tenth revision code of delirium (F05) was used to extract delirium cases during hospitalization.

Results

A total of 6809 ARDS survivors were included in the analysis, and 319 patients (4.7%) were diagnosed with delirium during hospitalization. In the multivariable logistic regression analysis after covariate adjustment, male sex (odds ratio [OR] 1.60, 95% confidence interval [CI] 1.23, 2.08; P < 0.001), longer duration of hospitalization (OR 1.02, 95% CI 1.01, 1.03; P < 0.001), neuromuscular blockade use (OR 1.50, 95% CI 1.12, 2.01; P = 0.006), benzodiazepine (OR 1.55, 95% CI 1.13, 2.13; P = 0.007) and propofol (OR 1.48, 95% CI 1.01, 2.17; P = 0.046) continuous infusion, and concurrent depression (OR 1.31, 95% CI 1.01, 1.71; P = 0.044) were associated with a higher prevalence of delirium among ARDS survivors. In the multivariable Cox regression analysis after adjustment for covariates, the occurrence of delirium was not significantly associated with 1-year all-cause mortality, when compared to the other survivors who did not develop delirium (hazard ratio: 0.85, 95% CI 1.01, 1.71; P = 0.044).

Conclusions

In South Korea, 4.7% of ARDS survivors were diagnosed with delirium during hospitalization in South Korea. Some factors were potential risk factors for the development of delirium, but the occurrence of delirium might not affect 1-year all-cause mortality among ARDS survivors.
Hinweise

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12890-021-01714-0.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
ARDS
Acute respiratory distress syndrome
CAM-ICU
Confusion assessment method for the ICU
CCI
Charlson comorbidity index
CI
Confidence intervals
DSM-5
Diagnostic and statistical manual of mental disorders, fifth edition
HR
Hazard ratios
ICU
Intensive care unit
IRB
Institutional Review Board
OR
Odds ratios
SD
Standard deviation

Background

Delirium is a serious disturbance in mental abilities that results in an acute confusional status and deteriorating awareness of the environment [1]. It is commonly diagnosed using the diagnostic and statistical manual of mental disorders, fifth edition (DSM-5) criteria [2]. It occurs frequently among critically ill patients admitted in the intensive care unit (ICU) [3]. Since delirium is a significant risk factor of prolongation of ICU stay and poorer survival outcomes up to one year after discharge among ICU patients [4, 5], effective prevention and management of delirium are important.
For critically ill patients in the ICU, the reported prevalence of delirium is 25–31.8% [5, 6]. In particular, critically ill patients who undergo mechanical ventilatory support have a higher risk of delirium; this is an independent predictor of higher 6-month mortality [7, 8]. Acute respiratory distress syndrome (ARDS) is characterized by refractory hypoxemia from respiratory failure [9]. Thus, most patients with ARDS require mechanical ventilation, and 36% of patients requiring mechanical ventilation experienced agitation under light sedation [10]. In addition, ARDS is associated with a higher risk of delirium during ICU stay [11]. However, studies on the relationship between delirium, risk factors, and mortality of patients with ARDS are few. A recent retrospective cohort study reported that 43% (124/286) of patients with ARDS were diagnosed with ICU delirium [12]. In that study, the impact of delirium on mortality of patients with ARDS was not assessed, and the sample size was relatively small [12]. Moreover, the prevalence and impact of delirium on long-term mortality during hospitalization among ARDS survivors have not yet been identified.
Therefore, using a nationwide claim database in South Korea, this study aimed to investigate the prevalence and factors associated with the occurrence of delirium among ARDS survivors. In addition, we examined whether the occurrence of delirium during hospitalization was associated with long-term mortality.

Methods

Study design and ethical statement

This study is a nationwide population-based cohort study. It was conducted in accordance with the Strengthening of the Reporting of Observational Studies in Epidemiology guidelines. The study protocol was approved by the Institutional Review Board (IRB) (X-2008-630-903), and the National Health Insurance Service (NHIS) permitted data sharing after approval of the study protocol (NHIS-2021-1-424). The requirement of informed consent was waived by the IRB because anonymized data was used in this study.

Data source and study population

Data (demographic, socioeconomic, and treatment data of all Korean individuals in the sole and public health insurance system in South Korea) was obtained from the NHIS database. All diagnoses of diseases had to be registered by physicians using the International Statistical Classification of Diseases and Related Health Problems, Tenth revision (ICD-10) codes in the NHIS database. The prescription information of all procedures and/or drugs also had to be registered in the NHIS database. These registrations enable patients to receive financial support for treatment expenses by the government.
All adult patients (aged ≥ 18 years) who were admitted to the ICU for ARDS (J80) between January 1, 2010, and December 31, 2019, were eligible. Patients with a main diagnosis or secondary diagnosis of ARDS were included because ARDS is a clinical syndrome that may occur concurrently with other main diseases such as pneumonia, sepsis, or pancreatitis [13]. The main diagnosis of each patient was determined by the NHIS after hospital discharge or death, as a disease requiring close follow-up or emergency treatment during the patient’s hospitalization. If a patient was admitted to the ICU with a diagnosis of ARDS ≥ 2 times during the study period, only the first ICU admission was considered in this study. To focus on delirium during hospitalization, patients with ARDS who died within 60 days after hospitalization were excluded because 60-day mortality is a common primary endpoint for patients with severe ARDS [14]. Therefore, patients with ARDS who survived ≥ 60 days after the diagnosis of ARDS were considered ARDS survivors and included in the final analysis.

Endpoints and outcomes

The primary endpoint was the diagnosis of delirium during hospitalization and was evaluated from the date of ARDS diagnosis to 60 days after ARDS diagnosis. The ICD-10 code, F05, was used to extract delirium diagnoses. In South Korea, DSM-5 criteria isusually used for diagnosis of delirium in ICU [2], and the registration of ICD-10 codes of delirium enable the financial support of treatment. Moreover, most medical staff in Korean ICUs used Korean version of confusion assessment method for the ICU (CAM-ICU) routinely for screening and assessment of delirium during ICU stays [15]. The ARDS survivors who were diagnosed with delirium constituted the delirium group, while the remaining patients constituted the control group. The secondary endpoint was 1-year all-cause mortality, which was evaluated from the date of ARDS diagnosis to one year after ARDS diagnosis. To better follow up the patients with ARDS for at least one year after ARDS diagnosis, the exact date of death was extracted until December 31, 2020.
First, the prevalence of delirium among ARDS survivors and the factors associated with delirium were investigated. Second, the association between development of delirium during hospitalization among ARDS survivors and 1-year all-cause mortality was examined.

