Skip to main content
Erschienen in: Gefässchirurgie 1/2023

Open Access 24.04.2023 | Gefäßmedizinische Evidenz

Interdisciplinary German clinical practice guidelines on the management of type B aortic dissection

verfasst von: Univ. Prof. Dr. A. Oberhuber, A. Raddatz, S. Betge, C. Ploenes, W. Ito, R. A. Janosi, C. Ott, E. Langheim, M. Czerny, R. Puls, A. Maßmann, K. Zeyer, H. Schelzig

Erschienen in: Gefässchirurgie | Sonderheft 1/2023

insite
INHALT
download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN
Hinweise
Scan QR code & read article online

Introduction

Aortic dissection is a rare but life-threatening disease, in which an intimal tear causes bleeding inside the aortic wall. Depending on the localization of the entry tear, aortic dissections were divided into type A (involvement of the ascending aorta, independent of the entry tear but normally in the ascending aorta) and type B dissections (entry tear distal to the left subclavian artery). Type A aortic dissections should be managed as fast as possible with an open repair; the corresponding guidelines for performing open repair are published elsewhere. The uncomplicated type B aortic dissection is normally managed by conservative treatment. The goal of these renewed guidelines is to outline the pathophysiology, epidemiology and management of type B aortic dissections, including imaging, treatment, aftercare and rehabilitation.

Methods

The first version of the guidelines was published in 2018 and has now become outdated; an update of the guidelines became necessary. This version is not only an actualized version of the old guidelines but also extends the document by providing new sections.
The guidelines were developed under the supervision and guidelines of the Association of the Scientific Medical Societies in Germany (AWMF). The AWMF distinguishes between several classes of guidelines (https://​www.​awmf.​org/​en/​clinical-practice-guidelines/​awmf-guidance/​awmf-guidelines-register.​html). The guidelines were developed as class S2k guidelines, which are consensus-based guidelines. For this type of guidelines, all relevant scientific societies should be involved and all recommendations must be consented to by participants of conferences or the Delphi technique. In addition, patient representatives were involved in these guidelines. Due to the coronavirus disease 2019 (COVID-19) pandemic all conferences were held online. The original version of these guidelines was published online in German in May 2022 on the homepage of the AWMF [1].

Consensus process

In an initial meeting, the topics and aims of the guidelines were discussed and defined. Thereafter, different working groups were defined and topics were assigned.
Based on the nature of class S2k guidelines, no structured literature search was used; however, all relevant papers from 2017–2022 were searched across different databases (Medline, Cochrane Database and EMBASE), including international guidelines. Based on this literature review, a first draft was written. This draft was review by all members and discussed until a consensus was found. The recommendations were then defined, and an online Delphi procedure was used for the consensus process. Consent between the 13 involved societies > 75% was defined as strong consent and > 95% as very strong consent. The individual strength of consent in each recommendation is presented with the relevant recommendations below. The entire document was reviewed and consented to by the executive board of each scientific society involved.
The recommendations are divided into five groups (Fig. 1).
The entire process was accompanied by the AWMF including all consensus conferences. Each member of the steering group was required to declare their interests, which are available online (https://​www.​awmf.​org/​fileadmin/​user_​upload/​Leitlinien/​004_​D_​Ges_​fuer_​Gefaesschirurgie​/​004-034i_​S2k_​Typ_​B_​Aortendissektion​_​2022-05.​pdf).

Definition and classification

Aortic dissection is caused by an intimal tear that leads to bleeding inside the aortic wall. At this primary entry site, the aortic lumen is divided into a new false lumen and the true lumen. Intramural hematoma (IMH) is a type of dissection in which bleeding in the aortic wall occurs due to a rupture of the vasa vasorum or dissection without re-entry and complete thrombosis of the false lumen [2]. An IMH can pass into an aortic dissection, and both entities can occur at the same time; therefore, patients do not typically present with two diseases and instead present with one disease with two different appearances [3].

Classification according to localization of the primary entry

The widest accepted classifications for dissections were published over 50 years ago by DeBakey et al. (1965) [4] and Dailey et al. (1970) [5]. The DeBakey classification differentiates between dissections according to extension, the Stanford classification distinguishes between dissections whether the ascending aorta or descending aorta is involved, regardless of the localization of the entry (Table 1).
Table 1
DeBakey and Stanford classifications for aortic dissections
DeBakey classification
Stanford classification
Type I: primary entry in the ascending aorta with involvement of the aortic arch and the descending aorta
Stanford A: all dissections with involvement of the ascending aorta regardless of the localization of the primary entry. In most cases, this entry is also located in the ascending aorta
Type II: primary entry in the ascending aorta without involvement of other parts of the aorta
Type III: primary entry in the descending aorta
Stanford B: all dissections with involvement of the descending aorta
Type IIIa: extension to the diaphragm
Type IIIb: extension below the diaphragm
In the daily routine, the Stanford classification is the mostly accepted and used classification. All dissections with involvement of the ascending aorta must be repaired, whereas type B dissections can be managed conservatively. These practical guidelines only address type B dissections.
This classification does not represent all patients, therefore in the last years the term non-A-non‑B dissection was introduced. This represents all patients with involvement of the aortic arch, regardless of whether the entry is in the descending aorta or in the aortic arch.

Classification according to time of onset

Another method of classifying type B aortic dissections is to use the time of onset of symptoms. The authors propose, in addition to other similar classifications, [6, 7] the following classification ([8]; Table 2).
Table 2
Chronologic classification of type B aortic dissections
Classification
Time from symptom onset
Acute
1–14 days
Subacute
15–90 days
Chronic
> 90 days

Classification according to symptoms

Classification according to symptoms or time of onset of symptoms is not helpful for treatment decision-making. In a 2013 expert consensus document, [7] type B aortic dissections were divided into asymptomatic and symptomatic dissections:
  • Malperfusion of the aortic branches (spinal, iliac, visceral, renal).
  • Refractory hypertension: hypertension despite three different classes of antihypertensive medication at the maximum dosage. It is a sign of instability or renal malperfusion.
  • Augmentation of the periaortic hematoma and pleural effusion in two consecutive CT scans are signs of an impending rupture.
  • Patients with false lumen rupture, circulatory instability and severe hypotension should be considered as being in severe life-threatening conditions.

Complex classifications

All classifications lack consideration of the complexity of the disease and present no direct recommendations for treatment.
Dake et al. [9] defined the following classification, which they refer to as DISSECT, that considers both morphological and clinical criteria:
  • Duration
  • Intimal tear
  • Size
  • Segmental extent
  • Clinical complication
  • Thrombosis of the false lumen
More recently, the TEM classification [10], similarly to the oncological TNM classification, considers the three following criteria:
  • Type (T): A, B and non-A-non‑B aortic dissections
  • Entry (E): localized in Ishimaru zones 0–3 [11]
  • Malperfusion (M):
    • M0 – no malperfusion
    • M1 – coronary malperfusion
    • M2 – supra-aortic malperfusion
    • M3 – spinal, visceral or iliac malperfusion
    • (−) no symptoms
    • (+) symptoms
The disadvantage of the TEM classification is that the distal extension is not included.
The Society for Vascular Surgery (SVS) and the Society of Thoracic Surgeons (STS) published new reporting standards in 2020 [8]. In these standards, extension is still based on the Ishimaru classification but the distal extension is also included. The disadvantage of these standards is that the classifications only distinguish between type A and type B aortic dissections. Type B dissections are defined as all dissections where the primary entry is not in zone 0.
All new classifications must be evaluated based on their use in daily routine; otherwise, no statements can be made on their clinical benefits.
Statement
  • The Stanford classification is the most used classification with the highest clinical benefit.
  • The TEM classification has advantages for treatment decision-making; the reporting standards have advantages during the follow-up because of the inclusion of the distal extension.
  • Other classifications are used regarding clinical aspects and time between onset of symptoms and presentation.

Epidemiology and pathophysiology

Incidence

Olsson et al. [12] found, in their 2003 population-based study, an incidence of thoracic aortic disease of 16.3 per 100,000 male inhabitants and 9.1 per 100,000 per female inhabitants in Sweden; 40% of these cases were aortic dissections. In the OXVASC study, the incidence was approximately 6/100,000 between 2002 and 2012. Type B dissections were 28.8% less common than type A aortic dissections (71.2%) [13].
Additionally, in the Malmö Diet and Cancer Study (MDCS), type A dissections (58%) were more frequent than type B dissections [14]. The incidence was blood pressure-dependent. In patients with arterial hypertension, the incidence was 21/100,000, whereas in patients without arterial hypertension the incidence was only 5/100,000. In patients between 65 and 75 years old, the incidence was 35/100,000 [13].
In a large Swedish population-based study (2002–2016), the annual incidence was 7.2/100,000, and men were affected more often than women (9.1 vs. 5.4) [15]; however, women from the sample were shown to experience higher mortality rates [13, 1618].
A major barrier to understanding true incidence rates is the estimated number of unknown cases. An autopsy study revealed that 50% of type A dissections in emergency departments remain undetected [19]. In another autopsy study, which was carried out in Hungary where all sudden deaths undergo an autopsy, it was shown that only 6% of the patients with ruptured aortic dissection reached hospital [20].
A higher or altered incidence during the COVID 19 pandemic or in association with the severe acute respiratory coronavirus 2 is not reported.

Risk factors and pathophysiology

In the OXVASC trial, 67.3% of the patients had arterial hypertension and 61.5% were smokers [13]. In the MDCS trial, smoking and arterial hypertension were also shown to be significant risk factors for aortic dissection; however, additional risk factors included increasing age, male sex and low apolipoprotein A levels [14].
In the International Registry of Aortic Dissection (IRAD) trial, arterial hypertension was associated with aortic dissection in 76.6% of cases. Other risk factors were atherosclerosis, aortic aneurysm and previous cardiac operations [17].
Studies have presented a clear genetic predisposition for aortic dissection. In the IRAD trial, 5% (53 out of 1049) of patients had a diagnosis of Marfan syndrome. These patients were significantly younger and displayed significantly fewer cases of arterial hypertension and atherosclerosis. The predominant dissections in Marfan syndrome patients were type A dissections (76% vs. 62% in non-Marfan patients) [21].
In addition to Marfan syndrome, other syndromic diseases are Loeys-Dietz syndrome and Ehlers-Danlos syndrome [22]. In contrast, other genetic variations, which are referred to as non-syndromic diseases, can be predictors of familial aortic dissections. Several of these gene mutations are known, which include the following: ACTA2, MYH11, MYLK, PRKG1, MAT2A, MFAP5, FOXE3, THSD4, SMAD and LOX [2, 23]. All of these genetic conditions code for components of the aortic wall (e.g. fibrillin‑1 in Marfan patients) or wall-modifying proteins (e.g. LOX) [24].
A first multigene screening test, including 21 candidate genes, was published in 2015. No other results using this test have yet been published [25].
Patients with aortic dissections present with altered microstructures of their extracellular matrix, which results in the degradation of elastic fibers [2628]. The dissected wall presents increased inflammation and the infiltration of immune cells [29]. The interaction between the extracellular matrix proteins and growth factors such as TGF-beta or BMP plays an important role in developing dissection and aneurysms. This interaction results in an extensive release of TGF-beta, caused either by incorrect sequestration of fibrillin‑1 in Marfan patients or mutation of the TGF-beta signal cascade in Loeys-Dietz patients [3033]. Although previous research has provided insights into fundamental pathophysiological processes, clear triggers of aortic dissection have not yet been found [2, 3436].
Ma et al. [37] investigated 32 relatives of 100 patients with aortic dissection. They found a 2.8-fold increase in the patients’ relatives’ annual risk of de novo aortic dissection. A positive family history was the most relevant risk factor for aortic dissections.
In young patients, other risk factors, such as substance abuse, must be considered. Cocaine elevates the risk for type A dissections. Other triggering substances include amphetamines.
Statement
Risk factors for type B aortic dissections are recognized to include positive family history, male sex, smoking and arterial hypertension. In young patients, in addition to genetic background, substance abuse should be considered.

