Skip to main content
Erschienen in: BMC Medicine 1/2006

Open Access 01.12.2006 | Research article

HLA-B8 association with late-stage melanoma – an immunological lesson?

verfasst von: Joachim Fensterle, Uwe Trefzer, Thomas Berger, Mads Hald Andersen, Selma Ugurel, Jürgen C Becker

Erschienen in: BMC Medicine | Ausgabe 1/2006

Abstract

Background

Differences in HLA allele frequencies between the diseased and healthy populations may signify efficient immune responses, a notion that has been successfully tested for infectious diseases or for association with genetic elements involved in a distinct type of immunity. This retrospective study is intended to detect differences in MHC class I carrier frequencies of advanced melanoma patients compared to healthy bone marrow donors.

Methods

The HLA-A and -B carrier frequencies of 748 stage IV melanoma patients retrieved from serotyping at 6 different centers in Germany were compared using a chi-square test to 13,386 fully HLA typed bone marrow donors registered in the German national bone marrow donor registry.

Results

The comparison of HLA carrier frequencies in advanced cancer patients with healthy bone marrow donors revealed a significant decrease in HLA-B8 carrier frequencies, which was also apparent in patients with advanced disease compared to patients with loco-regional disease.

Conclusion

The data suggest that protective immune responses restricted to distinct MHC class I molecules may be operational in a subset of melanoma patients, which is the prerequisite for a large scale screen for the corresponding epitopes. Alternatively, the known association of the ancestral haplotype HLA-A1, -B8 and -DR3 with genetic elements such as distinct TNF-α alleles might have a protective effect on disease progression. In any case, identification of the cause of protection within this patient subset might lead to a significant improvement in the efficacy of current immunotherapeutic approaches.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1741-7015-4-5) contains supplementary material, which is available to authorized users.

Competing interests

Since May 2005, JF has been an employee of Zentaris GmbH, Frankfurt, Germany.

Authors' contributions

JF and JCB designed the study and discussed the results of the statistical analysis. JF performed the statistical analysis and drafted the manuscript. JCB coordinated data acquisition across the different centers. UT, TB, SU, MHA and JCB supervised and coordinated data collection in the corresponding dermatology departments. All authors approved the final version of the manuscript.

Background

Active immunization against solid tumors is amongst the most promising therapeutic approaches for such diseases. Different immunization schedules are currently being explored in numerous clinical trials, including vaccination with MHC class I restricted T-cell epitopes derived from tumor associated antigens (TAA) [1]. To date, oncogenes have been intensively studied as targets for immunotherapy to minimize the risk of immune escape. As an example, we have recently identified B-Raf V600E (previously designated B-Raf V599E) as a potential TAA for immunotherapies against melanoma [2, 3]. The tumor antigens deployed are characterized by their ability to elicit immune responses in patients, and the choice of peptide epitopes derived from these antigens is mainly dictated by the frequency of HLA alleles in the normal population [4]. However, this strategy for identifying targets for therapy might actually miss the most valuable epitopes.
As early as 1991, it was proposed that disease-associated imbalances in HLA allele frequencies between diseased and healthy populations may signify efficient immune responses [5]. Although this approach was successfully adapted for the malaria system [6], transfer to cancer research has not yet been envisioned. In theory, any epitope derived from TAA that elicits an effective immune response able to eradicate the tumor should impact on the frequency of the respective HLA allele in this patient population. Assuming that the antigen is reasonably common within the patient cohort, the frequency of the HLA allele in the context of which the epitope is presented should be substantially reduced in patients with progressive disease, i.e. those who failed to mount an effective immune response. In practice, it is difficult to validate this edifice of ideas, as several prerequisites usually remain unknown: (i) the nature and (ii) the grade of expression of the corresponding TAA, and (iii) the percentage of patients mounting a protective immune response against this antigen. The fact that the HLA phenotype is known for a large number of patients suffering from advanced stages of immunogenic tumors such as melanoma allows at least one consequence of this intellectual experiment to be verified or falsified: viz., whether the frequency of certain HLA class I alleles is reduced in patients in whom the immune system failed to control the disease.
However, HLA imbalances can also be explained by linkage to genetic factors influencing disease progression. In this respect, it should be noted that many non-MHC genes encoding immunologically relevant molecules such as TNF-α or components of the complement system are located in the HLA locus, and that some alleles of these non-MHC genes are genetically linked to certain HLA alleles.

Methods

Data acquisition and HLA serotyping

The results of the serological HLA-A and -B typing of 748 AJCC stage IV melanoma patients performed in the University Hospitals of Erlangen (267 patients), Berlin (217 patients), Würzburg (141 patients), Mannheim (82 patients), Mainz (26 patients) and Münster (15 patients) were collected. To compare stage I-III with stage IV patients, the serotyping of 302 stage I-III patients performed in Berlin was also taken into account. The scientific workup of the HLA phenotyping results was approved by the local ethics committees, provided the patient gave informed consent.