Covariates

The following variables were considered covariates in this study: age and sex were demographic variables. Household income level and employment status at the time of ARDS treatment was included to reflect patients’ socioeconomic status. The patients were divided into four groups according to household income levels using quartile ratios. Household income level was registered annually in the NHIS database to determine insurance premiums in South Korea. The admitting department was included as a covariate and classified into two groups (internal medicine and non-internal medicine). Length of hospitalization (day) and total cost of hospitalization (United States dollars) were covariates. Since higher case volume centers are related to better survival outcomes of patients with ARDS [16], the annual case volume of ICU admission for ARDS treatment was considered a covariate. All patients with ARDS were divided into four groups using quartile ratios, based on the hospital in which they were admitted for ARDS treatment: Q1 ≤ 4; Q2, 5–14; Q3, 15–28; and Q4 ≥ 28. A main diagnosis of ARDS was considered as a covariate, and diagnoses of shock (R57) or sepsis (A40, A41, and R65.2) were also considered as covariates. If a patient with ARDS had a main diagnosis of sepsis and a secondary diagnosis of ARDS, the diagnosis was sepsis-associated ARDS. To reflect the comorbidity status of patients with ARDS, the Charlson comorbidity index (CCI) was calculated using registered ICD-10 codes within one year before the date of ARDS diagnosis (Additional file 1: Table S1). All patients were divided into four groups according to their CCI scores (0–1, 2–3, 4–5, and ≥ 6). Concurrent psychiatric illnesses such as depression (F32, F33, and F34.1), anxiety disorder (F40 and F 41), post-traumatic stress disorder (F43.1), alcohol abuse (F10), and other substance abuse (F11–19) were considered because of the close relationship between concurrent psychiatric disorders and development of delirium among hospitalized patients [17, 18]. Moreover, underlying disability at admission for ARDS was extracted and considered as a covariate. In South Korea, all disabilities should be registered in the NHIS database to receive various benefits under social welfare programs. The disabilities were divided into two groups such as brain disability and non-brain disability, because delirium is common in patients with neurological disease [19]. Regarding treatment, extracorporeal membrane oxygenation support, neuromuscular blockade use, continuous renal replacement therapy use, duration of mechanical ventilation (day), and cardiopulmonary resuscitation experience were considered as covariates. Information regarding benzodiazepine continuous infusion (midazolam, diazepam, and lorazepam), opioid continuous infusion, and propofol infusion were collected as covariates. Admission to isolated ICU was also collected and considered as a covariate, because isolation in ICU was known as environmental risk factor of delirium in ICU [20].

Statistical analysis

The clinicopathological characteristics of ARDS survivors are presented as means with standard deviations (SDs) for continuous variables and numbers with percentages for categorical variables. The t-test was used to compare continuous variables, and the chi-square test was used to compare categorical variables between the delirium and control groups. We fitted a multivariable logistic regression model for diagnosing delirium among ARDS survivors. All covariates were included in the model for multivariable adjustment. The Hosmer–Lemeshow test was performed to confirm the goodness of fit of the multivariable model. The results of the logistic regression analysis are presented as odds ratios (ORs) with 95% confidence intervals (CIs). A multivariable Cox regression model for 1-year all-cause mortality among ARDS survivors was constructed. All covariates were included in the adjusted model. The log–log plot was used to confirm that the central assumption of the Cox proportional hazard model was satisfied. The results of the Cox regression model are presented as hazard ratios (HRs) with 95% CIs. There was no multicollinearity in both multivariable logistic and Cox regression models as criteria of variance inflation factors: < 2.0 between all variables. All statistical analyses were performed using R software (version 4.0.3, R packages, R Project for Statistical Computing, Vienna, Austria). P values < 0.05 were considered statistically significant for all analyses.

Results

A total of 27,889 patients were admitted in the ICU and diagnosed with ARDS in South Korea. After excluding 8,327 patients with ≥ 2 ICU admissions and 2,459 pediatric patients (below 18 years old), 17,103 adult patients with ARDS were screened initially. Among them, 10, 294 (60.2%) patients who died within 60 days after ARDS diagnosis were excluded, and 6,809 ARDS survivors were finally included in the analysis. Among them, 319 (4.7%) patients were diagnosed with delirium during hospitalization (Fig. 1).
The clinicopathological characteristics of the ARDS survivors are presented in Table 1. The mean age of the ARDS survivors was 66 (SD: 17.2) years, and 61.4% (4180/6809) of the patients were men. The results of the comparison of clinicopathological characteristics between the delirium and control groups are presented in Table 2. The mean length of hospital stay of the delirium group was longer than that of the control group (30.2 [SD: 21.3] vs. 20.2 [SD: 16.8] days, respectively; P < 0.001). The mean duration of mechanical ventilation in the delirium group was also longer than that in the control group (6.5 [SD: 9.2] vs. 4.5 [SD: 8.8] days, respectively; P < 0.001). The proportion of patients with concurrent depression was higher in the delirium group (34.2% [109/319]) than in the control group (27.1% [1757/6490], P = 0.006).
Table 1
The clinicopathological characteristics of the ARDS survivors
Variable
Mean (SD) or N (%)
Age, year
66.0 (17.2)
Sex, male
4180 (61.4)
Having a job at admission for ARDS
3555 (52.2)
Annual income level at ARDS treatment
 Q1 (Lowest)
2031 (29.8)
 Q2
1073 (15.8)
 Q3
1333 (19.6)
 Q4 (Highest)
2227 (32.7)
 Unknown
145 (2.1)
Admitting department
 IM
5480 (80.5)
 Non-IM
1329 (19.5)
Length of hospitalization, day
20.7 (17.2)
Total cost for hospitalization, USD
10,799.2 (13,605.4)
Annual case volume of ARDS admission
 Q1 ≤ 4
1417 (20.8)
 Q2: 5–14
1648 (24.2)
 Q3: 15–28
1966 (28.9)
 Q4 ≥ 28
1778 (26.1)
Main diagnosis of ARDS
3390 (49.8)
Sepsis associated ARDS
393 (5.3)
Diagnosis of shock during hospitalization
363 (5.3)
Underlying brain disability
484 (7.1)
Underlying non-brain disability
1480 (21.7)
Isolated ICU admission
196 (2.9)
CCI at hospital admission for ARDS
 0–1
1523 (22.4)
 2–3
2171 (31.9)
 4–5
1558 (22.9)
 ≥ 6
1557 (22.9)
ECMO support
317 (4.7)
NMB use
2238 (32.9)
CRRT use
299 (4.4)
Benzodiazepine continuous infusion
3889 (57.1)
Opioid continuous infusion
1049 (15.4)
Propofol continuous infusion
560 (8.2)
Duration of Mechanical Ventilator use, day
4.6 (8.8)
Experience of CPR during hospitalization
236 (3.5)
Concurrent other psychiatric illness
 Depression
1866 (27.4)
 Anxiety disorder
2324 (34.1)
 PTSD
11 (0.2)
 Alcohol abuse
314 (4.6)
 Other substance abuse
36 (0.5)
Year of admission for ARDS
 2010
849 (12.5)
 2011
656 (9.6)
 2012
607 (8.9)
 2013
527 (7.7)
 2014
641 (9.4)
 2015
621 (9.1)
 2016
831 (12.2)
 2017
705 (10.4)
 2018
723 (10.6)
 2019
649 (9.5)
1-year all-cause mortality
1868 (27.4)
ARDS, acute respiratory distress syndrome; SD, standard deviation; IM, internal medicine; USD, United States Dollar; CCI, Charlson comorbidity index; ECMO, extracorporeal membrane oxygenation; NMB, neuromuscular blockade; CRRT, continuous renal replacement therapy; CPR, cardiopulmonary resuscitation; PTSD, post-traumatic stress disorder
Table 2
The comparison of clinicopathological characteristics between the delirium and control groups
Variable
Delirium group
n = 319
Control group
n = 6,490
P value
Age, year
66.7 (17.3)
66.0 (17.2)
0.414
Sex, male
232 (72.7)
3948 (60.8)
 < 0.001
Having a job at admission for ARDS
175 (54.9)
3380 (52.1)
0.332
Annual income level at ARDS treatment
  