Presenting symptoms and complications

Presenting symptoms

Similar to acute coronary syndrome, abrupt, severe, sharp chest pain located in the anterior chest or interscapular region can be presenting symptoms for acute aortic syndrome. This term includes classical aortic dissection, intramural hematoma (IMH) and penetrating aortic ulcers (PAU).
In an analysis of the IRAD register, the following symptoms and results were noted: ([38]; Table 3).
Table 3
Symptoms and diagnostic findings of type B aortic dissection in the IRAD register
Symptoms
Patients with type B aortic dissection (%)
Most severe pain ever experienced
88.7
Pain in the anterior chest or interscapular region
88.7
Sudden onset of pain
85.4
Moving pain
16.8
Syncope
2–6
Arterial hypertension
64.6
Pulse deficit
26.3
Widened mediastinum
42.6
An inconspicuous chest X‑ray was found in 30% and an inconspicuous ECG was found in 40% of the cases, suggesting neither test is appropriate for aortic dissection diagnosis.
Women presented noteworthy atypical symptoms and reported less severe pain [39].

Complications

For treatment to succeed after primary diagnosis, it is very important to distinguish between complicated and uncomplicated dissections. An international expert consensus document published a definition for a complicated type B aortic dissection that included malperfusion, refractory hypertension and impending rupture [7].

Malperfusion

The incidence of malperfusion of aortic side branches varies between 25% and 50%. The perfusion of the false lumen compresses the perfusion of the true lumen. In a dynamic compression, during the systole the prolapsing dissection membrane covers the ostium of the side branch, whereas in a static condition the membrane directly causes a stenosis. This narrowing can result in a thrombosis of the side branch and ischemia of the organ [40, 41]. Severe malperfusion is one of the main causes of the high morbidity and mortality of acute aortic dissection patients. In another analysis of the IRAD register (1996–2013), the incidence of complications of 1034 patients with type B aortic dissections were evaluated [41].
  • acute kidney injury: 17.9%
  • hypotension: 9.7%
  • limb ischemia: 9.5%
  • mesenteric ischemia: 7.4%
  • spinal ischemia: 2.5%
These complications were independent predictors of in-hospital mortality. The odds ratio for mesenteric ischemia was 9.03 (95% CI 3.49–23.38), hypotension 6.43 (95% CI 2.18–18.98), acute kidney injury 3.61 (95% CI 1.68–7.75) and limb ischemia 3.02 (95% CI 1.05–8.68).
Although only 17% of the patients had an aortic diameter ≥ 5.5 cm at presentation, the odds ratio of 6.04 for this condition (95% CI 2.87–12.73) was remarkable high [41].
The criteria for a complicated acute aortic dissection type B include the provision of certain clinical and diagnostic characteristics, which include the following: ([40, 42]; Fig. 2)
  • rupture, hypotension or shock
  • malperfusion with:
    • visceral ischemia
    • limb ischemia
    • spinal ischemia
  • high risk patients with:
    • refractory pain
    • refractory arterial hypertension
    • rapid expansion of the aortic diameter

Diagnostic testing

The most important examination for diagnosis and treatment planning is the ECG-gated computed tomography with contrast medium. In all hemodynamically unstable patients, this tomography should occur immediately (class I, level C). If possible, a transthoracic echocardiography should also be performed immediately to assess for cardiac pump function, the aortic root and a possible involvement of the pericardial space.
For all hemodynamically stable patients with chest pain, it is important that according to a diagnostic algorithm 1) an acute aortic dissection is considered, 2) a prompt diagnostic is performed and 3) irrelevant and time-consuming diagnostics are avoided. Figure 3 presents a proposed algorithm for this process.

Medical history

Most patients with aortic dissections have arterial hypertension; therefore, it is important to check patients’ previous medications and decompensations. Standard questions about risk factors and comorbidities are also part of the medical history. In addition to standard risk factors, genetic risk factors also play an important role, especially in younger patients. These patients should be actively asked for their known connective tissue diseases, familial clustering of dissections or other aortic pathologies.

Presenting symptoms

The guiding symptom for aortic dissections is pain. The most depicted symptom for aortic dissections is pain in the back or in the interscapular region with abrupt onset and of sharp character. The radiation of the pain is dependent on the extension and involvement of side branches. The pain localization can migrate or radiate during the first hours after onset of symptoms.
Depending on the side branches involved and perfusion of the false lumen the following symptoms can occur: thromboembolic stroke with weakness of arms or legs, ischemic complications due to malperfusion of visceral organs and paraplegia or hemodynamic instability in cases that involve the ascending aorta, coronary arteries or rupture.
Physical examination findings can include heart murmurs, murmurs over involved side branches, pulse deficits and side differences in blood pressure. Although these guidelines deal with type B aortic dissections, a type A dissection is a classical differential diagnosis and should always be kept in mind. In patients with type A dissection, the neurological symptoms are more common and can obscure the clinical presentation [43, 44], these patients less commonly report the typical aortic pain associated with dissections (class I/level C) [44].

Biomarkers

There is no single biomarker that can detect aortic dissection with high sensitivity and specificity. This inability makes diagnosis of aortic dissections more difficult [45].
In specialized laboratories biomarkers of aortic wall degeneration can be measured but these tests are not widely available. The measurement of the D‑dimer concentration is routine and also available as a point-of-care test. D‑dimer tests’ main limitation is their low specificity. Marill [45] found a high sensitivity of about 94%, the specificity was between 40% and 100% for the D‑dimer test. Cui et al. [46] found a sensitivity of 94.5% and specificity of 69.1%, whereas Watanabe et al. [47] found a sensitivity of 95.2% and specificity of 60.4%. A D-dimer concentration < 500 ng/ml very rarely indicates an acute aortic dissection.
These results were confirmed in a meta-analysis of 790 patients with acute chest pain. The D‑dimer test was performed within 24 h of pain onset. The sensitivity was 94% and specificity 56.8%. In this meta-analysis, an acute aortic dissection could be excluded with the D‑dimer test, but because of relatively low specificity the diagnosis could not be verified. The D‑dimer levels were not significantly different from those with pulmonary embolism.
The use of the sole measurement of the D‑dimer concentration for excluding aortic dissections leads to a high rate of unjustified CT examinations with corresponding radiation and contrast exposure.
Using a low cut-off of < 0.1 µg/ml, which was derived from a systematic review including 16 trials with 437 patients, the sensitivity to exclude an acute aortic dissection was 100% in a prospective cohort of 65 patients [48]. This approach has not yet been tested in a larger cohort.

Scoring systems and combinations of different testing methods

The 2010 ACC/AHA guidelines for thoracic aortic disease elaborated on previous information listing comorbidities, acute symptoms and examinations that correlate with a high risk of an acute aortic dissection [6]. From this list, an aortic dissection detection risk score (ADD-RS) was proposed (Fig. 4). Each group was valued with one point before risk was stratified as low (0 points), intermediate (1 point) or high (2–3 points).
In a retrospective analysis of the IRAD register including 2538 patients, only 108 patients (4.3%) had a low risk of aortic dissection [44]. In other analyses, only 5.9% with zero points in the ADD-RS had an aortic dissection [48]. An additional conventional chest X‑ray presents no significant benefit [49].
In a retrospective analysis of secondary care hospitals, hospitals that normally have a low incidence of aortic dissections, the sensitivity for acute aortic syndromes with ADD-RS ≥ 1 was 100%, but specificity was only 12.3% [50].
In the current ESC guidelines, the two first risk classes were subsumed into a low-risk class (0–1 point), and other items were added. In a prospective multicenter observational trial (ADViSED), 1850 patients with suspected acute aortic syndrome were analyzed for their AAD-RS (0–3) risk scores. Additionally, the D‑dimer concentration (cut-off value < 500 ng/ml) was analyzed. A positive D‑dimer test had a sensitivity of 96.7% and specificity of 64%. The error rate of a combination of AAD-RS = 0 and “negative” D‑dimer testing was 0.3%; the combination of AAD-RS ≤ 1 and D‑dimer testing was < 1%. The efficacy of the AAD-RS = 0 and D‑dimer testing was 15.9%; the efficacy of AAD-RS ≤ 1 and “negative” D‑dimer testing was 49.9% [51].
In a single-center retrospective analysis of 376 patients with chest pain and available D‑dimer tests, the negative predictive value for AAD-RS ≤ 1 and “negative” D‑dimer testing was 89.9% with an error rate of 1.1% [52].
A recent meta-analysis, including 9 studies and 26,958 patients with AAD-RS and 3241 patients with D‑dimer testing, found a high sensitivity for the AAD-RS alone or in combination with the D‑dimer testing [53]. In a multivariate regression analysis, six items from the ADD-RS (previous thoracic aortic aneurysm, severe intensity, abrupt onset, pulse deficit, neurological deficit and hypotension/shock) were evaluated as independent risk factors for an acute aortic syndrome. In combination with age-adjusted D‑dimer testing, these items were developed to create an easier diagnostic tool.
In a retrospective analysis of two centers with high prevalence and a prospective analysis of two centers with low prevalence, the score was externally validated. With these data, a weighting of the single items was performed: hypotension/shock equalled 2 points and all other items equalled 1 point. The new, simplified score was called AORTAs. In this score, a value ≤ 1 describes a probability of 4.6% for an acute aortic syndrome. A score ≥ 2 describes a high probability of acute aortic syndrome and justifies further evaluation with imaging [54]. This simplified score must be evaluated further in a larger prospective cohort.
Currently, no single test can identify patients with a low risk for acute aortic syndromes; additionally, combinations of different tests have not yet been evaluated enough to confidently ascertain low risk. It is recommended that each hospital uses their own diagnostic algorithm to reduce radiation and contrast exposure.

Preoperative examinations

For conventional cardiac operations, risk scores such as the Society of Thoracic Surgeons Predicted Risk of Mortality (STS-PROM) [55] or EuroSCORE I and II [56] are well established; however, these scores have not been validated for open or endovascular treatment of aortic diseases [57].
These scores do not consider the frailty of older patients [51, 5860]. These scores’ goal should be to provide a validated, standardized preoperative check of all vascular and cardiac comorbidities that can influence the outcome. The patients’ medical histories should be checked for ischemic heart disease [61], prior coronary stent implantation [62], heart failure [63], arrhythmias [63], heart valve disease [64] and arterial or pulmonary hypertension [65, 66].
Typically, for all patients with acute chest pain, ECG, chest X‑ray and transthoracic echocardiography (TTE) are used to exclude other diseases such as heart attack.
The ESC guidelines [43] recommend using TTE (class I, level C) as an initial imaging modality in all suspected cases of aortic dissection because of TTE’s availability. In Germany, TTE should be available in all certified chest pain units.
For definite diagnosis, transesophageal echocardiography (TEE), ECG-gated CT scans or MRI have the same reliability as one another for verifying an aortic dissection [67]. The distal part of the ascending aorta and the arch cannot be examined by TEE; however, TEE has the advantage of distinguishing between false and true lumens and visualizing entries using a color Doppler.
ECG-gated CT angiography of the whole aorta remains the gold standard for diagnosing aortic dissection. It is the most used imaging modality and can also visualize complications of side branches. The usage of ECG gating reduces motion artefacts at the level of the aortic root [68]. Precise planning for thoracic endovascular aortic repair (TEVAR) is possible when using multiplanar reformations [69]. Therefore, isotropic voxels should be generated.
For TEVAR planning, in addition to the whole aorta, access via iliac and femoral arteries should also be included in the scan. It is also beneficial to include supra-aortic vessels to assess the anatomy of vertebral arteries [68, 69].

Intraoperative imaging

TEE can also be used in the intraoperative setting to evaluate wires and devices in the appropriate lumina [70].
Intravascular ultrasound (IVUS) is an important imaging modality, especially in TEVAR, for adequately sizing the aortic diameter of the landing zones, distinguishing between false and true lumens and diagnosing a true lumen collapse. Additionally, in emergency situations, where no appropriate CT scan is available, IVUS can be helpful [68, 7173].
In these cases, IVUS-guided correctly sized stent graft diameters have a positive effect on remodelling and reduction of reintervention [7375].
The usage of IVUS is recommended for sizing landing zones, visualizing side branches and reducing contrast.