Data comparison and statistical analysis

The data compiled from this patient cohort were compared to those from 13,386 fully HLA-typed bone marrow donors registered in the German national bone marrow donor registry [7]. Data analysis was performed using the Graph Pad Prism software package and MS Excel 2003. Stage IV patients were compared to healthy bone marrow donors using a two sided chi-square test; stage I-III patients were compared to stage IV patients from Berlin, and to the whole cohort, using a two sided Fisher's exact test. An observation was regarded as significant if p < 0.01. The ratio between stage IV and stage I-III carrier frequencies was calculated to compare the relative decrease between different HLA alleles; the mean ratio comprises all HLA alleles with carrier frequencies above 15% (n = 11) +/- standard deviation.

Results and discussion

Table 1 summarizes the HLA frequencies for MHC class I alleles of the HLA-A, HLA-B and HLA-C loci in stage IV melanoma patients. Frequencies are given for all alleles that have been typed. If subtypes (depicted in italics) were determined, the main type (depicted in bold) contains the cumulative carrier frequencies and the percentage of subtypes is given. Because HLA-C was only phenotyped in approximately half the patients, only the HLA-A and -B carrier frequencies were compared to healthy blood donors, and we restricted our analysis to HLA alleles with carrier frequencies above 4.5% (table 2). Subtypes were compared if more than 90% of the corresponding allele were subtyped in both groups. While no significant variation between the two groups was evident for most alleles, the frequency of HLA-B8 exhibited a significant decrease from 20.3% in bone marrow donors to 16.2% in melanoma patients (P = 0.0079, two-sided chi square test). In addition, HLA-B35 and HLA-A26 showed a non-significant tendency towards lower carrier frequencies (HLA-B35 from 18.5% to 15.2%; P = 0.027, and HLA-A26 from 6.98% to 5.01%; P = 0.039). The statistical analysis was performed using a two sided chi-square test and P values below 0.01 were regarded as statistically significant. The lower P value was chosen to avoid type I errors due to multiallele comparison, according to the suggestion by Svejgaard and Ryder [8]. In contrast, a Bonferroni correction for an hypothesis-generating approach in a retrospective study like this, with no a priori hypothesis for a specific association, is not indicated [9].
Table 1
HLA-A, -B and -C carrier frequencies of stage IV melanoma patients. HLA-A and B alleles of 739 and 709 stage IV melanoma patients were typed serologically; HLA-C (391 stage IV melanoma patients) was typed by PCR. The frequencies of all alleles included in the analysis are shown. Subtypes are given in italics; the main types that have been partially subtyped are shown in bold. HLA carrier frequencies of the main types that have been partially subtyped encompass the carrier frequencies of the subtypes; the fraction of patients who have been subtyped for a certain allele is given as a percentage.
HLA-A (n = 739)
HLA-B (n = 709)
HLA-C (n = 391)
serotype
frequency
subtyped
serotype
frequency
subtyped
allele
frequency
HLA-A1
28.69%
 