0.510
 Q1 (Lowest)
92 (28.8)
1939 (29.9)
 
 Q2
50 (15.7)
1023 (15.8)
 
 Q3
70 (21.9)
1263 (19.5)
 
 Q4 (Highest)
104 (32.6)
2123 (32.7)
 
 Unknown
3 (0.9)
142 (2.2)
 
Admitting department: IM
273 (85.6)
5207 (80.2)
0.019
Length of hospitalization, day
30.2 (21.3)
20.2 (16.8)
 < 0.001
Total cost for hospitalization, USD
18,394.5 (17,772.2)
10,425.9 (13,257.2)
 < 0.001
Underlying brain disability
14 (4.4)
470 (7.2)
0.068
Underlying non-brain disability
74 (23.2)
1406 (21.7)
0.517
Annual case volume of ARDS admission
  
 < 0.0012
 Q1 ≤ 4
38 (11.9)
1379 (21.2)
 
 Q2: 5–14
64 (20.1)
1584 (24.4)
 
 Q3: 15–28
100 (31.3)
1866 (28.8)
 
 Q4 ≥ 28
117 (36.7)
1661 (25.6)
 
Main diagnosis of ARDS
162 (50.8)
3228 (49.7)
0.715
Sepsis associated ARDS
37 (11.6)
796 (12.3)
0.723
Diagnosis of shock during hospitalization
23 (7.2)
340 (5.2)
0.126
Isolated ICU admission
13 (4.1)
183 (2.8)
0.190
CCI at hospital admission for ARDS
  
0.584
 0–1
62 (19.4)
1461 (22.5)
 
 2–3
102 (32.0)
2069 (31.9)
 
 4–5
76 (23.8)
1482 (22.8)
 
 ≥ 6
79 (24.8)
1478 (22.8)
 
ECMO support
23 (7.2)
294 (4.5)
0.027
NMBA use
171 (53.6)
2067 (31.8)
 < 0.001
CRRT use
20 (6.3)
279 (4.3)
0.094
Benzodiazepine continuous infusion
248 (77.7)
3641 (56.1)
 < 0.001
Opioid continuous infusion
77 (24.1)
972 (15.0)
 < 0.001
Propofol continuous infusion
51 (16.0)
509 (7.8)
 < 0.001
Duration of Mechanical Ventilator use, day
6.5 (9.2)
4.5 (8.8)
 < 0.001
Experience of CPR during hospitalization
16 (5.0)
220 (3.4)
0.121
Concurrent depression
109 (34.2)
1757 (27.1)
0.006
Concurrent anxiety disorder
119 (37.3)
2205 (34.0)
0.221
Concurrent PTSD
1 (0.3)
10 (0.2)
0.489
Concurrent alcohol abuse
   
Concurrent other substance abuse
   
Year of admission for ARDS
  
0.099
 2010
28 (8.8)
821 (12.7)
 
 2011
19 (6.0)
637 (9.8)
 
 2012
29 (9.1)
578 (8.9)
 
 2013
34 (10.7)
493 (7.6)
 
 2014
33 (10.3)
608 (9.4)
 
 2015
34 (10.7)
587 (9.0)
 
 2016
43 (13.5)
788 (12.1)
 
 2017
32 (10.0)
673 (10.4)
 
 2018
39 (12.2)
684 (10.54)
 
 2019
28 (8.8)
621 (9.6)
 
1-year all-cause mortality
92 (28.8)
1776 (27.4)
0.564
Presented as means with standard deviations for continuous variables and numbers with percentages for categorical variables
ARDS, acute respiratory distress syndrome; IM, internal medicine; USD, United States Dollar; CCI, Charlson comorbidity index; ECMO, extracorporeal membrane oxygenation; NMB, neuromuscular blockade; CRRT, continuous renal replacement therapy; CPR, cardiopulmonary resuscitation; PTSD, post-traumatic stress disorder
Table 3 shows the results of the multivariable logistic regression analysis of the occurrence of delirium among ARDS survivors. Male sex (OR 1.60, 95% CI 1.23, 2.08; P < 0.001), longer duration of hospitalization (OR 1.02, 95% CI 1.01, 1.03; P < 0.001), neuromuscular blockade use (OR 1.50, 95% CI 1.12, 2.01; P = 0.006), benzodiazepine (OR 1.55, 95% CI 1.13, 2.13; P = 0.007) and propofol (OR 1.48, 95% CI 1.01, 2.17; P = 0.046) continuous infusion, and concurrent depression (OR 1.31, 95% CI 1.01, 1.71; P = 0.044) were associated with a higher prevalence of delirium among ARDS survivors.
Table 3
Multivariable logistic regression analysis of the occurrence of delirium among ARDS survivors
Variable
OR (95% CI)
P value
Age, year
1.01 (1.00, 1.02)
0.072
Sex, male (vs female)
1.60 (1.23, 2.08)
 < 0.001
Having a job at admission for ARDS
1.08 (0.85, 1.38)
0.511
Annual income level at ARDS treatment
 Q2 (vs Q1: Lowest)
0.95 (0.66, 1.38)
0.795
 Q3 (vs Q1: Lowest)
1.09 (0.78, 1.52)
0.629
 Q4: Highest (vs Q1: Lowest)
0.86 (0.63, 1.17)
0.344
 Unknown (vs Q1: Lowest)
0.46 (0.14, 1.49)
0.195
Admitting department: IM (vs non-IM)
1.44 (1.02, 2.02)
0.037
Length of hospitalization, day
1.02 (1.01, 1.03)
 < 0.001
Total cost for hospitalization, 1000 USD
1.01 (0.99, 1.02)
0.333
Underlying brain disability
0.65 (0.37, 1.14)
0.129
Underlying non-brain disability
0.99 (0.74, 1.31)
0.924
Annual case volume of ARDS admission
 Q2: 5–14 (vs Q1 ≤ 4)
1.06 (0.69, 1.61)
0.805
 Q3: 15–28 (vs Q1 ≤ 4)
1.32 (0.88, 1.98)
0.176
 Q4 ≥ 28 (vs Q1 ≤ 4)
1.79 (1.20, 2.69)
0.005
Main diagnosis of ARDS (vs Secondary diagnosis of ARDS)
0.94 (0.74, 1.19)
0.609
Sepsis associated ARDS
0.67 (0.46, 0.96)
0.030
Diagnosis of shock during hospitalization
1.02 (0.65, 1.61)
0.927
Isolated ICU admission
0.99 (0.53, 1.85)
0.981
CCI at hospital admission for ARDS
 2–3 (vs 0–1)
1.01 (0.72, 1.41)
0.961
 4–5 (vs 0–1)
0.96 (0.67, 1.38)
0.830
 ≥ 6 (vs 0–1)
0.95 (0.66, 1.36)
0.772
ECMO support
0.98 (0.57, 1.67)
0.930
NMB use
1.50 (1.12, 2.01)
0.006
CRRT use
0.84 (0.50, 1.40)
0.503
Benzodiazepine continuous infusion
1.55 (1.13, 2.13)
0.007
Opioid continuous infusion
1.05 (0.73, 1.53)
0.781
Propofol continuous infusion
1.48 (1.01, 2.17)
0.046
Duration of Mechanical Ventilator use, day
0.99 (0.98, 1.00)
0.050
Experience of CPR during hospitalization
1.01 (0.58., 1.75()
0.973
Concurrent anxiety disorder
1.12 (0.87, 1.44)
0.385
Concurrent depression
1.33 (1.03, 1.73)
0.031
Concurrent PTSD
2.25 (0.27, 18.42)
0.451
Concurrent alcohol abuse
  