Postoperative imaging

Independent of treatment, approximately 60% of all patients with an aortic dissection present with aortic diameter progression [7].
CT controls (alternatively MRI, especially in younger patients) should be performed 30 days, 3, 6 and 12 months after TEVAR and, thereafter, annually and lifelong [8, 69]. If the CT shows a morphological change with no direct therapeutic consequence, the next CT control should be performed after 3 months.
After 5 years of stable results, controls can be performed in 18–24-month intervals. The extension of the dissection, thrombosis of the lumina, remodelling, perfusion of the false lumen and progression or regression should be noted [69].
The CT scan should be performed in the native, arterial and venous phases [68, 76]. Late phases are important for visualizing the perfusion of the false lumen [76]. After endovascular treatment, endoleaks, positive regression of the aortic diameter, negative remodelling and progression of the aortic diameter should be noted [77]. Of special importance are complications, such as bird beak, distal stent graft-induced new entries (dSINE), occlusion of side branches and retrograde type A dissections [7880]. The dSINE typically occur between 12 and 36 months after TEVAR, rarely occurring in the early phase (≤ 30 days) [8] and typically presenting as asymptomatic ([79, 81]; Fig. 5).

Treatment

Acute uncomplicated type B aortic dissection

International guidelines and expert consensus documents

Since the last publication of these guidelines no new recommendations or international guidelines have been published. During this period, the American Society of Vascular Surgery (SVS) only commented on aortic dissection in the TEVAR guidelines for aortic aneurysms.
Most existing guidelines are more than 10 years old (AHA, [6], Fattori et al. [7], ESC [43], Japanese guidelines [82]); the most recent guidelines were published by the European Society for Vascular Surgery (ESVS). The SVS, in collaboration with the American Society of Thoracic Surgeons (STS), recently published reporting standards but these standards omitted recommendations for treatment [8].
In 2021, the European Society of Cardiology (ESC) and the European Association of Cardiothoracic Surgeons (EACTS) published a position paper on the use of TEVAR in acute and chronic aortic disease [77]. This paper included the following recommendations:
  • The recommendations for TEVAR in uncomplicated acute type B dissections include a primary entry tear > 10 mm, primary entry at the inner curvature, maximum total diameter > 40 mm and maximal diameter of the false lumen > 25 mm. Treatment should be performed in the chronic phase (15–90 days). Centralization of aortic treatment is recommended. One risk factor for treatment is the presence of a short distance from the primary entry to the left subclavian artery (LSA).
The clinical practice guidelines of the ESVS [83] recommend the following:
  • To prevent late complications, an early TEVAR in selected cases can be taken into account (class IIb/level B).
The ESVS, in cooperation with the EACTS, published new guidelines about aortic arch pathologies [84]; however, the guidelines are only tangentially related to type B dissections.

Best medical treatment (BMT)

All patients with suspected or verified type B aortic dissection should be referred to a center that is specialized in diagnosing and treating aortic dissections and has all relevant specialized treatment options available [2, 43, 77, 8487]. These specialist centers should have experience in open, endovascular and conservative treatment of aortic dissection. All patients with verified acute aortic dissection should be transferred to a monitoring station where hemodynamics and urine production can be monitored.
The goal of medical treatment is preventing rupture or deterioration of the dissection with consecutive deterioration of organ perfusion. This goal is reached by controlling blood pressure and heart rate and reducing the force of left ventricular ejection (dp/dt). Blood pressure between 100 and 120 mm Hg and a heart rate below 60 bpm is tolerable [86]. First-line treatment includes intravenous beta-blockers [86, 88]. If this treatment is not sufficient or the patient demonstrates intolerance to beta-blockers (asthma, bradycardia or impending heart failure), calcium channel blockers are indicated, which also reduce the risk of reflex tachycardia. Esmolol would be the first recommended choice of blocker, due to its short half-life; alternatively, metoprolol or labetalol are also recommended [86].
In large trials, improved survival and decreased aortic expansion rates were found for the administration of beta-blockers and calcium channel blockers [8891]. In patients with inadequate blood pressure control, vasodilators are the first alternative choice. These drugs should not be administered as monotherapy because of the increased wall shear stress [86].
After IV treatment, the next goal is to transition to oral medication. In this case, beta-blockers and calcium channel blockers are also the first-line treatment, followed by renin-angiotensin system inhibitors or alpha1 receptor blockers [85]. The limits of blood pressure must be raised in cases of organ dysfunction (e.g. renal failure) [6, 43].
For all patients who are in monitoring units and receive IV medication, blood pressure should be monitored through invasive measurements; this monitoring should continue until systolic blood pressure and heart rate control are gained and no organ dysfunction is observed.
In addition to controlling blood pressure, it is also important to treat pain. Pain can increase blood pressure and therefore deteriorate the aortic dissection. In this case, IV treatment and opiates are the first-line treatment. Refractory pain is an alert signal and can indicate progression or impending rupture [92].
In the chronic phase, blood pressure < 130/80 mm Hg should be targeted. Additionally, statin treatment should be initiated [85, 93].
There is little research addressing the recommended duration of intensive care monitoring. In a retrospective study from Japan, 73 consecutive patients with uncomplicated type B aortic dissections were investigated [94]. The first 39 patients were treated by following traditional protocols published in the Japanese guidelines [82]. These include a relatively long time of bedrest and cautious mobilization at day 7. All patients treated after 2013 (n = 34) received a fast-track program. For these patients, the amount of rest was reduced: for example, on day 2, patients sat on the bed; on day 3, patients stood by the bed. All actions were undertaken with blood pressure monitoring. The complication rate was reduced in the second group. Adverse aortic events did not (significantly) occur in the fast-track group. In this group, rates of pneumonia, duration of IV treatment (3.8 ± 1.4 vs. 3.0 ± 1.4 days), length of hospital stay and, therefore, total costs were significantly reduced. Additionally, delirium was reduced but not significantly.
In a 2009 trial following a similar fast-track program, the results were similar; however, a higher number of patients were included (90 standard protocol vs. 120 with fast-track protocol) [95].
The optimal duration of intensive care monitoring is unclear; in these two studies, no robust data that would provide clear recommendations were presented. The authors suggest that patients remain stable under oral medication and that imaging also remains stable.
Durham et al. [96] reported long-term results after primary conservative treatment of acute aortic dissection. From 298 patients, 200 received long-term follow-up with available imaging. After a median follow-up of 4.3 ± 3.5 years, 119 patients (39.9%) died. Aorta-related interventions occurred in 87 (29.2%) of the patients, predominantly (56 patients) due to aneurysmal degeneration. The median growth rate was 12.3 mm/year for the total diameter and 3.8 mm for the false lumen.
In a systematic review [97] of 15 studies and 2347 patients, the 30-day mortality was 2.4%, the pooled cerebrovascular incidence was 1% and the rate of spinal ischemia was 0.8%. The 1‑year survival rates were 86.2–100%, and, after 5 years, the survival rates were 59–97.2%. Freedom from aortic events after 5 years was 34–83.9%.
Interestingly, the 5‑year mortality rates in Japan were lower (12.8–13.2%) [98]. The reasons for this discrepancy are unclear; recommendations on medical treatment remained similar [82].
It is currently unclear if a primary conservative approach with best medical treatment should be the treatment of choice in non-A-non‑B dissections. In a meta-analysis [99] including 433 patients, the 30-day mortality was 14%, which is clearly higher than in type B dissections. For patients who were treated by an open, hybrid or endovascular approach, the 30-day mortality was 3.6%, the rate of retrograde type A dissections was 2.6% and the stroke rate was 2.8%.

Endovascular treatment

Only one randomized multicentric trial exists that compares BMT with TEVAR; this research was industry-sponsored. The primary endpoint of the acute dissection stent grafting or best medical treatment (ADSORB) trial was aortic remodelling after 14 days of TEVAR [100]. In the BMT group, 31 patients were recruited, whereas in the TEVAR + BMT group, 30 patients were included. Three patients from the BMT group received TEVAR due to expansion of the aorta; after 1 year of randomization, one malperfusion and two aneurysms were noted. In the TEVAR + BMT group, one patient died. An incomplete thrombosis was found in 97% of the BMT group and in 43% of the TEVAR + BMT group. Regression of the diameter of the false lumen and an increase of the true lumen were only found in the TEVAR + BMT group. The total diameter was constant in the BMT group but reduced in the TEVAR + BMT group from 42.1 to 38.8 mm (p = 0.062). Long-term data are missing from this study.
Xie et al. [101] analyzed the outcome of 267 TEVARs that were administered in the acute or subacute phase with a median follow-up of 48.2 ± 25.9 months. Indication was seen in expanded criteria (40 mm initial diameter, false lumen diameter of 22 mm, primary entry > 10 mm and partial thrombosis of the false lumen). No significant difference was found regarding mortality, spinal ischemia and stroke, although mortality was fivefold higher in the acute phase (five patients vs. one patient). Aortic rupture, retrograde type A dissection and major stroke only occurred in the acute phase; 90% of all patients had a complete thrombosis of the false lumen in the thoracic aorta and 30% had a stable diameter in the abdominal aorta. Freedom from aorta-related complications was between 84% and 90% after 5 years.
In a single center analysis, [102] all patients with uncomplicated type B dissections treated over a 12-year period were investigated (751 patients). The in-hospital mortality rate was 0.7% and long-term mortality was 52.8 ± 10.9 months. The 10-year survival rate was 83%, and the reintervention rate was 7.9%. Retrograde type A dissections occurred in 0.5% of cases.
The optimal time for endovascular treatment is still under debate. Whereas some authors [101] have not found a difference between the acute, subacute and chronic phases, other trials [100, 103] found a higher complication rate in the acute phase and a lower complication rate in the long term. The TEVAR data in acute and subacute settings are shown in Table 4.
Table 4
Complication rate after TEVAR in the acute and non-acute phase
 
Acute [103106]
Non-acute [103, 107, 108]
30-day mortality
0.5–7.1%
0–4.5%
Retrograde type A dissection
0.5–1.6%
0–1.5%
Perioperative stroke
0.5–6%
0–1.5%
Spinal ischemia
0–3.4%
2.9–4.5%

Indication and comparison of treatment modalities

A 2020 meta-analysis [109] investigated 14,706 patients. Only 6 studies were included; all other studies (325) were excluded because of a lack of comparison group data. Patients treated with TEVAR had a higher rate of perioperative strokes, but BMT resulted in higher long-term mortality (all-cause and aorta-related). All other parameters (e.g. in-hospital mortality) presented no difference. The indication for treatment was not investigated. These criteria may be able to predict late aortic events. Patients with these criteria are at high risk and some authors assessed these patients against a group of extended criteria for complicated type B aortic dissections [8, 108, 110].
A meta-analysis from 2018 [111] evaluated these criteria by investigating a number of groups over a period of 10 years. In total, 51 studies with 8074 patients were included. Only one negative predictor could be found:
  • Maximal total aortic diameter at presentation > 40 mm.
All other predictors were considered to be controversial because most of the included trials were single-center analyses with low numbers of patients (Table 5).
Table 5
High-risk criteria of uncomplicated acute type B aortic dissection
 
Evidence class
Evidence level
Reference
Maximal total aortic diameter at presentation > 40 mm
IIA
B
[17, 96, 112128]
Complete thrombosis of the false lumen
IIA
B
[118, 129]
Primary entry tear > 10 mm
IIB
C
[108, 130]
Partial thrombosis of the false lumen
IIB
C
[117, 118, 131, 132]
Primary entry tear at the inner curvature
IIB
C
[133136]
Maximal false lumen diameter at presentation > 22 mm
IIB
C
[117, 120, 127, 130, 135139]
Ratio of true/false lumen < 0.8
IIB
C
[137]
Ulcer-like projections
IIB
C
[113, 140]
Fibrinogen-fibrin degradation products > 20 mg/ml
IIB
C
[123]
Number of involved side branches
IIB
C
[112, 120, 135, 139, 141]
The meta-analysis discussed ulcer-like projections in-depth, especially in patients with IMH. The meta-analysis only expressed a IIB recommendation. In 2021, a new study was published [140]; within 5 years, 62 patients with ulcer-like projections were retrospectively compared with 78 patients without ulcer-like projections. The follow-up occurred after 1 year. High-risk patients presented with ulcers of a depth of 5 mm or situated in the proximal aorta. These factors were independent risk factors of late aortic events.
Newer studies have investigated additional predictors for late aortic events, like the distance of the primary entry to the LSA and ejection fraction of the false lumen, which are measured with 4D MRI [142]. Only 18 patients were included, and 4D MRI was only available in selected centers; additionally, 4D MRI exams can last for as long as 60 min [78].
A new approach is to combine predictors into a score model. Matsushita et al. [143] analyzed 187 consecutive patients from 2 centers. After they established their model, it was validated with 219 patients in 4 Japanese centers (Table 6).
Table 6
Score model of predictors for late aortic events
Maximal total aortic diameter at presentation > 40 mm:
2 points
False lumen lager than the true lumen:
2 points
Ulcer-like projections:
1 point
Age ≥ 70 years:
1 point
Patients with a score of 2–6 had a significantly higher risk for late aortic events.
Sailer et al. [144] investigated the importance of aortic remodelling. If the diameter increases by 5 mm in the first 6 months, there is a 2.29-fold increased risk for late aortic events compared to patients that have an enlargement of 2.4 mm over the same period. Similar results were found in another single-center analysis [145]. Patients with an enlargement of 2–5 mm in the first 2 weeks had a similar risk for late aortic events as patients with a primary diameter of 40 mm (3.64 vs. 2.96) (Fig. 6).