HLA-B5
12.55%
89.89%
HLA-Cw1
5.88%
HLA-A2
51.42%
 
HLA-B51
10.30%
 
HLA-Cw2
12.53%
HLA-A3
28.96%
 
HLA-B52
0.99%
 
HLA-Cw3
23.02%
HLA-A9
23.68%
99.43%
HLA-B7
27.79%
 
HLA-Cw4
23.53%
HLA-A23
5.41%
 
HLA-B8
16.22%
 
HLA-Cw5
12.79%
HLA-A24
18.13%
 
HLA-B12
24.96%
98.31%
HLA-Cw6
23.27%
HLA-A10
11.23%
98.80%
HLA-B44
23.41%
 
HLA-Cw7
48.34%
HLA-A25
5.55%
 
HLA-B45
1.13%
 
HLA-Cw8
3.07%
HLA-A26
5.01%
 
HLA-B13
5.64%
   
HLA-A34
0.14%
 
HLA-B14
4.80%
29.41%
  
HLA-A66
0.41%
 
HLA-B64
0.28%
   
HLA-A11
9.34%
 
HLA-B65
1.13%
   
HLA-A19
22.46%
96.99%
HLA-B15
14.10%
79.00%
  
HLA-A29
5.82%
 
HLA-B62
10.58%
   
HLA-A30
2.98%
 
HLA-B63
0.56%
   
HLA-A31
5.14%
 
HLA-B75
0.00%
   
HLA-A32
5.55%
 
HLA-B16
9.59%
98.53%
  
HLA-A33
2.30%
 
HLA-B38
4.94%
   
HLA-A28
6.63%
36.73%
HLA-B39
4.51%
   
HLA-A68
2.03%
 
HLA-B18
10.58%
   
HLA-A69
0.41%
 
HLA-B21
4.65%
96.97%
  
   
HLA-B49
2.26%
   
   
HLA-B50
2.26%
   
   
HLA-B22
3.24%
95.65%
  
   
HLA-B54
0.14%
   
   
HLA-B55
1.41%
   
   
HLA-B56
1.55%
   
   
HLA-B27
8.89%
   
   
HLA-B35
15.23%
   
   
HLA-B37
3.95%
   
   
HLA-B40
11.99%
90.59%
  
   
HLA-B60
8.46%
   
   
HLA-B61
2.40%
   
   
HLA-B41
2.96%
   
Table 2
Comparison of HLA-A and B carrier frequencies between stage IV melanoma patients and healthy bone marrow donors. HLA-A and -B carrier frequencies of stage IV melanoma patients (739 HLA-A; 709 HLA-B) and healthy bone marrow donors (13,386) were compared using a two sided chi-square test with a 95% confidence interval and sorted according to the absolute difference. Results are regarded as significant for p values < 0.01; alleles with significant changes are depicted in bold; results are sorted according to the percentage difference. Only alleles with carrier frequencies > 5% are included. Subtypes are only included if more than 89% of the corresponding allele was subtyped in the melanoma and bone marrow donor group. OR: odds ratio; ci: confidence interval.
B8
16.22%
20.33%
4.12%
0.0079
*
0.76
0.6184 to 0.9302
HLA
melanoma
control
difference
p
sign.
OR
95% ci OR
B35
15.23%
18.53%
3.29%
0.0273
ns
0.79
0.6409 to 0.9744
B7
27.79%
25.34%
2.45%
0.1452
ns
1.13
0.9575 to 1.342
A9
23.68%
21.42%
2.26%
0.1452
ns
1.14
0.9561 to 1.356
A10
11.23%
13.33%
2.1%
0.1015
ns
0.82
0.6509 to 1.039
A26
5.01%
6.98%
1.97%
0.0393
ns
0.70
0.5015 to 0.9846
B40
11.99%
13.84%
1.85%
0.1624
ns
0.85
0.6728 to 1.070
B60
8.46%
10.32%
1.85%
0.1123
ns
0.80
0.6133 to 1.053
B15
14.1%
15.8%
1.7%
0.2266
ns
0.88
0.7047 to 1.087
A28
6.63%
8.3%
1.67%
0.1076
ns
0.78
0.5834 to 1.055
B16
9.59%
7.94%
1.65%
0.1151
ns
1.23
0.9504 to 1.591
B13
5.64%
6.96%
1.31%
0.1762
ns
0.80
0.5774 to 1.108
A32
5.55%
6.69%
1.14%
0.2232
ns
0.82
0.5939 to 1.132
B12
24.96%
23.83%
1.13%
0.4902
ns
1.06
0.8930 to 1.266
A11
9.34%
10.46%
1.12%
0.3308
ns
0.88
0.6839 to 1.137
A24
18.13%
17.26%
0.88%
0.5401
ns
1.06
0.8761 to 1.287
A3
28.96%
28.1%
0.85%
0.6122
ns
1.04
0.8856 to 1.228
B18
10.58%
9.79%
0.79%
0.4900
ns
1.09
0.8526 to 1.395
A19
22.46%
21.79%
0.67%
0.6671
ns
1.04
0.8705 to 1.242
B44
23.41%
22.78%
0.63%
0.6942
ns
1.04
0.8666 to 1.238
A2
51.42%
51.13%
0.29%
0.8768
ns
1.01
0.8724 to 1.173
A1
28.69%
28.94%
0.25%
0.8825
ns
0.99
0.8385 to 1.163
B51
10.3%
10.54%
0.24%
0.8361
ns
0.97
0.7598 to 1.249
B27
8.89%
8.73%
0.15%
0.8884
ns
1.02
0.7814 to 1.329
A25
5.55%
5.61%
0.06%
0.9429
ns
0.99
0.7151 to 1.366
To analyze sufficient numbers of stage IV melanoma patients, we pooled data sets from different dermatology departments throughout Germany. Although this approach has the advantage of minimizing the likelihood of systematic errors from the data acquisition process, it would be still of interest to compare data sets derived from the same center. This would also help to overcome the necessity to compare stage IV melanoma patients with healthy bone marrow donors, with no further information on parameters such as skin type or ethnic background, by using the more appropriate control of early disease patients. Consequently, in one center, additional HLA data were acquired from stage I-III melanoma patients. Thus, it was possible to compare HLA-A and -B carrier frequencies of patients with loco-regional disease (n = 302 HLA-A, n = 301 HLA-B) with those of disseminated melanoma (n = 214 HLA-A, n = 215 HLA-B). As depicted in Fig. 1, stage IV patients are again characterized by a decrease in carrier frequencies for HLA-A26, HLA-B8 and HLA-B35, whereas the means of the other HLA alleles remain stable. The difference is in the same range as that observed when the initial cohort of stage IV patients was compared with healthy bone marrow donors. It should be noted, however, that the observed reduction was not statistically significant for either HLA-B8 (stage I-III: 20.93%, stage IV: 17.67%, P = 0.37 two sided Fisher's exact test), HLA-B35 (stage I-III: 19.27%, stage IV: 14.42%, P = 0.16) or HLA-A26 (stage I-III: 7.28%, stage IV: 5.61%, P = 0.48), mainly because of the small number of patients included in this analysis, leading to a low statistical power. However, differences in ethnic background within the melanoma patient and bone marrow donor groups might still be a concern. Indeed, the 8.1 ancestral haplotype (8.1 AH) encompassing the alleles HLA-A1, -B8 and DR3 is much more frequent in the Caucasian population than in other ethnic groups. As an example, Cao et al. compared the HLA frequencies of the five major ethnic groups in the US population [10]. In their study, HLA-B8 allele frequencies were estimated as 10.9% for Caucasians, with values ranging from 1.2% (Asians) to 4.6% (African Americans) for the other ethnic groups. Although these values cannot be translated into the skin types of German bone marrow donors, it is obvious that all ethnic groups having a darker skin type have significantly lower HLA-B8 allele frequencies than Caucasians. Therefore, an under-representation of these ethnic groups in stage IV melanoma patients should lead to an increased, rather than a reduced, HLA-B8 frequency when compared to the normal population. Taken together, these arguments do not support the notion that differences in skin type between the melanoma patient and control groups account for the observed reduction in HLA-B8 carrier frequencies.
It should be noted that several independent reports have already demonstrated a reduction of HLA-B8 and HLA-B35 in melanoma patients [1113] or a selective loss of HLA alleles in metastasis [14]. Furthermore, HLA-B8- and HLA-B35-restricted melanoma-specific T cell responses have been identified [15, 16]. The recognized epitopes are derived from tyrosinase, Melan-A/MART-1, gp100, MAGE-A3/MAGE-A6 and NY-ESO-1 [1719]; we recently added a HLA-B35-restricted epitope of the inhibitor of apoptosis protein survivin to this list [20]. Thus, it is tempting to speculate that the observed decrease of HLA-B8 carrier frequencies in advanced melanoma is the result of an effective immune response directed against specific TAA-derived epitopes presented by the respective HLA restriction elements, or, conversely, the lack of such response in patients not expressing these restriction elements. However, whether the epitopes already identified are indeed the targets for the hypothetical, protective immune response responsible for the observed decrease in HLA frequencies remains elusive. Such epitopes could only be defined by quantitative and qualitative comparison of the cellular immune responses between patients with early disease, preferentially the primary tumor, and those with advanced disease; in the latter patients, the protective responses should be underrepresented.
An alternative explanation for the observed decrease in HLA frequencies could be the genetic linkage to a tumor suppressor in the broadest sense. HLA-B8 has been shown to be linked genetically to HLA-A1 [21]. This linkage is also obvious in our data set of stage IV melanoma patients, where 80.8% of the patients carrying HLA-B8 are also positive for HLA-A1. Although no gene dosage effect that could translate into a reduced number of homozygous HLA-B8 carriers in the patient group was observed (data not shown), the association of the 8.1 ancestral haplotype with autoimmune diseases or distinct TNF-α or complement alleles might be of special interest, as this might exert an influence on the anti-tumoral immune response [2224]. In the case of TNF-α, the -308A allele that is linked with 8.1 AH is associated with altered TNF-α production in vitro [22]. Also, 8.1 AH is characterized by a non-functional C4B allele and the lack of the C4A gene, translating into defective complement function [25, 26]. As the complement cascade is involved in inflammation, the clearance of immune complexes, antibody-dependent cellular cytotoxicty and other immunologically relevant processes, a genetic defect in the complement system may indeed affect both innate and adaptive immunity. However, the definitive answer to whether HLA-B8 itself or genetic elements linked to HLA-B8 are responsible for the observed protective phenotype can only be elucidated by further studies, including the study of TNF-α or complement alleles.