Concurrent other substance abuse
  
Year of admission for ARDS
 2011 (vs 2010)
1.41 (0.82, 1.54)
0.572
 2012 (vs 2010)
1.41 (0.82, 2.43)
0.210
 2013 (vs 2010)
1.57 (0.93, 2.67)
0.094
 2014 (vs 2010)
1.24 (0.73, 2.11)
0.421
 2015 (vs 2010)
1.41 (0.84, 2.39)
0.198
 2016 (vs 2010)
1.41 (0.85., 2.34)
0.179
 2017 (vs 2010)
1.17 (0.69, 2.00)
0.558
 2018 (vs 2010)
1.38 (0.82, 2.32)
0.226
 2019 (vs 2010)
1.03 (0.59, 1.81)
0.921
Hosmer Lemeshow, chi-square: 4.88, df = 8, P = 0.770
ARDS, acute respiratory distress syndrome; OR, odds ratio; CI, confidence interval; IM, internal medicine; USD, United States Dollar; CCI, Charlson comorbidity index; ECMO, extracorporeal membrane oxygenation; NMB, neuromuscular blockade; CRRT, continuous renal replacement therapy; CPR, cardiopulmonary resuscitation; PTSD, post-traumatic stress disorder
Table 4 shows the results of the multivariable Cox regression analysis for 1-year all-cause mortality among ARDS survivors. Delirium was not associated with 1-year all-cause mortality significantly, when compared to the control group (HR 0.85, 95% CI 0.69–1.06; P = 0.148).
Table 4
Multivariable Cox regression analysis for 1-year all-cause mortality among ARDS survivors
Variable
HR (95% CI)
P value
Delirium group (vs control)
0.85 (0.69, 1.06)
0.148
Age, year
1.04 (1.04, 1.05)
 < 0.001
Sex, male (vs female)
1.43 (1.29, 1.58)
 < 0.001
Having a job at admission for ARDS
1.01 (0.91, 1.11)
0.908
Annual income level at ARDS treatment
 Q2 (vs Q1: Lowest)
0.86 (0.74, 1.01)
0.065
 Q3 (vs Q1: Lowest)
0.93 (0.80, 1.07)
0.278
 Q4: Highest (vs Q1: Lowest)
0.95 (0.85, 1.07)
0.411
 Unknown (vs Q1: Lowest)
0.96 (0.71, 1.31)
0.814
Admitting department: IM (vs non-IM)
0.84 (0.75, 0.95)
0.005
Length of hospitalization, day
1.01 (1.00, 1.01)
 < 0.001
Total cost for hospitalization, 1000 USD
1.02 (1.01, 1.02)
 < 0.001
Underlying brain disability
1.25 (1.07, 1.46)
0.006
Underlying non-brain disability
1.13 (1.01, 1.26)
0.028
Annual case volume of ARDS admission
 Q2: 5–14 (vs Q1 ≤ 4)
0.85 (0.74, 0.98)
0.021
 Q3: 15–28 (vs Q1 ≤ 4)
0.98 (0.86, 1.12)
0.809
 Q4 ≥ 28 (vs Q1 ≤ 4)
0.93 (0.80, 1.07)
0.289
Main diagnosis of ARDS (vs Secondary diagnosis of ARDS)
0.91 (0.83, 1.00)
0.041
Sepsis associated ARDS
1.10 (0.96, 1.26)
0.168
Diagnosis of shock during hospitalization
0.99 (0.80, 1.23)
0.945
Isolated ICU admission
0.87 (0.64, 1.17)
0.346
CCI at hospital admission for ARDS
 2–3 (vs 0–1)
1.17 (1.01, 1.36)
0.043
 4–5 (vs 0–1)
1.54 (1.32, 1.80)
 < 0.001
 ≥ 6 (vs 0–1)
2.08 (1.79, 2.41)
 < 0.001
ECMO support
0.66 (0.47, 0.92)
0.014
NMBA use
0.70 (0.62, 0.80)
 < 0.001
CRRT use
0.90 (0.71, 1.16)
0.425
Benzodiazepine continuous infusion
1.03 (0.92, 1.15)
0.600
Opioid continuous infusion
0.75 (0.63, 0.89)
0.001
Propofol continuous infusion
0.93 (0.75, 1.16)
0.526
Duration of Mechanical Ventilator use, day
1.01 (1.01, 1.02)
 < 0.001
Experience of CPR during hospitalization
1.80 (1.46, 2.22)
 < 0.001
Concurrent anxiety disorder
0.89 (0.80, 0.98)
0.020
Concurrent depression
1.16 (1.05, 1.29)
0.005
Concurrent PTSD
0.41 (0.06, 2.96)
0.379
Concurrent alcohol abuse
0.89 (0.69, 1.15)
0.383
Concurrent other substance abuse
0.63 (0.28, 1.41)
0.260
Year of admission for ARDS
 2011 (vs 2010)
1.06 (0.88, 1.29)
0.524
 2012 (vs 2010)
0.99 (0.82, 1.21)
0.928
 2013 (vs 2010)
1.13 (0.93, 1.38)
0.227
 2014 (vs 2010)
0.94 (0.77, 1.14)
0.522
 2015 (vs 2010)
0.97 (0.80, 1.17)
0.739
 2016 (vs 2010)
0.97 (0.80, 1.17)
0.720
 2017 (vs 2010)
0.88 (0.72, 1.08)
0.214
 2018 (vs 2010)
0.91 (0.74, 1.12)
0.395
 2019 (vs 2010)
0.80 (0.64, 0.99)
0.039
ARDS, acute respiratory distress syndrome; HR, hazard ratio; CI, confidence interval; IM, internal medicine; USD, United States Dollar; CCI, Charlson comorbidity index; ECMO, extracorporeal membrane oxygenation; NMB, neuromuscular blockade; CRRT, continuous renal replacement therapy; CPR, cardiopulmonary resuscitation; PTSD, post-traumatic stress disorder