Acute uncomplicated type B aortic dissection

Complicated type B aortic dissections, are defined as type B dissections with: [7, 8]
  • rupture
  • malperfusion with
    • o ischemia of visceral organs
    • o leg ischemia
    • o spinal ischemia
  • high-risk patients with
    • o refractory pain
    • o refractory hypertension
    • o rapid expansion of the aortic diameter
The outcomes of patients with complicated dissections are significantly worse than those with uncomplicated dissections. In a single-center analysis of 442 patients, the in-hospital mortality was 16.1% vs. 2.6% [146].

TEVAR vs. open repair

TEVAR is recommended as the first-line treatment with class I, level C evidence in the current ESC guidelines [43]. There have not yet been any randomized trials comparing endovascular and open repair in acute complicated type B dissections. The ESVS guidelines have similar recommendations: [42]
  • Patients with acute complicated type B dissections should receive TEVAR as the first-line therapy (class I/level C).
  • Open repair is an alternative treatment if TEVAR is not feasible or fails (class IIA/level C).
  • For malperfusion patients, endovascular fenestration is an option (class IIA/level C).
In Moulakakis et al. [97] meta-analysis of 30 studies, 2531 patients with acute complicated type B dissections treated by TEVAR the pooled in-hospital mortality rate was 7.3%. The pooled cerebrovascular event rate was 3.9%, and the spinal ischemia rate was 3.1%. The 1‑year survival rate varied between 62% and 100%; the 5‑year survival rate varied between 61% and 87%. Freedom from late aortic events after 5 years was 45–77%. A meta-analysis of open repairs including 9 studies and 1276 patients found worse results. In this meta-analysis, the pooled cerebrovascular event rate was 6.8%, the spinal ischemia rate was 3.3% and the cumulative rate of unwanted neurological events was 9.8%. The 1‑year survival rate varied between 74.1% and 86%, and the 5‑year survival rate varied between 44% and 82.6%. Data to calculate the freedom from late aortic events were missing.
An additional systematic review found a 30-day mortality after TEVAR (in 1574 patients) of 8.07% and a morbidity rate of 30.8% [147].
A 2014 systematic review [148] including 134 patients with peripheral malperfusion and leg ischemia reported that 22% of patients received conservative treatment. In patients with open repair (fenestration and extra-anatomic bypasses), the 30-day morbidity was 31% and the 30-day mortality 14%. In the endovascular group (50% fenestration, 32% TEVAR), the results were 46% and 8%, respectively. In a recent single-center analysis with a higher rate of TEVAR, the in-hospital mortality was 7%. The group that received primary and peripheral intervention experienced a higher failure rate than the group with primary TEVAR.
A prospective trial [149] included 50 patients over 5 years. The 5‑year freedom from dissection-related mortality and secondary interventions was 83% and 85%, respectively. After 5 years, 94% presented with complete remodelling and a stable true lumen of the thoracic aorta.
Several analyses of national databases [87, 150152] exist with high patient numbers. However, all of these analyses suffer from an inability to distinguish between TEVAR in complicated dissections and uncomplicated dissections. Additionally, discriminating between type A and type B dissection is not always possible in patients who received open repair. The National Inpatient Sample [87] of the USA reported that 1540 patients with type B dissections had an in-hospital mortality rate of 15.3% after open repair and 4.9% after TEVAR (1130 patients) in 2012.
In a national database from Taiwan that included 1542 OR patients and 119 TEVAR patients (no information about complicated or uncomplicated), the 30-day mortality was 4.2% after TEVAR and 17.8% after open repair. After 4 years, 68% of patients after open repair and 79% after TEVAR were still alive [151].
Luebke und Brunkwall [153] state in their meta-analysis that TEVAR has a significantly lower mortality and paraplegia rate with no significant differences in the long term. Based on these data, they calculated the cost-effectiveness [154] of both treatment strategies. Open repair was more expensive and less effective in terms of quality-adjusted life years (QALYs).
Hogendoorn et al. [155] published similar results, although the reintervention rate was higher in the TEVAR group than in the open repair group. TEVAR was more effective in all age groups.
Although existing meta-analysis and multicenter analysis included a higher number of patients, most analyses did not distinguish between complicated and uncomplicated type B aortic dissections.
There is no consensus on the minimal recommended length of the stent graft. However, what is clear is that shorter stent grafts have a higher reintervention rate [156] and, by covering one third of the thoracic aorta, further expansion can be stopped [157]. The reintervention rate correlates in one multicenter retrospective study (814 patients in 15 years) with the length of the stent graft. Best results were achieved with extension to the celiac trunk. Unfortunately, no spinal ischemia rate was given in the study.

Special techniques

Fenestration.
During fenestration, a connection between true and false lumen is made. This can be performed by using an endovascular or an open approach. The aim is to treat malperfusion due to compression of the true lumen.
Trimarchi et al. [158] study presented the longest follow-up after open aortic fenestration. In total, 18 patients were treated, 16 as emergency and 2 within 48 h, who presented with refractory hypertension and refractory pain. The fenestration was made in 10 patients in the suprarenal and 8 patients in the infrarenal part of the aorta. The in-hospital mortality was 22% (84 patients); during the 10-year follow-up, 3 other patients died of non-dissection related causes. In the remaining 11 patients, the result was satisfactory, no other ischemic complication occurred and no reintervention was necessary. In the treated segment, no dilatation was noted, but five patients developed aneurysms in other segments.
In a larger case series, 42 patients were open fenestrated in the suprarenal region [159]. The 30-day mortality rate was 21.4% and the 5‑year mortality rate was 70.6%. In the follow-up, five patients died of top aortic rupture. The indication for operation was malperfusion in only 17 patients. All other patients were operated on because of refractory pain or rapid progression.
The largest case series of endovascular fenestrations was published by Norton et al. [160]. Between 1996 and 2018, 99 patients with malperfusion were treated by fenestration with or without additional stent. The 30-day mortality rate was 7.7%, and in the last 8 years of follow-up no patient died. The 5‑year and 10-year survival rates were 72% and 49% and the reintervention rates were 21% and 31%, respectively.
PETTICOAT.
PETTICOAT refers to the provisional extension to induce complete attachment [161]. This technique compares an occlusion of the primary entry tear with a covered stent and distal extension with an uncovered stent. The 5‑year results of the STABLE I trial (Study of Thoracic Aortic Type B Dissection Using Endoluminal Repair) [162] and 1‑year results of the STABLE II trial [163] were published. Both were non-randomized multicenter trials. In the feasibility trial (STABLE I), acute and subacute complicated type B dissections were included, whereas in the STABLE II only acute complicated aortic dissections were included. In STABLE I, 55 patients with acute type B dissections were treated. The 30-day mortality rate was 5.5%, the 5‑year survival rate was 79.9 ± 6.2% and the aneurysm-related survival rate was 83.9 ± 5.9%. A complete thrombosis of the false lumen was achieved in 74.1% of the cases. In STABLE II, 20 patients with rupture and 57 with malperfusion were included. The 30-day mortality rate was 6.8% and the 1‑year survival rate was 80.3%. The periprocedural stroke rate was 6.8% and the rate of spinal ischemia was 5.5%. A complete remodelling occurred in 78.3% of cases.
In a comparison of TEVAR (841 patients) and PETTICOAT (84 patients from the STABLE II trial), the 30-day mortality rate was 17.1% vs. 8.3% (not significant), respectively [164]. The malperfusion-associated 30-day mortality was significantly lower (12% vs. 2.4%; p = 0.038). The diameter of the true lumen in the abdominal part was significant larger in the PETTICOAT group.
A meta-analysis [165] and a Cochrane review [166] stated that no clear statement can be given due to the heterogeneity of the trials. These studies stated that re-expansion of the true lumen can only be improved in the short term.
STABILISE.
A further development of the PETTICOAT principle is the Stent Assisted Balloon Induced Intimal Disruption and Relamination in Aortic Dissection Repair (STABILISE). In addition, in the PETTICOAT procedure, the stent graft in the thoracic aorta is dilated with a compliant balloon to disrupt the intima and seal the stent graft. Two groups published their data. In the Italian group [167] only acute complicated patients (n = 10) were included. The overall mortality after 7.2 months was 0%. In all patients, a complete expansion of the true lumen was achieved and the abdominal part of the aorta remained stable.
In the French group [168] 41 patients with complicated type B aortic dissection or a primary diameter > 40 mm were included. The 30-day mortality rate was 2%, and, after a mean follow-up of 1 year, 20% of patients required reintervention. The false lumen was completely thrombosed in the thoracoabdominal aorta. Below the stent, the false lumen was thrombosed in only 39% of cases; 5% of cases presented an increase in diameter.
Currently, a multicenter register is in process, but no data have yet been published by this register (clinicaltrials.gov NCT03707743).
Bare metal stent implantation.
Examples of small diameter bare metal stent implantation in the true lumen in cases of true lumen collapse are very limited. Besides case reports, only 1 single-center study [169] with 14 patients has been published. The study’s patients received stents with diameters ranging from 7 to 28 mm. For one patient, additional open revascularization was necessary, and four patients required additional fenestration. During the first week, four patients experienced a collapse of the implanted stents; three of these patients could be recanalized by performing PTA. No middle-term data were included in the study, and the effects of further endovascular treatment in these patients with small diameter stents is unclear.
Total hybrid arch repair—Frozen elephant trunk.
In selected cases, in particular if no adequate landing zone is available, the frozen elephant trunk technique may be required. The prevalence of experience with this technique is low and the results have been found to be inconsistent. In a single-center analysis [170] of 21 patients, the perioperative mortality, spinal ischemia and stroke rates were 3%, 0% and 14%, respectively; in a multinational register [171] of 57 patients, these rates were 14%, 4% und 10%, respectively. In both case series, a significant number of patients required subsequent distal extension.
In a study with a larger cohort [172] of 79 patients, the perioperative mortality, spinal ischemia and stroke rates were 5.1%, 3.8% and 2.5%, respectively. The freedom from distal interventions was 97.3%, 97.3%, 87.8%, 84.3% and 79.3% after 6 months and 1, 3, 5 and 7 years, respectively.

Hemodynamic monitoring

The hemodynamic monitoring depends on the type of anesthesia given to patients and the experience of the center. For standard monitoring in all operations and interventions, an invasive blood pressure measurement should be performed proximal to the dissection. Ideally, consent on all possible accesses should be found between interventionalists, surgeons and anesthesiologists. For renal perfusion and renal output control, a transurethral catheter is reasonable. For monitoring cerebral perfusion, near-infrared spectroscopy (NIRS) is possible, especially in cases where the aortic arch is involved (Fig. 7).