Conclusion

Overall, this study suggests a significant decrease of HLA-B8 carrier frequencies in melanoma patients compared to healthy donors. This difference, which was observed when HLA carrier frequencies in advanced cancer patients were compared with healthy bone marrow donors or patients with loco-regional disease, supports the hypothesis that protective immune responses may be operational in a subset of melanoma patients independently of therapy, and that distinct MHC class I restriction elements seem to be preferentially involved in such responses. Alternatively, the association of 8.1 AH with genetic elements such as distinct TNF-α alleles or defective complement components might result in an altered quality of immune response, preventing the progression of the disease. If the observed differences can be verified in a follow-up study, a search for the corresponding T-cell epitopes and/or the associated genetic elements is indicated and might lead to a new generation of effective tumor vaccines.

Acknowledgements

The authors wish to express their gratitude to E.B. Broecker, A. Enk, S. Grabbe, D. Schadendorf, G. Schuler and A. Tuettenberg for contributing the HLA phenotypes of stage IV melanoma patients, to U.R. Rapp, M. Boeck, S. Klingert, H. Drexler and M. Lau for stimulating discussions and critically reading the manuscript, and to F. Marohn and J.-H. Krannich for help with the statistics.
Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://​creativecommons.​org/​licenses/​by/​2.​0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

Since May 2005, JF has been an employee of Zentaris GmbH, Frankfurt, Germany.

Authors' contributions

JF and JCB designed the study and discussed the results of the statistical analysis. JF performed the statistical analysis and drafted the manuscript. JCB coordinated data acquisition across the different centers. UT, TB, SU, MHA and JCB supervised and coordinated data collection in the corresponding dermatology departments. All authors approved the final version of the manuscript.
Anhänge