Discussion

In this population-based cohort study in South Korea, 4.7% of ARDS survivors were diagnosed with delirium during hospitalization. Male sex, longer duration of hospitalization, neuromuscular blockade use, benzodiazepine and propofol continuous infusion, and concurrent depression were potential risk factors for the occurrence of delirium in patients with ARDS. However, the occurrence of delirium was not associated with the 1-year all-cause mortality in this study. Our results suggest that although ARDS survivors experienced delirium during hospitalization, delirium did not affect the relative long-term survival after hospital discharge.
A recent cohort study by Kalra et al. reported that 43% (124/286) of patients with ARDS were diagnosed with ICU delirium [12], which is a much higher prevalence than that in our study. Several reasons might explain this difference. First, we included ARDS survivors who were alive for ≥ 60 days after ARDS diagnosis, while Kalra et al. included all patients diagnosed with ARDS using the Berlin definition in their study [12]. Patients with ARDS who were diagnosed with delirium and died within 60 days after the diagnosis of delirium were excluded from our study. Second, the CAM-ICU assessment tool was used to define delirium in the study by Kalra et al. [12], whereas we used registered ICD-10 codes in a large population. Therefore, some cases may have been missed in our study due to variations in delirium diagnosis in each hospital in South Korea.
Male sex has been a known risk factor for delirium in hospitalized elderly patients [21, 22]. Previous studies have reported that male sex is also a risk factor for the development of delirium after hip fracture surgery [23] and vascular surgery [24]. However, in a recent review, sex was not associated with the risk of delirium in adult ICU patients [25]. Although the biological mechanism of the relationship between sex and delirium remains unclear, sex differences in immune responses to stressors may explain this mechanism [26, 27]. Inflammation plays a major role in the pathogenesis of delirium [28]. A previous study reported that men had a higher C-reactive protein response to an endotoxin challenge than women [26]. However, another previous study reported contradictory findings: pro-inflammatory and innate immune responses were higher among women [27]. Therefore, the effect of sex on the development of delirium in critically ill patients such as patients with ARDS needs to be confirmed in future studies.
In our study, concurrent ARDS was a risk factor for the development of delirium among ARDS survivors; this was consistent with the results of the study by Kalra et al. [12]. Concurrent depression is an important risk factor of delirium among elderly and hospitalized patients [29]. Moreover, concurrent depression is known to be interrelated with delirium and to have a clinical overlap with delirium among elderly people [18]. However, in our study, the concurrent anxiety disorder and PTSD were not associated with the development of delirium among ARDS survivors. Meanwhile, Kalra et al. reported that concurrent anxiety disorder was associated with delirium in patients with ARDS [12]. Thus, future studies on the risk factors of delirium among patients with ARDS should consider the various types of mental illness.
The increased association of sedative use (benzodiazepine or propofol) with delirium in patients with ARDS was an important finding. Although patients with ARDS usually require deep sedation for mechanical ventilation, the protocol-based light sedation strategies had been suggested based on previous reports [30]. Hager et al. reported that reducing deep sedation was associated with decreased delirium in patients with acute lung injury [31]. Therefore, the deep sedation using propofol or benzodiazpine might increase risk of delirium in patients with ARDS in studies. Moreover, it was also possible that patients who received deep sedation using propofol or benzodiazepine might be more severe than patients with ARDS, and the risk of delirium was higher than other patients with ARDS. As the relationship between depth of sedation and risk of delirium among mechanically ventilated patients remains controversial and inconclusive issue [32], more research is needed regarding this issue.
Interestingly, there was no significant association between the occurrence of delirium during hospitalization and 1-year mortality among ARDS survivors in this study. There are previous studies on the association between the occurrence of delirium and 1-year mortality [4, 3335]. Pisani et al. reported that the duration of delirium was associated with increased 1-year all-cause mortality in older ICU patients [4]. Contrarily, Wolters et al. reported that delirium during ICU stay was not associated with 1-year mortality among survivors of a critical illness in the Netherlands [36], which is similar to the results of our study. The varying characteristics of the study populations (overall ICU population and survivors) of the two studies might explain the differences [4, 36]. Wolters et al. excluded ICU patients who died during their ICU stay [36], and this was consistent with our study. In contrast, Pisani et al. did not exclude ICU patients who died during their ICU stay or hospitalization [4]. The occurrence of delirium during hospitalization has been reported to increase hospital mortality among critically ill patients [37]; therefore, we excluded patients with ARDS who had more severe conditions, who might have been diagnosed with delirium, and died during hospitalization. The exclusion of the patients who died within 60 days of ARDS diagnosis may have influenced the results.
This study had several limitations. First, the severity of ARDS was not assessed accurately. For example, the PaO2/FiO2 ratio (ratio of the patient's oxygen in arterial blood [PaO2] to the fraction of oxygen in inspired air [FiO2]) and Acute Physiology and Chronic Health Evaluation II scores were not considered in this study for accurate adjustment of ARDS severity. Second, some treatment information, such as prone positioning, was not considered in this study because there is no prescription code for prone positioning in South Korea. Third, the model was not adjusted for important variables such as smoking history, pulmonary function test results, and body mass index. This is because their data were unavailable in the NHIS database. Lastly, the CAM-ICU, which is known to be the best measuring tool for the evaluation of delirium, was not used in this study due to unavailable data in the NHIS database. Therefore, some cases may have been missed or inaccurate diagnoses of delirium may have been made: these may also have affected the results. Moreover, we cannot guarantee that all patients with delirium were diagnosed and treated using the DSM-5 criteria in this study [2]. In these perspectives, the methodology using ICD-10 code of delirium made our study include obvious and serious cases that required immediate treatment of delirium. This limitation regarding methodology using ICD-10 code should be considered the prevalence of delirium and associated factor in this study.

Conclusions

In conclusion, 4.7% of ARDS survivors were diagnosed with delirium during hospitalization in South Korea. Male sex, longer duration of hospitalization, neuromuscular blockade use, benzodiazepine and propofol continuous infusion, and concurrent depression were potential risk factors for the development of delirium, but the occurrence of delirium might not affect 1-year all-cause mortality among ARDS survivors.