Subacute type B aortic dissection

The subacute phase is defined as the time between 15 and 90 days after the primary event. There is only one randomized study that addresses the subacute phase. In INvestigation of STEnt grafts in patients with type B Aortic Dissections (INSTEAD) [173], BMT (n = 68) and BMT+TEVAR (n = 72) uncomplicated type B dissections were evaluated. The patients were randomized after presenting with uncomplicated aortic dissections and completing an uneventful acute phase. After 1 year, there was no significant difference between the two groups regarding overall mortality, aorta-related mortality or aortic progression [174]. However, the complication rate was higher in the BMT+TEVAR group. Additionally, the aortic remodelling was significantly higher in the BMT+TEVAR group. After extension (INSTEAD-XL), the 5‑year data were made available [108]. Aneurysm-related mortality and diameter progression were significant lower in the BMT+TEVAR group than the BMT group. Additionally, the overall mortality was lower but not to a significant degree. The false lumen thrombosis was 90.6% in the TEVAR group.
In most single-center analyses, indications were found because of extended criteria for complicated type B dissections (> 40 mm total diameter, > 22 mm false lumen diameter or > 10 mm primary entry) [101] and signs of progression or instability (increase of diameter > 4 mm, new para-aortic hematoma or hemorrhagic pleural effusion) [7].
In a comparative single-center study, [101] the outcomes of 267 TEVARs in the acute or subacute phase were analyzed.
The impact of TEVARs on blood pressure was analyzed by Usai et al. [175]; reduction of blood pressure was significantly higher in the TEVAR group than in the BMT group. This effect was pronounced in the group with refractory hypertension (≥ 5 antihypertensive medications) (Fig. 8).

Chronic type B aortic dissection

The chronic phase begins 90 days after the primary presentation. A major problem in this phrase is progression to a postdissection aneurysm. For this reason, lifelong surveillance is important [8]. Indication for treatment has been defined in several consensus documents as the following: [7, 176]
  • Total diameter 55 mm
  • Rapid progress of more than 4 mm [7] or 10 mm [176] in 1 year
  • Repeated chest or back pain with no other cause
  • Refractory hypertension despite maximal antihypertensive medication, in conjunction with small true lumen and renal malperfusion
  • Rupture
  • Malperfusion
A recent systematic review [177] compared the differences between the existing guidelines (Table 7).
Table 7
Overview of recommendations of the different guidelines in chronic dissections
 
ACCF/AHA 2010 [6]
JCS 2011 [82]
ESC 2014 [43]
ESVS 2018 [83]
SVS 2020 [69]
Maximal diameter of the thoracoabdominal aorta
IB (> 55 mm)
IC (> 60 mm)
IC (> 60 mm)
IIa (> 55 mm)
No information available
Open repair in symptomatic patients or aneurysmatic aortic dissection with low operative risk
IB
No information available
IC
IIa C
No information available
Endovascular repair symptomatic patients or aneurysmatic aortic dissection with medium/high operative risk
IB
No information available
IC
IIa C
No information available

Open repair

For the past few decades, open repair was considered the only possibility for treating chronic dissections. Since 2000, however, endovascular repairs have rapidly increased. One systematic review [178] included data from all larger studies (1574 patients). The authors of the review divided the studies into pre-endovascular and post-endovascular eras (Table 8).
Table 8
Morbidity and mortality after open repair of chronic type B aortic dissection
 
Pre-endovascular era (%)
Post-endovascular era (%)
In-hospital mortality
15.2
7.5
1‑year survival
82.1
3‑year survival
74.1
5‑year survival
66.3
10-year survival
50.8
Stroke
5.3
5.9
Spinal ischemia
4.6
5.1
Acute renal injury
13.5
8.1
Late aortic intervention
13.3
11.3
The study included centers with more than 100 patients and hospitals with only 12 patients in the same period. The operation techniques also significantly differed between centers and hospitals (hypothermia with cardiac arrest, left heart bypass, etc.).
Hemodynamic monitoring.
Hemodynamic monitoring of patients with type B aortic dissections depends on the type of anesthesia administered and type of operation undertaken. Left heart bypass, distal perfusion with extracorporeal membrane oxygenation and hypothermia with cardiac arrest are possible methods that differ between centers.
In the standard thoracoabdominal approach, the patient is positioned in a lateral right decubitus position. Typically, a distal aortic and, in selected cases, a selective visceral perfusion are used. In all cases, separate invasive blood pressure monitoring of the upper and lower parts of the body is indicated. Measuring the right radial and right femoral artery is standard; alternative approaches require an interdisciplinary agreement between the surgeon, anesthesiologist and perfusionist. For cardiac monitoring, a TEE or Swan-Ganz catheter is beneficial. For exposure of the thoracic aorta, single-lung ventilation, which can be achieved by using a double-lumen tube or bronchial blocker, is required.
In cases of permissive hypothermia, a thermal probe is placed in the nasopharynx and in the rectum. For additional cerebroprotection, the administration of external cool packs to the head is beneficial. Large-bore peripheral intravenous lines and central venous lines in addition to a transurethral urine bladder catheter are obligatory.

Endovascular treatment

In one systematic review [179] midterm results up to 5 years after TEVAR were analyzed. In total, 16 studies with 567 patients were included. Technical success was defined as complete occlusion of the primary entry with absence of type I and type III endoleaks and no conversion to open repair. The 30-day mortality was 3.2% and the technical success rate was 89.9% with a median follow-up of 26.1 months. The overall mortality was 9.2%. In the late follow-up 7.9% of the patients developed an aneurysm in the distal part of the aorta with persistent perfusion of the false lumen.
In another review [180] the median reintervention rate was 18% (28 studies, 1249 patients and a median follow-up of 27 months). In 3.9% of the cases, a conversion to open repair was necessary. The late overall mortality rate was 9.9% (3.6 deaths per 100 patient years), the aorta-related mortality 3.9% (1.1 deaths per 100 patient years) and reintervention mortality 3.1% (3.6 deaths per 100 patient years). The rupture rate was 0.7 per 100 patient years, whereas 47.6 of the ruptures were due to distal reperfusion of the false lumen. The main cause of reintervention was aneurysmatic degeneration of the aorta at the distal end of the stent graft. In the review, the reintervention rate was high, but most of the reinterventions were endovascular procedures with low peri-interventional mortality rates.
In contrast to an open repair with TEVAR, in which only the primary entry is occluded, the false lumen is normally perfused via distal re-entry. The rate of a complete remodelling of the thoracoabdominal aorta in the chronic phase is low. Staged reinterventions are, in many centers, part of the treatment strategy for chronic dissections to minimize the spinal ischemia rate [181]. There are different strategies to minimize the high rate of reinterventions.
Hybrid.
Only a few publications exist that address combining the endovascular approach for treating the thoracic part of the aorta with an open repair of the abdominal aorta. In single-center analyses [182184] concerning this combined approach, the mortality rate was 0–7%, stroke rate 0%, acute renal failure rate 20–26% and paraplegia rate 0–5% in up to 31 patients. Wang et al. [181] published a study that used the same approach but applied the approach to degenerative thoracoabdominal aneurysms. Long-term results are missing. This staged hybrid approach is also feasible as a 3-stage procedure with a prior frozen elephant trunk [185].
Fenestrated/branched stent grafts.
Additionally, this study uses data from single-center analyses with low patient numbers. Kitagawa et al. [186] previously published data concerning 15 patients in 2013. In their study, the peri-interventional morbidity, mortality, spinal ischemia, acute renal failure and stroke rates were 0%. Furthermore, the reintervention rate was low.
The largest cohort studies were published in 2019 by two centers in Germany [187]. These studies included 79 patients. In-hospital mortality was 5.6%, and the spinal ischemia rate was 4.3%. The 1‑year, 2‑year and 3‑year survival rates were 84.7 ± 4.5%, 80.7 ± 5.3% and 70 ± 6.7%, respectively. Freedom from reintervention was 80.7 ± 5.3%, 63 ± 6.9% and 52.6 ± 8%, respectively.
False lumen occlusion.
In aortic rupture, covering the primary entry is not always sufficient for treatment because of the potential for reperfusion of the false lumen via type R endoleaks [8]. To overcome this problem, the concept of false lumen occlusion was developed. False lumina can be addressed by using the Knickerbocker technique, the STABILISE technique, plug coils, Onyx glue or dedicated occlusion devices (e.g. the candy-plug technique). A 2019 systematic review compared these techniques [188]. A total of 61 patients were included. The 30-day mortality rate was 0%, and the technical success rate was 99%, but the false lumen thrombosed in only 62% of the patients. No patient died until the end of the follow-up.

Comparison of treatment

A systematic review from 2019 [189] compared open repair with TEVAR for chronic type B aortic dissections. The review included 39 studies (including 4 comparative studies) with a total number of 1079 patients in the open repair group and 1271 patients in the TEVAR group. The endovascular approach, compared to the open repair approach, presented significantly lower perioperative mortality (9.3% vs. 2%), stroke rates (4.5% vs. 2.7%), spinal ischemia (5% vs. 2.7%) and dialysis (5.2% vs. 0%). The 1‑year and 3‑year mortality rates were comparable between the groups, but the reintervention rate was significantly higher in the endovascular group (14.7% vs. 34%). Reinterventions in the OR group were predominantly open repair and in the TEVAR group endovascular interventions. Late aortic rupture occurred in 1.2% (OR group) and 3% (TEVAR group) of cases. Remarkably, most interventions in the endovascular group were TEVAR, and only two studies included fenestrated branches or stent grafts.

Distal stent graft-induced new entry (dSINE)

Occurrence of a new entry, mostly at the distal end of the stent graft, is a known problem that should not be underestimated. Since first publication in 2010 [190] two further systematic reviews [191, 192] addressing new entries have been published. D’Cruz et al.’s analysis [191] is the most extensive of the two. In 17 studies concerning 3962 patients, dSINE occurred in 7.9% of cases after a median follow-up of 19 ± 7 months. Risk factors included extensive distal oversizing of > 20% (odds ratio 2.06); short stent grafts (< 145 mm), in which the stent graft does not reach the straight part of the descending aorta; and, interestingly, treatment in the chronic phase (odds ratio 3.12). In contrast, a single-center analysis [193] with 187 patients found acute aortic dissections to be an independent predictor rather than chronic aortic dissections.
In a recent publication [194] short-term data concerning using a dedicated stent graft to prevent dSINE were published. In this context, the stent graft should be tapered and the last two struts removed. In 13 patients treated using this type of dedicated stent graft, only one patient developed a dSINE after a median follow-up of 17 months (Fig. 9).

Spinal ischemia

Spinal ischemia is one of the major complications following treatment of thoracic and thoracoabdominal pathologies. Ischemia is induced by covering spinal arteries with stent grafts or by oversewing during an open repair. The α‑motor neurons in the anterior horn are especially vulnerable to ischemia [195]. After the ischemic phase, reperfusion injury is an important part of pathophysiology. In humans, the spinal cord is perfused by a collateral network. Subclavian arteries, hypogastric arteries, deep femoral arteries and epigastric arteries are significant parts of this network [196, 197].
Paraplegia and paraparesis with sphincter incontinence dramatically reduce the quality of life. The incidence of spinal ischemia after TEVAR was 3 7% [198] in the Vascular Quality Initiative, which included 11,473 procedures across 5 years. In this initiative, the 1‑year survival rate was significantly reduced (65%), compared with patients without spinal ischemia (87%). Mortality was also higher in patients with permanent paraplegia (84%) than in those with transient paraplegia (54%). Another study found similar results [199].
The incidence of spinal ischemia varied from < 1% to 20%, depending on the underlying pathology and treatment modality. Most data came from degenerative thoracoabdominal aneurysms. In a recent meta-analysis [200] the rate of spinal ischemia was 1.8% after TEVAR in aortic dissection patients, compared with 5.73% in degenerative aneurysm patients.
The rates of spinal ischemia in aortic dissections patients are shown in Table 9.
Table 9
Spinal ischema rates
 
Conservative treatment
Open repair
Endovascular treatment
Acute uncomplicated type B aortic dissection
0.8% [97]
n.a.
0–4.5% [103108]
Acute complicated type B aortic dissection
n.a.
3.3% [97]
3.1% [97]
Chronic type B aortic dissection
n.a.
5–9% [189, 201]
2.7% TEVAR [189]
8% FEVAR [201]

Risk of spinal ischemia

Risk factors for spinal ischemia include the following [198, 202205]:
  • extensive aortic pathology/treatment (< 20 cm)
  • pathologies of the thoracolumbar transition
  • long clamping times in open repair
  • previous aortic treatments (e.g. abdominal aortic repair)
  • occlusion of collateral (e.g. hypogastric artery)
  • chronic renal insufficiency
  • perioperative hypotension
  • female sex
  • urgent repair
  • COPD
Some of these risk factors can be influenced by a strict perioperative protocol, whereas other risk factors cannot be influenced [206]. Such a protocol is also recommended by the U.S. Aortic Research Consortium [207].