Authors’ original submitted files for images

Below are the links to the authors’ original submitted files for images.
Literatur
1.
Zurück zum Zitat Jager D, Jager E, Knuth A: Vaccination for malignant melanoma: recent developments. Oncology. 2001, 60: 1-7. 10.1159/000055289.CrossRefPubMed Jager D, Jager E, Knuth A: Vaccination for malignant melanoma: recent developments. Oncology. 2001, 60: 1-7. 10.1159/000055289.CrossRefPubMed
2.
Zurück zum Zitat Fensterle J, Becker JC, Potapenko T, Heimbach V, Vetter CS, Brocker EB, Rapp UR: B-Raf specific antibody responses in melanoma patients. BMC Cancer. 2004, 4: 62-10.1186/1471-2407-4-62.CrossRefPubMedPubMedCentral Fensterle J, Becker JC, Potapenko T, Heimbach V, Vetter CS, Brocker EB, Rapp UR: B-Raf specific antibody responses in melanoma patients. BMC Cancer. 2004, 4: 62-10.1186/1471-2407-4-62.CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Andersen MH, Fensterle J, Ugurel S, Reker S, Houben R, Guldberg P, Berger TG, Schadendorf D, Trefzer U, Bröcker EB, Straten PT, Rapp UR, Becker JC: Immunogenicity of constitutively active V599EBRaf. Cancer Res. 2004, 64: 5456-5460. 10.1158/0008-5472.CAN-04-0937.CrossRefPubMed Andersen MH, Fensterle J, Ugurel S, Reker S, Houben R, Guldberg P, Berger TG, Schadendorf D, Trefzer U, Bröcker EB, Straten PT, Rapp UR, Becker JC: Immunogenicity of constitutively active V599EBRaf. Cancer Res. 2004, 64: 5456-5460. 10.1158/0008-5472.CAN-04-0937.CrossRefPubMed
4.
Zurück zum Zitat Andersen MH, Pedersen LO, Capeller B, Brocker EB, Becker JC, thor Straten P: Spontaneous cytotoxic T-cell responses against survivin-derived MHC class I-restricted T-cell epitopes in situ as well as ex vivo in cancer patients. Cancer Res. 2001, 61: 5964-5968.PubMed Andersen MH, Pedersen LO, Capeller B, Brocker EB, Becker JC, thor Straten P: Spontaneous cytotoxic T-cell responses against survivin-derived MHC class I-restricted T-cell epitopes in situ as well as ex vivo in cancer patients. Cancer Res. 2001, 61: 5964-5968.PubMed
5.
Zurück zum Zitat Hill AV, Allsopp CE, Kwiatkowski D, Anstey NM, Twumasi P, Rowe PA, Bennett S, Brewster D, McMichael AJ, Greenwood BM: Common west African HLA antigens are associated with protection from severe malaria. Nature. 1991, 352: 595-600. 10.1038/352595a0.CrossRefPubMed Hill AV, Allsopp CE, Kwiatkowski D, Anstey NM, Twumasi P, Rowe PA, Bennett S, Brewster D, McMichael AJ, Greenwood BM: Common west African HLA antigens are associated with protection from severe malaria. Nature. 1991, 352: 595-600. 10.1038/352595a0.CrossRefPubMed
6.
Zurück zum Zitat Hill AV, Elvin J, Willis AC, Aidoo M, Allsopp CE, Gotch FM, Gao XM, Takiguchi M, Greenwood BM, Townsend AR, et al: Molecular analysis of the association of HLA-B53 and resistance to severe malaria. Nature. 1992, 360: 434-439. 10.1038/360434a0.CrossRefPubMed Hill AV, Elvin J, Willis AC, Aidoo M, Allsopp CE, Gotch FM, Gao XM, Takiguchi M, Greenwood BM, Townsend AR, et al: Molecular analysis of the association of HLA-B53 and resistance to severe malaria. Nature. 1992, 360: 434-439. 10.1038/360434a0.CrossRefPubMed
7.
Zurück zum Zitat Muller CR: Populationsgenetische Parameter der Gewebemerkmale der deutschen Bevölkerung und ihre Anwendungen bei der Suche nach nicht-verwandten Blutstammzellspendern. dissertation. 2000, University of Ulm, Medical Faculty Muller CR: Populationsgenetische Parameter der Gewebemerkmale der deutschen Bevölkerung und ihre Anwendungen bei der Suche nach nicht-verwandten Blutstammzellspendern. dissertation. 2000, University of Ulm, Medical Faculty
8.
Zurück zum Zitat Svejgaard A, Ryder LP: HLA and disease associations: detecting the strongest association. Tissue Antigens. 1994, 43: 18-27.CrossRefPubMed Svejgaard A, Ryder LP: HLA and disease associations: detecting the strongest association. Tissue Antigens. 1994, 43: 18-27.CrossRefPubMed
9.
Zurück zum Zitat Mantel N, Haenszel W: Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst. 1959, 22: 719-748.PubMed Mantel N, Haenszel W: Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst. 1959, 22: 719-748.PubMed
10.
Zurück zum Zitat Cao K, Hollenbach J, Shi X, Shi W, Chopek M, Fernandez-Vina MA: Analysis of the frequencies of HLA-A, B, and C alleles and haplotypes in the five major ethnic groups of the United States reveals high levels of diversity in these loci and contrasting distribution patterns in these populations. Hum Immunol. 2001, 62: 1009-1030. 10.1016/S0198-8859(01)00298-1.CrossRefPubMed Cao K, Hollenbach J, Shi X, Shi W, Chopek M, Fernandez-Vina MA: Analysis of the frequencies of HLA-A, B, and C alleles and haplotypes in the five major ethnic groups of the United States reveals high levels of diversity in these loci and contrasting distribution patterns in these populations. Hum Immunol. 2001, 62: 1009-1030. 10.1016/S0198-8859(01)00298-1.CrossRefPubMed