Acknowledgements

None

Declarations

The study protocol was approved by the Institutional Review Board (IRB) (X-2008-630-903), and the National Health Insurance Service (NHIS) permitted data sharing after approval of the study protocol (NHIS-2021-1-424). The requirement of informed consent was waived by the IRB because anonymized data was used in this study.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Marcantonio ER. Delirium in hospitalized older adults. N Engl J Med. 2017;377(15):1456–66.CrossRef Marcantonio ER. Delirium in hospitalized older adults. N Engl J Med. 2017;377(15):1456–66.CrossRef
2.
Zurück zum Zitat European Delirium A, American Delirium S. The DSM-5 criteria, level of arousal and delirium diagnosis: inclusiveness is safer. BMC Med. 2014;12:141.CrossRef European Delirium A, American Delirium S. The DSM-5 criteria, level of arousal and delirium diagnosis: inclusiveness is safer. BMC Med. 2014;12:141.CrossRef
3.
Zurück zum Zitat Choi JG. Delirium in the intensive care unit. Korean J Anesthesiol. 2013;65(3):195–202.CrossRef Choi JG. Delirium in the intensive care unit. Korean J Anesthesiol. 2013;65(3):195–202.CrossRef
4.
Zurück zum Zitat Pisani MA, Kong SY, Kasl SV, Murphy TE, Araujo KL, Van Ness PH. Days of delirium are associated with 1-year mortality in an older intensive care unit population. Am J Respir Crit Care Med. 2009;180(11):1092–7.CrossRef Pisani MA, Kong SY, Kasl SV, Murphy TE, Araujo KL, Van Ness PH. Days of delirium are associated with 1-year mortality in an older intensive care unit population. Am J Respir Crit Care Med. 2009;180(11):1092–7.CrossRef
5.
Zurück zum Zitat Salluh JI, Wang H, Schneider EB, Nagaraja N, Yenokyan G, Damluji A, Serafim RB, Stevens RD. Outcome of delirium in critically ill patients: systematic review and meta-analysis. BMJ. 2015;350:h2538.CrossRef Salluh JI, Wang H, Schneider EB, Nagaraja N, Yenokyan G, Damluji A, Serafim RB, Stevens RD. Outcome of delirium in critically ill patients: systematic review and meta-analysis. BMJ. 2015;350:h2538.CrossRef
6.
Zurück zum Zitat Collet MO, Caballero J, Sonneville R, Bozza FA, Nydahl P, Schandl A, Woien H, Citerio G, van den Boogaard M, Hastbacka J, et al. Prevalence and risk factors related to haloperidol use for delirium in adult intensive care patients: the multinational AID-ICU inception cohort study. Intensive Care Med. 2018;44(7):1081–9.CrossRef Collet MO, Caballero J, Sonneville R, Bozza FA, Nydahl P, Schandl A, Woien H, Citerio G, van den Boogaard M, Hastbacka J, et al. Prevalence and risk factors related to haloperidol use for delirium in adult intensive care patients: the multinational AID-ICU inception cohort study. Intensive Care Med. 2018;44(7):1081–9.CrossRef
7.
Zurück zum Zitat Ely EW, Inouye SK, Bernard GR, Gordon S, Francis J, May L, Truman B, Speroff T, Gautam S, Margolin R, et al. Delirium in mechanically ventilated patients: validity and reliability of the confusion assessment method for the intensive care unit (CAM-ICU). JAMA. 2001;286(21):2703–10.CrossRef Ely EW, Inouye SK, Bernard GR, Gordon S, Francis J, May L, Truman B, Speroff T, Gautam S, Margolin R, et al. Delirium in mechanically ventilated patients: validity and reliability of the confusion assessment method for the intensive care unit (CAM-ICU). JAMA. 2001;286(21):2703–10.CrossRef
8.
Zurück zum Zitat Ely EW, Shintani A, Truman B, Speroff T, Gordon SM, Harrell FE Jr, Inouye SK, Bernard GR, Dittus RS. Delirium as a predictor of mortality in mechanically ventilated patients in the intensive care unit. JAMA. 2004;291(14):1753–62.CrossRef Ely EW, Shintani A, Truman B, Speroff T, Gordon SM, Harrell FE Jr, Inouye SK, Bernard GR, Dittus RS. Delirium as a predictor of mortality in mechanically ventilated patients in the intensive care unit. JAMA. 2004;291(14):1753–62.CrossRef
9.
Zurück zum Zitat Rawal G, Yadav S, Kumar R. Acute respiratory distress syndrome: an update and review. J Transl Int Med. 2018;6(2):74–7.CrossRef Rawal G, Yadav S, Kumar R. Acute respiratory distress syndrome: an update and review. J Transl Int Med. 2018;6(2):74–7.CrossRef
10.
Zurück zum Zitat Zhang Z, Liu J, Xi J, Gong Y, Zeng L, Ma P. Derivation and validation of an ensemble model for the prediction of agitation in mechanically ventilated patients maintained under light sedation. Crit Care Med. 2021;49(3):e279–90.CrossRef Zhang Z, Liu J, Xi J, Gong Y, Zeng L, Ma P. Derivation and validation of an ensemble model for the prediction of agitation in mechanically ventilated patients maintained under light sedation. Crit Care Med. 2021;49(3):e279–90.CrossRef
11.
Zurück zum Zitat Hsieh SJ, Soto GJ, Hope AA, Ponea A, Gong MN. The association between acute respiratory distress syndrome, delirium, and in-hospital mortality in intensive care unit patients. Am J Respir Crit Care Med. 2015;191(1):71–8.CrossRef Hsieh SJ, Soto GJ, Hope AA, Ponea A, Gong MN. The association between acute respiratory distress syndrome, delirium, and in-hospital mortality in intensive care unit patients. Am J Respir Crit Care Med. 2015;191(1):71–8.CrossRef
12.
Zurück zum Zitat Kalra SS, Jaber J, Alzghoul BN, Hyde R, Parikh S, Urbine D, Reddy R. Pre-existing psychiatric illness is associated with an increased risk of delirium in patients with acute respiratory distress syndrome. J Intensive Care Med 2021;8850666211019009. Kalra SS, Jaber J, Alzghoul BN, Hyde R, Parikh S, Urbine D, Reddy R. Pre-existing psychiatric illness is associated with an increased risk of delirium in patients with acute respiratory distress syndrome. J Intensive Care Med 2021;8850666211019009.
13.
Zurück zum Zitat Fujishima S. Pathophysiology and biomarkers of acute respiratory distress syndrome. J Intensive Care. 2014;2(1):32.CrossRef Fujishima S. Pathophysiology and biomarkers of acute respiratory distress syndrome. J Intensive Care. 2014;2(1):32.CrossRef
14.
Zurück zum Zitat Combes A, Hajage D, Capellier G, Demoule A, Lavoue S, Guervilly C, Da Silva D, Zafrani L, Tirot P, Veber B, et al. Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome. N Engl J Med. 2018;378(21):1965–75.CrossRef Combes A, Hajage D, Capellier G, Demoule A, Lavoue S, Guervilly C, Da Silva D, Zafrani L, Tirot P, Veber B, et al. Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome. N Engl J Med. 2018;378(21):1965–75.CrossRef
15.
Zurück zum Zitat Heo EY, Lee BJ, Hahm BJ, Song EH, Lee HA, Yoo CG, Kim YW, Han SK, Shim YS, Lee SM. Translation and validation of the Korean confusion assessment method for the intensive care unit. BMC Psychiatry. 2011;11:94.CrossRef Heo EY, Lee BJ, Hahm BJ, Song EH, Lee HA, Yoo CG, Kim YW, Han SK, Shim YS, Lee SM. Translation and validation of the Korean confusion assessment method for the intensive care unit. BMC Psychiatry. 2011;11:94.CrossRef
16.
Zurück zum Zitat Ike JD, Kempker JA, Kramer MR, Martin GS. The association between acute respiratory distress syndrome hospital case volume and mortality in a U.S. Cohort, 2002–2011. Crit Care Med. 2018;46(5):764–73.CrossRef Ike JD, Kempker JA, Kramer MR, Martin GS. The association between acute respiratory distress syndrome hospital case volume and mortality in a U.S. Cohort, 2002–2011. Crit Care Med. 2018;46(5):764–73.CrossRef
17.
Zurück zum Zitat Ojeahere MI, de Filippis R, Ransing R, Karaliuniene R, Ullah I, Bytyci DG, Abbass Z, Kilic O, Nahidi M, Hayatudeen N, et al. Management of psychiatric conditions and delirium during the COVID-19 pandemic across continents: lessons learned and recommendations. Brain Behav Immun Health. 2020;9:100147.CrossRef Ojeahere MI, de Filippis R, Ransing R, Karaliuniene R, Ullah I, Bytyci DG, Abbass Z, Kilic O, Nahidi M, Hayatudeen N, et al. Management of psychiatric conditions and delirium during the COVID-19 pandemic across continents: lessons learned and recommendations. Brain Behav Immun Health. 2020;9:100147.CrossRef
18.
Zurück zum Zitat O’Sullivan R, Inouye SK, Meagher D. Delirium and depression: inter-relationship and clinical overlap in elderly people. Lancet Psychiatry. 2014;1(4):303–11.CrossRef O’Sullivan R, Inouye SK, Meagher D. Delirium and depression: inter-relationship and clinical overlap in elderly people. Lancet Psychiatry. 2014;1(4):303–11.CrossRef
19.