Prevention of spinal ischemia

Currently, there is no authorized medicine for preventing spinal ischemia. Although a long list of drugs have been animal tested and used in clinics (mannitol, methylprednisolone, naloxone, erythropoietin, H2S, etc.), [6, 208] no therapeutic substance has gained wide acceptance or routine usage [207]. In the ACC/AHA 2010 guidelines [6] some of these drugs received a class IIB recommendation. Systematic reviews or meta-analyses have not been performed on the efficacy of these drugs.
The main barrier to making general recommendations is the low incidence of aortic dissections. However, certain recommendations for degenerative aortic diseases can be adapted to this context [209]:
  • avoidance of hypotensive phases (MAP > 90 mm Hg)
  • shortest possible treatment length of the aorta
  • staged approach in endovascular procedures
  • revascularization of the LSA
  • preservation of the hypogastric arteries
  • spinal drainage
  • local or systemic hypothermia in open repair
  • optimizing hemoglobin values
  • neurophysiologic monitoring
  • perioperative coiling of spinal arteries
Not all recommendations are realizable and there are relevant differences between open and endovascular repair. While some recommendations are clear (avoidance of hypotensive phases, treatment length, etc.), other points should be reviewed further for these guidelines.

Spinal drainage

The aim of spinal drainage is to reduce the elevated pressure on the spinal cord induced by ischemia and reperfusion injury and the consecutive edema. Especially in open surgery, the use of spinal drainage is well-established and included in several guidelines (ESVS, ACC/AHA, JCS) [6, 42, 82]. In endovascular interventions, spinal drainage is also recommended for high-risk interventions (ESVS, ACC/AHA, SVS, ESC) [6, 42, 43, 69].
A Cochrane review from 2012 [210] found only limited evidence supporting prophylactic spinal drainage in open repair but recommended this type of drainage as part of a multimodal approach.
A systematic review [211] concerning spinal drainage in endovascular procedures gave no recommendations because of lacking evidence; however, the incidence of spinal ischemia was low. In a database analysis of the Vascular Quality Initiative and the SVS, the rate of spinal ischemia in degenerative aneurysms decreased after TEVAR or complex TEVAR from 4.55% in 2014 to 1.43% in 2018.
The risks associated with spinal drainage cannot be ignored. In a large cohort of 187 patients with 240 preventive spinal drainages in endovascular procedures, 19 patients (10%) suffered from complications. For these patients, 17 out of 19 presented with moderate to severe complications and 4 patients (2%) experienced paraplegia due to the spinal drainage [212]. In this study, 30% of all spinal ischemias were induced by spinal drainage. In a larger but not recent study [213] of a total of 486 patients treated by open repair, the complication rate was 6.5%, including 6 patients with post-puncture headaches, 24 patients with bloody spinal fluid (including fatal cerebral hemorrhage) and 2 patients with neurologic symptoms.
In a single-center analysis [214] of 473 spinal drainages after open and endovascular procedures over 4 years, the complication rate was 27%, including 2.3% of cases presenting with cerebral hemorrhages.

Neuromonitoring

The standard neurophysiological monitoring techniques are motor (MEPs) and somatosensory evoked potentials (SEPs). Whereas SEPs provide information about the posterior funiculus, MEPs express the function of the anterior funiculus. SEPs have a higher rate of false positive signals and detect spinal ischemia with a certain amount of latency [215]. MEPs detect spinal ischemia within 2 min but depend on the anesthetic procedures [216]. An evaluation of MEPs and SEPs for 78 patients with thoracoabdominal aneurysms presented a sensitivity of 100% and a specificity of 94.2% [217].
An alternative to these techniques is near-infrared spectroscopy (NIRS). This technology is based on the oxygenation of the paraspinal musculature and the concept of the collateral network. This concept states that the spinal cord is perfused by the same collateral network as the paraspinal musculature [218]. The advantage of this technology is that application is much easier than in other techniques and prolonged measurement over a number of days is possible. The disadvantage is that NIRS has not been evaluated in larger studies. Existing results have been obtained from animal studies [219] and limited clinical data [218, 220]. However, two larger studies comparing NIRS technology with neurophysiological monitoring are currently underway [221, 222].

Preoperative coiling of spinal arteries

A relatively new concept is to coil spinal arteries before the main operation. This action mimics the staged concept of endovascular procedures. Based on the collateral network concept, occlusion of segmental spinal arteries should also increase other collaterals. A large randomized multicenter trial addressing the use of coiling in this context is currently underway [222].

Therapy of the spinal ischemia

The choroid plexus produces 400–600 ml of spinal fluid per day with a time-dependent rate of 0.2–0.7 ml/min [223]. Occlusion of spinal arteries, hypotension, inflammation, etc. induces a hypoperfusion of the spinal cord. This results in an edema that aggravates the hypoperfusion, causing a penumbra. The spinal cord is surrounded by spinal fluid and the meninges. These meninges are not extensible, which results in a further hypoperfusion of the penumbra, creating a vicious circle. Aortic clamping induces elevated liquor production. Considering these aspects, the following recommendations are given:
a)
lowering the intraspinal pressure
 
b)
elevating the systemic perfusion pressure
 
c)
raising the maximal oxygen exhaustion
 
These recommendations can be followed by performing spinal drainage, elevating blood pressure, reducing central venous pressure and raising hemoglobin to 10 g/dl.

Spinal drainage

Spinal drainage can improve spinal ischemia [199, 224, 225]. Most guidelines recommend the immediate use of spinal drainage [6, 43, 207]. The target intraspinal pressure should be < 10 mm Hg [202]. The physiological background is that the perfusion pressure of the spinal cord is a direct function of the mean arterial pressure minus the intraspinal pressure (alternatively, the central venous pressure).
There is no consensus concerning the recommended amount of drained spinal fluid. In a comparative study [214] concerning volume-dependent (≤ 25 ml/h) and volume-independent drainage, there were no neurological differences found between the groups. In the volume-independent group, the rate of postoperative blood-tinged spinal fluid was higher.

Elevation of the systematic pressure and enhancing cardiac output

The mean arterial pressure should be approximately 80–100 mm Hg. Intraspinal pressure below 10 mm Hg indicates perfusion pressure of the spinal cord of approximately 70 mm Hg. Vasoconstrictors are advantageous in volume therapy for avoiding an elevation of the central venous pressure [202].
Importantly, in an acute aortic dissection, elevated systemic blood pressure can deteriorate the aortic dissection, which requires careful management.

Increase of the hemoglobin level ≥ 10 g/dl

The purpose is to raise the maximal oxygen exhaustion. Multiple consensus conferences and expert recommendations advocate maintaining a hemoglobin level ≥ 10 g/dl for at least 72 h postoperatively or until the removal of the spinal drainage ([77, 202, 207, 226, 227]; Fig. 10).

Rehabilitation

Basic recommendations for rehabilitation

Rehabilitation includes measures aimed at eliminating or alleviating the physical, psychological and social consequences of a disability or restricted activity. In type B aortic dissections, rehabilitation should always be considered. This rehabilitation can be performed on an inpatient or, if medically justifiable, on an outpatient basis. Cardiological or angiological rehabilitation options are primarily considered for type B aortic dissections. Rehabilitation applications should contain the indication for rehabilitation (rehabilitation needs) and the objective of the treatment (rehabilitation objectives); additionally, applications should indicate the suitability for rehabilitation (rehabilitation ability). The ability to perform rehabilitation in cardiological/angiological rehabilitation clinics is essentially only limited if self-care is physically, psychologically or cognitively impossible (e.g. Barthel index < 60) or if geriatric patients have a high degree of frailty. In the latter case, subject-specific geriatric rehabilitation should be sought.
If the need for rehabilitation, the rehabilitation goals and the ability to rehabilitate are given, and if the referring specialist clinics believe that the patients are stable and resilient with respect to the aftercare findings, then cardiological, angiological or, if necessary, geriatric rehabilitation should be performed to enable patients to participate in everyday life (social, professional and societal participation). Subsequently, rehabilitation after type B aortic dissection of the aorta can be performed independently of the previous therapeutic procedure.
In rehabilitation, there are only a few specific approaches that relate solely to type B aortic dissection. However, excerpts from guidelines are available that can more broadly describe the postinterventional or postoperative possibilities and limits of rehabilitation in connection with aortic diseases. In particular, the S3 guidelines for cardiological rehabilitation (LL-KardReha) [228] in German-speaking Europe (Germany, Austria, Switzerland [D-A-CH]) directly addresses this topic and can be applied to the procedure for a type B aortic dissection.
Currently, studies on rehabilitation for type B dissections alone are very limited. In many studies, the term “rehabilitation” is not interpreted as a multimodal treatment concept but rather solely as a training therapy. The data in these studies mainly relate to rehabilitation after aortic syndromes with interventional or surgical treatment. Therefore, recommendations for the rehabilitation of patients after dissection of the aorta must be used regardless of the localization, treatment and the anatomically functional stage classifications (Stanford A, B; DeBakey I, II, III). Study results on rehabilitation and physical training after type A dissection or other aortic diseases must also be used for type B dissection. The study results show that rehabilitation and dosed physical training can be carried out safely [229231] for patients with aortic syndromes and that a benefit can be achieved in terms of physical performance and quality of life. In the case of uncomplicated type B aortic dissections, careful training and mobilization measures immediately after the acute event can also be effective [94, 232].
However, the functional limitations resulting from the dissections can vary widely. Therefore, attention must be paid not only to purely organic limitations but also to the frequently observed psychosocial effects of the disease [233].
In the context of rehabilitation after type B dissections, the focus should, therefore, be on the patients’ health-related quality of life. The determination of psychological consequences of illnesses such as anxiety, adjustment disorders, depression and post-traumatic stress disorder (PTSD); and the provision of general patient training for avoiding risky behavior by the medical and psychological service of the rehabilitation facility should be part of every rehabilitation effort.

Drug setting during rehabilitation

The most important medical aspect during rehabilitation for type B dissections is strict blood pressure control at rest and under stress. In subacute (15–90 days) and chronic (> 90 days) dissections, resting blood pressure should always be < 140/90 mm Hg; ideally, blood pressure should be < 130/80 mm Hg [43].
Treatment should primarily include beta-blockers as they reduce aneurysmal degeneration of the dissected aorta and the need for surgical procedures [43, 234]. Calcium antagonists have demonstrated improved survival rates in patients with type B dissections [88]. Both angiotensin‑1 receptor antagonists (losartan) and general blockades of the renin-angiotensin-aldosterone system (RAAS) have been shown to slow aortic dilation [235, 236] and the rate of events after surgery [237] in patients with Marfan syndrome. Accordingly, a beta-blocker should be selected as basic treatment in combination with a calcium antagonist; additionally, a further combination with an angiotensin‑1 receptor antagonist is beneficial for drug-based blood pressure control in the context of rehabilitation for type B dissections. Treatment-resistant arterial hypertension is not uncommon after an aortic dissection. Therefore, extended antihypertensive treatment regimens should be used [238].