11.
Zurück zum Zitat Marincola FM, Shamamian P, Rivoltini L, Salgaller M, Cormier J, Restifo NP, Simonis TB, Venzon D, White DE, Parkinson DR: HLA associations in the antitumor response against malignant melanoma. J Immunother Emphasis Tumor Immunol. 1995, 18: 242-252.CrossRefPubMedPubMedCentral Marincola FM, Shamamian P, Rivoltini L, Salgaller M, Cormier J, Restifo NP, Simonis TB, Venzon D, White DE, Parkinson DR: HLA associations in the antitumor response against malignant melanoma. J Immunother Emphasis Tumor Immunol. 1995, 18: 242-252.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Geertsen RC, Hofbauer GF, Yue FY, Manolio S, Burg G, Dummer R: Higher frequency of selective losses of HLA-A and -B allospecificities in metastasis than in primary melanoma lesions. J Invest Dermatol. 1998, 111: 497-502. 10.1046/j.1523-1747.1998.00305.x.CrossRefPubMed Geertsen RC, Hofbauer GF, Yue FY, Manolio S, Burg G, Dummer R: Higher frequency of selective losses of HLA-A and -B allospecificities in metastasis than in primary melanoma lesions. J Invest Dermatol. 1998, 111: 497-502. 10.1046/j.1523-1747.1998.00305.x.CrossRefPubMed
13.
Zurück zum Zitat Rovini D, Sacchini V, Codazzi V, Vaglini M, Illeni MT: HLA antigen frequencies in malignant melanoma patients. A second study. Tumori. 1984, 70: 29-33.PubMed Rovini D, Sacchini V, Codazzi V, Vaglini M, Illeni MT: HLA antigen frequencies in malignant melanoma patients. A second study. Tumori. 1984, 70: 29-33.PubMed
14.
Zurück zum Zitat Anastassiou G, Rebmann V, Wagner S, Bornfeld N, Grosse-Wilde H: Expression of classic and nonclassic HLA class I antigens in uveal melanoma. Invest Ophthalmol Vis Sci. 2003, 44: 2016-2019. 10.1167/iovs.02-0810.CrossRefPubMed Anastassiou G, Rebmann V, Wagner S, Bornfeld N, Grosse-Wilde H: Expression of classic and nonclassic HLA class I antigens in uveal melanoma. Invest Ophthalmol Vis Sci. 2003, 44: 2016-2019. 10.1167/iovs.02-0810.CrossRefPubMed
15.
Zurück zum Zitat Yee C, Gilbert MJ, Riddell SR, Brichard VG, Fefer A, Thompson JA, Boon T, Greenberg PD: Isolation of tyrosinase-specific CD8+ and CD4+ T cell clones from the peripheral blood of melanoma patients following in vitro stimulation with recombinant vaccinia virus. J Immunol. 1996, 157: 4079-4086.PubMed Yee C, Gilbert MJ, Riddell SR, Brichard VG, Fefer A, Thompson JA, Boon T, Greenberg PD: Isolation of tyrosinase-specific CD8+ and CD4+ T cell clones from the peripheral blood of melanoma patients following in vitro stimulation with recombinant vaccinia virus. J Immunol. 1996, 157: 4079-4086.PubMed
16.
Zurück zum Zitat Hom SS, Schwartzentruber DJ, Rosenberg SA, Topalian SL: Specific release of cytokines by lymphocytes infiltrating human melanomas in response to shared melanoma antigens. J Immunother. 1993, 13: 18-30.CrossRef Hom SS, Schwartzentruber DJ, Rosenberg SA, Topalian SL: Specific release of cytokines by lymphocytes infiltrating human melanomas in response to shared melanoma antigens. J Immunother. 1993, 13: 18-30.CrossRef
17.
Zurück zum Zitat Benlalam H, Linard B, Guilloux Y, Moreau-Aubry A, Derre L, Diez E, Dreno B, Jotereau F, Labarriere N: Identification of five new HLA-B*3501-restricted epitopes derived from common melanoma-associated antigens, spontaneously recognized by tumor-infiltrating lymphocytes. J Immunol. 2003, 171: 6283-6289.CrossRefPubMed Benlalam H, Linard B, Guilloux Y, Moreau-Aubry A, Derre L, Diez E, Dreno B, Jotereau F, Labarriere N: Identification of five new HLA-B*3501-restricted epitopes derived from common melanoma-associated antigens, spontaneously recognized by tumor-infiltrating lymphocytes. J Immunol. 2003, 171: 6283-6289.CrossRefPubMed
18.
Zurück zum Zitat Schultz ES, Zhang Y, Knowles R, Tine J, Traversari C, Boon T, van der Bruggen P: A MAGE-3 peptide recognized on HLA-B35 and HLA-A1 by cytolytic T lymphocytes. Tissue Antigens. 2001, 57: 103-109. 10.1034/j.1399-0039.2001.057002103.x.CrossRefPubMed Schultz ES, Zhang Y, Knowles R, Tine J, Traversari C, Boon T, van der Bruggen P: A MAGE-3 peptide recognized on HLA-B35 and HLA-A1 by cytolytic T lymphocytes. Tissue Antigens. 2001, 57: 103-109. 10.1034/j.1399-0039.2001.057002103.x.CrossRefPubMed
19.