Zurück zum Zitat Hufner K, Sperner-Unterweger B. Delirium in patients with neurological diseases: diagnosis, management and prognosis. Nervenarzt. 2014;85(4):427–36.CrossRef Hufner K, Sperner-Unterweger B. Delirium in patients with neurological diseases: diagnosis, management and prognosis. Nervenarzt. 2014;85(4):427–36.CrossRef
20.
Zurück zum Zitat Van Rompaey B, Elseviers MM, Schuurmans MJ, Shortridge-Baggett LM, Truijen S, Bossaert L. Risk factors for delirium in intensive care patients: a prospective cohort study. Crit Care. 2009;13(3):R77.CrossRef Van Rompaey B, Elseviers MM, Schuurmans MJ, Shortridge-Baggett LM, Truijen S, Bossaert L. Risk factors for delirium in intensive care patients: a prospective cohort study. Crit Care. 2009;13(3):R77.CrossRef
21.
Zurück zum Zitat Schor JD, Levkoff SE, Lipsitz LA, Reilly CH, Cleary PD, Rowe JW, Evans DA. Risk factors for delirium in hospitalized elderly. JAMA. 1992;267(6):827–31.CrossRef Schor JD, Levkoff SE, Lipsitz LA, Reilly CH, Cleary PD, Rowe JW, Evans DA. Risk factors for delirium in hospitalized elderly. JAMA. 1992;267(6):827–31.CrossRef
22.
Zurück zum Zitat Kim H, Chung S, Joo YH, Lee JS. The major risk factors for delirium in a clinical setting. Neuropsychiatr Dis Treat. 2016;12:1787–93.CrossRef Kim H, Chung S, Joo YH, Lee JS. The major risk factors for delirium in a clinical setting. Neuropsychiatr Dis Treat. 2016;12:1787–93.CrossRef
23.
Zurück zum Zitat Oh ES, Sieber FE, Leoutsakos JM, Inouye SK, Lee HB. Sex differences in hip fracture surgery: preoperative risk factors for delirium and postoperative outcomes. J Am Geriatr Soc. 2016;64(8):1616–21.CrossRef Oh ES, Sieber FE, Leoutsakos JM, Inouye SK, Lee HB. Sex differences in hip fracture surgery: preoperative risk factors for delirium and postoperative outcomes. J Am Geriatr Soc. 2016;64(8):1616–21.CrossRef
24.
Zurück zum Zitat Galyfos GC, Geropapas GE, Sianou A, Sigala F, Filis K. Risk factors for postoperative delirium in patients undergoing vascular surgery. J Vasc Surg. 2017;66(3):937–46.CrossRef Galyfos GC, Geropapas GE, Sianou A, Sigala F, Filis K. Risk factors for postoperative delirium in patients undergoing vascular surgery. J Vasc Surg. 2017;66(3):937–46.CrossRef
25.
Zurück zum Zitat Krewulak KD, Stelfox HT, Ely EW, Fiest KM. Risk factors and outcomes among delirium subtypes in adult ICUs: a systematic review. J Crit Care. 2020;56:257–64.CrossRef Krewulak KD, Stelfox HT, Ely EW, Fiest KM. Risk factors and outcomes among delirium subtypes in adult ICUs: a systematic review. J Crit Care. 2020;56:257–64.CrossRef
26.
Zurück zum Zitat Ferguson JF, Patel PN, Shah RY, Mulvey CK, Gadi R, Nijjar PS, Usman HM, Mehta NN, Shah R, Master SR, et al. Race and gender variation in response to evoked inflammation. J Transl Med. 2013;11:63.CrossRef Ferguson JF, Patel PN, Shah RY, Mulvey CK, Gadi R, Nijjar PS, Usman HM, Mehta NN, Shah R, Master SR, et al. Race and gender variation in response to evoked inflammation. J Transl Med. 2013;11:63.CrossRef
27.
Zurück zum Zitat van Eijk LT, Dorresteijn MJ, Smits P, van der Hoeven JG, Netea MG, Pickkers P. Gender differences in the innate immune response and vascular reactivity following the administration of endotoxin to human volunteers. Crit Care Med. 2007;35(6):1464–9.CrossRef van Eijk LT, Dorresteijn MJ, Smits P, van der Hoeven JG, Netea MG, Pickkers P. Gender differences in the innate immune response and vascular reactivity following the administration of endotoxin to human volunteers. Crit Care Med. 2007;35(6):1464–9.CrossRef
28.
Zurück zum Zitat Maclullich AM, Ferguson KJ, Miller T, de Rooij SE, Cunningham C. Unravelling the pathophysiology of delirium: a focus on the role of aberrant stress responses. J Psychosom Res. 2008;65(3):229–38.CrossRef Maclullich AM, Ferguson KJ, Miller T, de Rooij SE, Cunningham C. Unravelling the pathophysiology of delirium: a focus on the role of aberrant stress responses. J Psychosom Res. 2008;65(3):229–38.CrossRef
29.
Zurück zum Zitat Elie M, Cole MG, Primeau FJ, Bellavance F. Delirium risk factors in elderly hospitalized patients. J Gen Intern Med. 1998;13(3):204–12.CrossRef Elie M, Cole MG, Primeau FJ, Bellavance F. Delirium risk factors in elderly hospitalized patients. J Gen Intern Med. 1998;13(3):204–12.CrossRef
30.
Zurück zum Zitat Shah FA, Girard TD, Yende S. Limiting sedation for patients with acute respiratory distress syndrome - time to wake up. Curr Opin Crit Care. 2017;23(1):45–51.CrossRef Shah FA, Girard TD, Yende S. Limiting sedation for patients with acute respiratory distress syndrome - time to wake up. Curr Opin Crit Care. 2017;23(1):45–51.CrossRef
31.
Zurück zum Zitat Hager DN, Dinglas VD, Subhas S, Rowden AM, Neufeld KJ, Bienvenu OJ, Touradji P, Colantuoni E, Reddy DR, Brower RG, et al. Reducing deep sedation and delirium in acute lung injury patients: a quality improvement project. Crit Care Med. 2013;41(6):1435–42.CrossRef Hager DN, Dinglas VD, Subhas S, Rowden AM, Neufeld KJ, Bienvenu OJ, Touradji P, Colantuoni E, Reddy DR, Brower RG, et al. Reducing deep sedation and delirium in acute lung injury patients: a quality improvement project. Crit Care Med. 2013;41(6):1435–42.CrossRef
32.
Zurück zum Zitat Long L, Ren S, Gong Y, Zhao H, He C, Shen L, Zhao H, Ma P. Different depths of sedation versus risk of delirium in adult mechanically ventilated patients: A systematic review and meta-analysis. PLoS ONE. 2020;15(7):e0236014.CrossRef Long L, Ren S, Gong Y, Zhao H, He C, Shen L, Zhao H, Ma P. Different depths of sedation versus risk of delirium in adult mechanically ventilated patients: A systematic review and meta-analysis. PLoS ONE. 2020;15(7):e0236014.CrossRef
33.
Zurück zum Zitat Leslie DL, Zhang Y, Holford TR, Bogardus ST, Leo-Summers LS, Inouye SK. Premature death associated with delirium at 1-year follow-up. Arch Internal Med. 2005;165(14):1657–62.CrossRef Leslie DL, Zhang Y, Holford TR, Bogardus ST, Leo-Summers LS, Inouye SK. Premature death associated with delirium at 1-year follow-up. Arch Internal Med. 2005;165(14):1657–62.CrossRef
34.
Zurück zum Zitat Kiely DK, Marcantonio ER, Inouye SK, Shaffer ML, Bergmann MA, Yang FM, Fearing MA, Jones RN. Persistent delirium predicts greater mortality. J Am Geriatr Soc. 2009;57(1):55–61.CrossRef Kiely DK, Marcantonio ER, Inouye SK, Shaffer ML, Bergmann MA, Yang FM, Fearing MA, Jones RN. Persistent delirium predicts greater mortality. J Am Geriatr Soc. 2009;57(1):55–61.CrossRef
35.
Zurück zum Zitat Mulligan O, Muresan L, Murray O, Adamis D, McCarthy G. Mortality at one year post delirium in general medical inpatients. Eur Psychiatry. 2015;30(S1):1–1. Mulligan O, Muresan L, Murray O, Adamis D, McCarthy G. Mortality at one year post delirium in general medical inpatients. Eur Psychiatry. 2015;30(S1):1–1.
36.
Zurück zum Zitat Wolters AE, van Dijk D, Pasma W, Cremer OL, Looije MF, de Lange DW, Veldhuijzen DS, Slooter AJ. Long-term outcome of delirium during intensive care unit stay in survivors of critical illness: a prospective cohort study. Crit Care. 2014;18(3):R125.CrossRef Wolters AE, van Dijk D, Pasma W, Cremer OL, Looije MF, de Lange DW, Veldhuijzen DS, Slooter AJ. Long-term outcome of delirium during intensive care unit stay in survivors of critical illness: a prospective cohort study. Crit Care. 2014;18(3):R125.CrossRef
37.
Zurück zum Zitat Sanchez D, Brennan K, Al Sayfe M, Shunker SA, Bogdanoski T, Hedges S, Hou YC, Lynch J, Hunt L, Alexandrou E, et al. Frailty, delirium and hospital mortality of older adults admitted to intensive care: the Delirium (Deli) in ICU study. Crit Care. 2020;24(1):609.CrossRef Sanchez D, Brennan K, Al Sayfe M, Shunker SA, Bogdanoski T, Hedges S, Hou YC, Lynch J, Hunt L, Alexandrou E, et al. Frailty, delirium and hospital mortality of older adults admitted to intensive care: the Delirium (Deli) in ICU study. Crit Care. 2020;24(1):609.CrossRef
Metadaten
Titel
Factors associated with delirium among survivors of acute respiratory distress syndrome: a nationwide cohort study
verfasst von
Tak Kyu Oh
Hye Youn Park
In-Ae Song
Publikationsdatum
01.12.2021
Verlag
BioMed Central
Erschienen in
BMC Pulmonary Medicine / Ausgabe 1/2021
Elektronische ISSN: 1471-2466
DOI
https://doi.org/10.1186/s12890-021-01714-0