Training intensity during rehabilitation

Physical performance is often limited in patients with type B dissections, regardless of the therapy administered at the start of rehabilitation [229]. The feasibility of stress tests, e.g. a stress ECG or spiroergometry, was investigated in two smaller studies in patients with type B dissections [229, 239]. Complications arising directly from the examination were not reported in the studies. The data suggest that stress tests can safely be carried out to control training or in the follow-up care. Additionally, the reduced physical ability of patients with type B dissections was confirmed.
If such stress tests are performed to control training, the blood pressure behavior should also be taken into account in addition to recognizing stress-related complaints (e.g. chest complaints, dyspnea, arrhythmias, etc.). During aerobic exercise, there is usually only a moderate increase in systolic blood pressure from 140 to 160 mm Hg. Values of > 180 mm Hg are more likely to be reached at submaximal or maximal exertion. Exercise tests should be stopped when the patients’ systolic blood pressure reaches 160 mm Hg.
However, such stress tests should only be performed after a detailed risk stratification that uses imaging methods and after consultation with the referring center.
The aim of the stress test is to introduce these patients to moderate endurance exercise with strict blood pressure monitoring. The recommendations for the stress test include limiting intensity to 3–5 MET (metabolic equivalent) or 12–13/20 on the Borg scale, RPE (e.g. brisk walking, cycling at about 15 km/h). This intensity of exertion, which is perceived as “somewhat strenuous,” is considered safe [240244] and also leads to a permanent reduction in blood pressure and heart rate.
The metabolic equivalent (MET) can be used to compare different activities in terms of energy consumption. The MET corresponds to the conversion of 3.5 ml oxygen per kg body weight per minute in men: in women, the MET is 3.15 ml oxygen/kg/min. For ease of use, the MET of energy consumption can be derived from previously defined tables [240, 245].
The Borg scale is used to estimate the subjective perception of stress. The RPE received perception of exertion (RPE) value assigned to each exercise enables patients to assess how stressful the training may be perceived individually [246].
Competitive contact sports and isometric exertion with forced breathing should be avoided because they cause increased wall stress due to sudden and steep rises in blood pressure.
For type B dissections that are treated surgically, attention should be paid to incisional hernias and exercises with increased thoracoabdominal tension; additionally, mechanical stress should be avoided.

Sociomedical assessment and professional reintegration

Minimal data have been found on the topic of professional reintegration regarding type B dissections [229, 247]. In the context of rehabilitation, the aim should be to professionally reintegrate patients that have jobs. This becomes difficult when vigorous physical activities (> 6 MET) have to be performed on a daily basis [248]. Additionally, particular attention must be paid to static holding work, heavy lifting and strenuous movements with consecutive increases in blood pressure. Psychosocial stress or concomitant illnesses can make sociomedical assessment even more difficult. On the other hand, physical activities with light to occasionally moderate work components can often be reintroduced. Therefore, with each rehabilitation effort, measures for professional reintegration should be defined and, if necessary, implemented (e.g. internal solutions, benefits for participation in working life [249]) in collaboration with the social service of the rehabilitation facility.

Older and geriatric patients with type B aortic dissection

The ability to cope with disease stressors decreases with age. However, this decrease not only applies to the respective disease itself; acute physical as well as psychological stressors can also lead to a destabilization of supposedly uninvolved organ systems. This decrease is a constant of the normal aging process both in “healthy” old people > 80 years of age and especially in people with a constellation of findings that is referred to as a “geriatric symptom complex” (immobility, tendency to fall, cognitive and affective deficits, malnutrition, vision and hearing loss, medication problems, etc.) [250]. The frailty syndrome presents pathologically reduced general muscle strength (sarcopenia) accompanied by weight loss and exhaustion.
The patient group of geriatric patients with type B aortic dissections poses a challenge towards determining indications and performing complex vascular procedures. One North American registry study showed that the degree of frailty correlates with the mortality of all common vascular surgical procedures [251] especially in open and endovascular aortic procedures [252]. Validated frailty indices can be used as prognostic parameters and are of great importance for therapeutic decisions and rehabilitation [253].
Typical geriatric-associated clinical problems already typically occur during acute treatment (e.g. delirium in up to 40% of patients with vascular interventions) [254]. It is therefore helpful and desirable to integrate locally available geriatric competence early in the peri-interventional/perioperative stage.
Essentially, a prolonged convalescence phase is to be expected due to acute medical complications as well as problems in regaining independence. As soon as acute vascular medical care after type B aortic dissections can be concluded, geriatric early rehabilitation provides patients with the necessary geriatric treatment team (physiotherapy, ergotherapy and, if necessary, speech therapy and psychological services). Institutions of geriatric early rehabilitation are specialist hospitals or specialist departments for geriatrics with a given rehabilitative geriatric structural quality. This measure leads to a reduction in mortality, an improvement in functional outcomes and a reduction in nursing home admissions [255].

Summary

The 2020 S3 guidelines on cardiological rehabilitation in German-speaking countries [228] summarize the recommended procedures for aortic syndromes and for all interventions in the aorta, including type B dissections. With respect to the recommendations made, consultations on these aspects helped to supplement and summarize previous guidelines; these additions are presented in the following Fig. 11.

Psyche

General comments and data regarding psychological reactions after aortic dissection

There are very few studies and publications that specifically address the association of type B aortic dissections with psychological reactions or illnesses. Therefore, consultation is required for studies on type A dissections on other cardiovascular diseases in connection with psychocardiology. These usually deal with the question of whether and how mental illnesses can be a risk factor for an acute cardiovascular event and how, conversely, cardiovascular events result in mental reactions or even illnesses. Previous research has made it apparent that an acute event such as a type B aortic dissection has psychological consequences that may limit quality of life more than physical illnesses or physical conditions [233, 243, 256]. Acute events such as type B aortic dissections may even lead to the occurrence of post-traumatic stress disorder (PTSD), for which patients require trauma-specific psychotherapy. There is an urgent need for research on the risk of PTSD after type A and type B aortic dissections [257259]. Research has also identified that psychologically stressful situations and sleep disorders can act as triggering factors for aortic dissections [92, 260]. It is, therefore, important to include these psychosocial aspects in the treatment of aortic diseases and, if necessary, address these aspects therapeutically.
Adherence to taking the antihypertensive medication required for preventing recurrence in type B aortic dissections is also an important factor in connection with psychological comorbidity (e.g. depression) [261].

Screening for psychological comorbidity after type B aortic dissection

The following conditions are the most common comorbidities of general cardiovascular events:
  • depression
  • anxiety disorder
  • post-traumatic stress disorder (PTSD)
These potential comorbidities can be determined by asking patients specific questions in a medical consultation or by using screening instruments (Table 10).
Table 10
Questions and instruments for the diagnosis of mental disorders/comorbidities after a type B aortic dissection and/or other cardiovascular events (taken from [262])
Comorbidity
Screening questions for medical history
Standardized questionnaires
Depression
During the past month, have you often felt sad, depressed or hopeless?
In the last month, have you had significantly less desire and pleasure in things that you usually enjoy doing?
Depression subscale of the Hospital Anxiety and Depression Scale (HADS) [263, 264] or the Patient Health Questionnaire (PHQ-9) [265, 266]
Generalized anxiety disorder
Do you feel nervous or tense? Do you often worry about things more than other people? Do you feel like you are constantly worried and not in control?
Hospital Anxiety and Depression Scale (HADS) [263, 264] anxiety subscale or PHQ Generalized Anxiety Disorder 7 (GAD-7) module [267, 268]
Post-traumatic stress disorder
Do you suffer from intrusive, stressful thoughts and memories of a serious event (images, nightmares, flashbacks)? (The event may also be a cardiac event or its treatment)
Impact of Event-Scale – revised (IES-R) [269]
If the screening through anamnesis or standardized questionnaires suggests a suspicion of psychological or psychosomatic comorbidities, therapeutic consequences or referrals to other specialist groups (psychosomatics, psychiatry, psychotherapy) for further diagnostics and, if necessary, (psycho)therapy are required.

General recommendations for psychological comorbidities associated with a type B aortic dissection

The following recommendations for psychological comorbidities are presented from the perspective of general psychocardiology and represent expert opinions and good clinical practice. The recommendations are based on systematic research for the National Care Guideline (NVL) for Heart Failure and Chronic CHD, [262, 270] a position paper on the importance of psychosocial factors in cardiology [256] and the S‑3 guidelines on cardiological rehabilitation ([228]; Fig. 12).

Unmet needs

Evidence is increasing in the area of type B aortic dissection. Nevertheless, there are no randomized studies to make level Ia recommendations. A problem is certainly the low incidence and the small number of cases in the individual centers and the great heterogeneity of the disease and the morphological characteristics. However, some points were considered necessary by the guideline group to generate evidence in the coming years. These are in the first line:
  • What influence does early mobilization have on the aortic outcome and how great is the associated morbidity?
  • Which risk group benefits from early endovascular treatment in acute, uncomplicated aortic dissection in terms of reducing late aortic events? How can this cohort be defined in more detail?
  • What influence does IVUS have on the sizing and assessment of the true and false lumen in acute complicated aortic dissection?

Declarations

For this article no studies with human participants or animals were performed by any of the authors. All studies mentioned were in accordance with the ethical standards indicated in each case.
The supplement containing this article is not sponsored by industry.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.
insite
INHALT
download
DOWNLOAD
print
DRUCKEN

Unsere Produktempfehlungen

Die Chirurgie

Print-Titel

Das Abo mit mehr Tiefe

Mit der Zeitschrift Die Chirurgie erhalten Sie zusätzlich Online-Zugriff auf weitere 43 chirurgische Fachzeitschriften, CME-Fortbildungen, Webinare, Vorbereitungskursen zur Facharztprüfung und die digitale Enzyklopädie e.Medpedia.

Bis 30. April 2024 bestellen und im ersten Jahr nur 199 € zahlen!

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

Gefässchirurgie

Print-Titel

Themenschwerpunkte zu aktuellen Entwicklungen in der vaskulären und endovaskulären Gefäßmedizin. Vermittlung von relevantem Hintergrundwissen und Bewertung wissenschaftlicher Ergebnisse. Konkrete Handlungsempfehlungen.