Zurück zum Zitat Morel S, Ooms A, Van Pel A, Wolfel T, Brichard VG, van der Bruggen P, Van den Eynde BJ, Degiovanni G: A tyrosinase peptide presented by HLA-B35 is recognized on a human melanoma by autologous cytotoxic T lymphocytes. Int J Cancer. 1999, 83: 755-759. 10.1002/(SICI)1097-0215(19991210)83:6<755::AID-IJC10>3.0.CO;2-S.CrossRefPubMed Morel S, Ooms A, Van Pel A, Wolfel T, Brichard VG, van der Bruggen P, Van den Eynde BJ, Degiovanni G: A tyrosinase peptide presented by HLA-B35 is recognized on a human melanoma by autologous cytotoxic T lymphocytes. Int J Cancer. 1999, 83: 755-759. 10.1002/(SICI)1097-0215(19991210)83:6<755::AID-IJC10>3.0.CO;2-S.CrossRefPubMed
20.
Zurück zum Zitat Reker S, Becker JC, Svane IM, Ralfkiaer E, Straten PT, Andersen MH: HLA-B35-restricted immune responses against survivin in cancer patients. Int J Cancer. 2004, 108: 937-941. 10.1002/ijc.11634.CrossRefPubMed Reker S, Becker JC, Svane IM, Ralfkiaer E, Straten PT, Andersen MH: HLA-B35-restricted immune responses against survivin in cancer patients. Int J Cancer. 2004, 108: 937-941. 10.1002/ijc.11634.CrossRefPubMed
21.
Zurück zum Zitat Muller CR, Ehninger G, Goldmann SF: Gene and haplotype frequencies for the loci hLA-A, hLA-B, and hLA-DR based on over 13,000 German blood donors. Hum Immunol. 2003, 64: 137-151. 10.1016/S0198-8859(02)00706-1.CrossRefPubMed Muller CR, Ehninger G, Goldmann SF: Gene and haplotype frequencies for the loci hLA-A, hLA-B, and hLA-DR based on over 13,000 German blood donors. Hum Immunol. 2003, 64: 137-151. 10.1016/S0198-8859(02)00706-1.CrossRefPubMed
22.
Zurück zum Zitat Lio D, Candore G, Colombo A, Colonna Romano G, Gervasi F, Marino V, Scola L, Caruso C: A genetically determined high setting of TNF-alpha influences immunologic parameters of HLA-B8, DR3 positive subjects: implications for autoimmunity. Hum Immunol. 2001, 62: 705-713. 10.1016/S0198-8859(01)00264-6.CrossRefPubMed Lio D, Candore G, Colombo A, Colonna Romano G, Gervasi F, Marino V, Scola L, Caruso C: A genetically determined high setting of TNF-alpha influences immunologic parameters of HLA-B8, DR3 positive subjects: implications for autoimmunity. Hum Immunol. 2001, 62: 705-713. 10.1016/S0198-8859(01)00264-6.CrossRefPubMed
23.
Zurück zum Zitat Wilson AG, de Vries N, Pociot F, di Giovine FS, van der Putte LB, Duff GW: An allelic polymorphism within the human tumor necrosis factor alpha promoter region is strongly associated with HLA A1, B8, and DR3 alleles. J Exp Med. 1993, 177: 557-560. 10.1084/jem.177.2.557.CrossRefPubMed Wilson AG, de Vries N, Pociot F, di Giovine FS, van der Putte LB, Duff GW: An allelic polymorphism within the human tumor necrosis factor alpha promoter region is strongly associated with HLA A1, B8, and DR3 alleles. J Exp Med. 1993, 177: 557-560. 10.1084/jem.177.2.557.CrossRefPubMed
24.
Zurück zum Zitat Candore G, Lio D, Colonna Romano G, Caruso C: Pathogenesis of autoimmune diseases associated with 8.1 ancestral haplotype: effect of multiple gene interactions. Autoimmun Rev. 2002, 1: 29-35. 10.1016/S1568-9972(01)00004-0.CrossRefPubMed Candore G, Lio D, Colonna Romano G, Caruso C: Pathogenesis of autoimmune diseases associated with 8.1 ancestral haplotype: effect of multiple gene interactions. Autoimmun Rev. 2002, 1: 29-35. 10.1016/S1568-9972(01)00004-0.CrossRefPubMed
25.
Zurück zum Zitat Christiansen FT, Zhang WJ, Griffiths M, Mallal SA, Dawkins RL: Major histocompatibility complex (MHC) complement deficiency, ancestral haplotypes and systemic lupus erythematosus (SLE): C4 deficiency explains some but not all of the influence of the MHC. J Rheumatol. 1991, 18: 1350-1358.PubMed Christiansen FT, Zhang WJ, Griffiths M, Mallal SA, Dawkins RL: Major histocompatibility complex (MHC) complement deficiency, ancestral haplotypes and systemic lupus erythematosus (SLE): C4 deficiency explains some but not all of the influence of the MHC. J Rheumatol. 1991, 18: 1350-1358.PubMed
26.
Zurück zum Zitat O'Neill GJ, Nerl CW, Kay PH, Christiansen FT, McCluskey J, Dawkins RL: Complement C4 is a marker for adult rheumatoid arthritis. Lancet. 1982, 2: 214-10.1016/S0140-6736(82)91057-1.CrossRefPubMed O'Neill GJ, Nerl CW, Kay PH, Christiansen FT, McCluskey J, Dawkins RL: Complement C4 is a marker for adult rheumatoid arthritis. Lancet. 1982, 2: 214-10.1016/S0140-6736(82)91057-1.CrossRefPubMed
Metadaten
Titel
HLA-B8 association with late-stage melanoma – an immunological lesson?
verfasst von
Joachim Fensterle
Uwe Trefzer
Thomas Berger
Mads Hald Andersen
Selma Ugurel
Jürgen C Becker
Publikationsdatum
01.12.2006
Verlag
BioMed Central
Erschienen in
BMC Medicine / Ausgabe 1/2006
Elektronische ISSN: 1741-7015
DOI
https://doi.org/10.1186/1741-7015-4-5