Weitere Artikel der Ausgabe 1/2021

BMC Pulmonary Medicine 1/2021 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

„Jeder Fall von plötzlichem Tod muss obduziert werden!“

17.05.2024 Plötzlicher Herztod Nachrichten

Ein signifikanter Anteil der Fälle von plötzlichem Herztod ist genetisch bedingt. Um ihre Verwandten vor diesem Schicksal zu bewahren, sollten jüngere Personen, die plötzlich unerwartet versterben, ausnahmslos einer Autopsie unterzogen werden.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Schlechtere Vorhofflimmern-Prognose bei kleinem linken Ventrikel

17.05.2024 Vorhofflimmern Nachrichten

Nicht nur ein vergrößerter, sondern auch ein kleiner linker Ventrikel ist bei Vorhofflimmern mit einer erhöhten Komplikationsrate assoziiert. Der Zusammenhang besteht nach Daten aus China unabhängig von anderen Risikofaktoren.

Semaglutid bei Herzinsuffizienz: Wie erklärt sich die Wirksamkeit?

17.05.2024 Herzinsuffizienz Nachrichten

Bei adipösen Patienten mit Herzinsuffizienz des HFpEF-Phänotyps ist Semaglutid von symptomatischem Nutzen. Resultiert dieser Benefit allein aus der Gewichtsreduktion oder auch aus spezifischen Effekten auf die Herzinsuffizienz-Pathogenese? Eine neue Analyse gibt Aufschluss.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.