Weitere Artikel der Ausgabe 1/2006

BMC Medicine 1/2006 Zur Ausgabe

Leitlinien kompakt für die Allgemeinmedizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Facharzt-Training Allgemeinmedizin

Die ideale Vorbereitung zur anstehenden Prüfung mit den ersten 49 von 100 klinischen Fallbeispielen verschiedener Themenfelder

Mehr erfahren

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

Wie der Klimawandel gefährliche Pilzinfektionen begünstigt

24.05.2024 Candida-Mykosen Nachrichten

Dass sich invasive Pilzinfektionen in letzter Zeit weltweit häufen, liegt wahrscheinlich auch am Klimawandel. Ausbrüche mit dem Hefepilz Candida auris stellen eine zunehmende Gefahr für Immungeschwächte dar – auch in Deutschland.

So wirken verschiedene Alkoholika auf den Blutdruck

23.05.2024 Störungen durch Alkohol Nachrichten

Je mehr Alkohol Menschen pro Woche trinken, desto mehr steigt ihr Blutdruck, legen Daten aus Dänemark nahe. Ob es dabei auch auf die Art des Alkohols ankommt, wurde ebenfalls untersucht.

Das sind die führenden Symptome junger Darmkrebspatienten

Darmkrebserkrankungen in jüngeren Jahren sind ein zunehmendes Problem, das häufig längere Zeit übersehen wird, gerade weil die Patienten noch nicht alt sind. Welche Anzeichen Ärzte stutzig machen sollten, hat eine Metaanalyse herausgearbeitet.

Update Allgemeinmedizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.