Literatur
2.
Zurück zum Zitat Nienaber CA, Clough RE, Sakalihasan N, Suzuki T, Gibbs R, Mussa F et al (2016) Aortic dissection. Nat Rev Dis Primers 2:16053PubMedCrossRef Nienaber CA, Clough RE, Sakalihasan N, Suzuki T, Gibbs R, Mussa F et al (2016) Aortic dissection. Nat Rev Dis Primers 2:16053PubMedCrossRef
3.
Zurück zum Zitat von Kodolitsch Y, Csosz SK, Koschyk DH, Schalwat I, Loose R, Karck M et al (2003) Intramural hematoma of the aorta: predictors of progression to dissection and rupture. Circulation 107(8):1158–1163CrossRef von Kodolitsch Y, Csosz SK, Koschyk DH, Schalwat I, Loose R, Karck M et al (2003) Intramural hematoma of the aorta: predictors of progression to dissection and rupture. Circulation 107(8):1158–1163CrossRef
4.
Zurück zum Zitat Debakey ME, Henly WS, Cooley DA, Morris GC Jr., Crawford ES, Beall AC Jr. (1965) Surgical management of dissecting aneurysms of the aorta. J Thorac Cardiovasc Surg 49:130–149PubMedCrossRef Debakey ME, Henly WS, Cooley DA, Morris GC Jr., Crawford ES, Beall AC Jr. (1965) Surgical management of dissecting aneurysms of the aorta. J Thorac Cardiovasc Surg 49:130–149PubMedCrossRef
5.
Zurück zum Zitat Daily PO, Trueblood HW, Stinson EB, Wuerflein RD, Shumway NE (1970) Management of acute aortic dissections. Ann Thorac Surg 10(3):237–247PubMedCrossRef Daily PO, Trueblood HW, Stinson EB, Wuerflein RD, Shumway NE (1970) Management of acute aortic dissections. Ann Thorac Surg 10(3):237–247PubMedCrossRef
6.
Zurück zum Zitat Hiratzka LF, Bakris GL, Beckman JA, Bersin RM, Carr VF, Casey DE Jr. et al (2010) 2010 ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM guidelines for the diagnosis and management of patients with thoracic aortic disease: a report of the American college of cardiology foundation/American heart association task force on practice guidelines, American association for thoracic surgery, American college of radiology, American stroke association, society of cardiovascular anesthesiologists, society for cardiovascular angiography and interventions, society of interventional radiology, society of thoracic surgeons, and society for vascular medicine. Circulation 121(13):e266–e369PubMed Hiratzka LF, Bakris GL, Beckman JA, Bersin RM, Carr VF, Casey DE Jr. et al (2010) 2010 ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM guidelines for the diagnosis and management of patients with thoracic aortic disease: a report of the American college of cardiology foundation/American heart association task force on practice guidelines, American association for thoracic surgery, American college of radiology, American stroke association, society of cardiovascular anesthesiologists, society for cardiovascular angiography and interventions, society of interventional radiology, society of thoracic surgeons, and society for vascular medicine. Circulation 121(13):e266–e369PubMed
7.
Zurück zum Zitat Fattori R, Cao P, De Rango P, Czerny M, Evangelista A, Nienaber C et al (2013) Interdisciplinary expert consensus document on management of type B aortic dissection. J Am Coll Cardiol 61(16):1661–1678PubMedCrossRef Fattori R, Cao P, De Rango P, Czerny M, Evangelista A, Nienaber C et al (2013) Interdisciplinary expert consensus document on management of type B aortic dissection. J Am Coll Cardiol 61(16):1661–1678PubMedCrossRef
8.
Zurück zum Zitat Lombardi JV, Hughes GC, Appoo JJ, Bavaria JE, Beck AW, Cambria RP et al (2020) Society for vascular surgery (SVS) and society of thoracic surgeons (STS) reporting standards for type B aortic dissections. J Vasc Surg 71(3):723–747PubMedCrossRef Lombardi JV, Hughes GC, Appoo JJ, Bavaria JE, Beck AW, Cambria RP et al (2020) Society for vascular surgery (SVS) and society of thoracic surgeons (STS) reporting standards for type B aortic dissections. J Vasc Surg 71(3):723–747PubMedCrossRef
9.
Zurück zum Zitat Dake MD, Thompson M, van Sambeek M, Vermassen F, Morales JP, Investigators D (2013) DISSECT: a new mnemonic-based approach to the categorization of aortic dissection. Eur J Vasc Endovasc Surg 46(2):175–190PubMedCrossRef Dake MD, Thompson M, van Sambeek M, Vermassen F, Morales JP, Investigators D (2013) DISSECT: a new mnemonic-based approach to the categorization of aortic dissection. Eur J Vasc Endovasc Surg 46(2):175–190PubMedCrossRef
10.
Zurück zum Zitat Sievers HH, Rylski B, Czerny M, Baier ALM, Kreibich M, Siepe M et al (2020) Aortic dissection reconsidered: type, entry site, malperfusion classification adding clarity and enabling outcome prediction. Interact Cardiovasc Thorac Surg 30(3):451–457PubMedCrossRef Sievers HH, Rylski B, Czerny M, Baier ALM, Kreibich M, Siepe M et al (2020) Aortic dissection reconsidered: type, entry site, malperfusion classification adding clarity and enabling outcome prediction. Interact Cardiovasc Thorac Surg 30(3):451–457PubMedCrossRef
11.
12.
Zurück zum Zitat Olsson C, Thelin S, Stahle E, Ekbom A, Granath F (2006) Thoracic aortic aneurysm and dissection: increasing prevalence and improved outcomes reported in a nationwide population-based study of more than 14,000 cases from 1987 to 2002. Circulation 114(24):2611–2618PubMedCrossRef Olsson C, Thelin S, Stahle E, Ekbom A, Granath F (2006) Thoracic aortic aneurysm and dissection: increasing prevalence and improved outcomes reported in a nationwide population-based study of more than 14,000 cases from 1987 to 2002. Circulation 114(24):2611–2618PubMedCrossRef
13.
Zurück zum Zitat Howard DP, Banerjee A, Fairhead JF, Perkins J, Silver LE, Rothwell PM et al (2013) Population-based study of incidence and outcome of acute aortic dissection and premorbid risk factor control: 10-year results from the Oxford vascular study. Circulation 127(20):2031–2037PubMedPubMedCentralCrossRef Howard DP, Banerjee A, Fairhead JF, Perkins J, Silver LE, Rothwell PM et al (2013) Population-based study of incidence and outcome of acute aortic dissection and premorbid risk factor control: 10-year results from the Oxford vascular study. Circulation 127(20):2031–2037PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Landenhed M, Engstrom G, Gottsater A, Caulfield MP, Hedblad B, Newton-Cheh C et al (2015) Risk profiles for aortic dissection and ruptured or surgically treated aneurysms: a prospective cohort study. J Am Heart Assoc 4(1):e1513PubMedPubMedCentralCrossRef Landenhed M, Engstrom G, Gottsater A, Caulfield MP, Hedblad B, Newton-Cheh C et al (2015) Risk profiles for aortic dissection and ruptured or surgically treated aneurysms: a prospective cohort study. J Am Heart Assoc 4(1):e1513PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Smedberg C, Steuer J, Leander K, Hultgren R (2020) Sex differences and temporal trends in aortic dissection: a population-based study of incidence, treatment strategies, and outcome in Swedish patients during 15 years. Eur Heart J 41(26):2430–2438PubMedPubMedCentralCrossRef Smedberg C, Steuer J, Leander K, Hultgren R (2020) Sex differences and temporal trends in aortic dissection: a population-based study of incidence, treatment strategies, and outcome in Swedish patients during 15 years. Eur Heart J 41(26):2430–2438PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat McClure RS, Brogly SB, Lajkosz K, Payne D, Hall SF, Johnson AP (2018) Epidemiology and management of thoracic aortic dissections and thoracic aortic aneurysms in Ontario, Canada: a population-based study. J Thorac Cardiovasc Surg 155(6):2254–2264e4PubMedCrossRef McClure RS, Brogly SB, Lajkosz K, Payne D, Hall SF, Johnson AP (2018) Epidemiology and management of thoracic aortic dissections and thoracic aortic aneurysms in Ontario, Canada: a population-based study. J Thorac Cardiovasc Surg 155(6):2254–2264e4PubMedCrossRef
17.
Zurück zum Zitat Evangelista A, Isselbacher EM, Bossone E, Gleason TG, Eusanio MD, Sechtem U et al (2018) Insights from the international registry of acute aortic dissection: a 20-year experience of collaborative clinical research. Circulation 137(17):1846–1860PubMedCrossRef Evangelista A, Isselbacher EM, Bossone E, Gleason TG, Eusanio MD, Sechtem U et al (2018) Insights from the international registry of acute aortic dissection: a 20-year experience of collaborative clinical research. Circulation 137(17):1846–1860PubMedCrossRef
18.
Zurück zum Zitat Maitusong B, Sun HP, Xielifu D, Mahemuti M, Ma X, Liu F et al (2016) Sex-related differences between patients with symptomatic acute aortic dissection. Medicine 95(11):e3100PubMedPubMedCentralCrossRef Maitusong B, Sun HP, Xielifu D, Mahemuti M, Ma X, Liu F et al (2016) Sex-related differences between patients with symptomatic acute aortic dissection. Medicine 95(11):e3100PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Wundram M, Falk V, Eulert-Grehn JJ, Herbst H, Thurau J, Leidel BA et al (2020) Incidence of acute type A aortic dissection in emergency departments. Sci Rep 10(1):7434PubMedPubMedCentralCrossRef Wundram M, Falk V, Eulert-Grehn JJ, Herbst H, Thurau J, Leidel BA et al (2020) Incidence of acute type A aortic dissection in emergency departments. Sci Rep 10(1):7434PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Pal D, Szilagyi B, Berczeli M, Szalay CI, Sardy B, Olah Z et al (2020) Ruptured aortic aneurysm and dissection related death: an autopsy database analysis. Pathol Oncol Res 26(4):2391–2399PubMedCrossRef Pal D, Szilagyi B, Berczeli M, Szalay CI, Sardy B, Olah Z et al (2020) Ruptured aortic aneurysm and dissection related death: an autopsy database analysis. Pathol Oncol Res 26(4):2391–2399PubMedCrossRef
21.
Zurück zum Zitat Januzzi JL, Marayati F, Mehta RH, Cooper JV, O’Gara PT, Sechtem U et al (2004) Comparison of aortic dissection in patients with and without Marfan’s syndrome (results from the international registry of aortic dissection). Am J Cardiol 94(3):400–402PubMedCrossRef Januzzi JL, Marayati F, Mehta RH, Cooper JV, O’Gara PT, Sechtem U et al (2004) Comparison of aortic dissection in patients with and without Marfan’s syndrome (results from the international registry of aortic dissection). Am J Cardiol 94(3):400–402PubMedCrossRef
22.
Zurück zum Zitat Odofin X, Houbby N, Hagana A, Nasser I, Ahmed A, Harky A (2021) Thoracic aortic aneurysms in patients with heritable connective tissue disease. J Card Surg 36(3):1083–1090PubMedCrossRef Odofin X, Houbby N, Hagana A, Nasser I, Ahmed A, Harky A (2021) Thoracic aortic aneurysms in patients with heritable connective tissue disease. J Card Surg 36(3):1083–1090PubMedCrossRef
23.
Zurück zum Zitat Thakker PD, Braverman AC (2021) Cardiogenetics: genetic testing in the diagnosis and management of patients with aortic disease. Heart 107(8):619–626PubMedCrossRef Thakker PD, Braverman AC (2021) Cardiogenetics: genetic testing in the diagnosis and management of patients with aortic disease. Heart 107(8):619–626PubMedCrossRef
24.
Zurück zum Zitat Guo DC, Regalado ES, Gong L, Duan X, Santos-Cortez RL, Arnaud P et al (2016) LOX mutations predispose to thoracic aortic aneurysms and dissections. Circ Res 118(6):928–934PubMedPubMedCentralCrossRef Guo DC, Regalado ES, Gong L, Duan X, Santos-Cortez RL, Arnaud P et al (2016) LOX mutations predispose to thoracic aortic aneurysms and dissections. Circ Res 118(6):928–934PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Ziganshin BA, Bailey AE, Coons C, Dykas D, Charilaou P, Tanriverdi LH et al (2015) Routine genetic testing for thoracic aortic aneurysm and dissection in a clinical setting. Ann Thorac Surg 100(5):1604–1611PubMedCrossRef Ziganshin BA, Bailey AE, Coons C, Dykas D, Charilaou P, Tanriverdi LH et al (2015) Routine genetic testing for thoracic aortic aneurysm and dissection in a clinical setting. Ann Thorac Surg 100(5):1604–1611PubMedCrossRef
26.
Zurück zum Zitat Watanabe M, Sawai T (1999) Alteration of cross-linking amino acids of elastin in human aorta in association with dissecting aneurysm: analysis using high performance liquid chromatography. Tohoku J Exp Med 187(4):291–303PubMedCrossRef Watanabe M, Sawai T (1999) Alteration of cross-linking amino acids of elastin in human aorta in association with dissecting aneurysm: analysis using high performance liquid chromatography. Tohoku J Exp Med 187(4):291–303PubMedCrossRef
27.
Zurück zum Zitat Wang X, LeMaire SA, Chen L, Carter SA, Shen YH, Gan Y et al (2005) Decreased expression of fibulin‑5 correlates with reduced elastin in thoracic aortic dissection. Surgery 138(2):352–359PubMedCrossRef Wang X, LeMaire SA, Chen L, Carter SA, Shen YH, Gan Y et al (2005) Decreased expression of fibulin‑5 correlates with reduced elastin in thoracic aortic dissection. Surgery 138(2):352–359PubMedCrossRef
28.
Zurück zum Zitat Nakashima Y, Shiokawa Y, Sueishi K (1990) Alterations of elastic architecture in human aortic dissecting aneurysm. Lab Invest 62(6):751–760PubMed Nakashima Y, Shiokawa Y, Sueishi K (1990) Alterations of elastic architecture in human aortic dissecting aneurysm. Lab Invest 62(6):751–760PubMed
29.
Zurück zum Zitat He R, Guo DC, Estrera AL, Safi HJ, Huynh TT, Yin Z et al (2006) Characterization of the inflammatory and apoptotic cells in the aortas of patients with ascending thoracic aortic aneurysms and dissections. J Thorac Cardiovasc Surg 131(3):671–678PubMedCrossRef He R, Guo DC, Estrera AL, Safi HJ, Huynh TT, Yin Z et al (2006) Characterization of the inflammatory and apoptotic cells in the aortas of patients with ascending thoracic aortic aneurysms and dissections. J Thorac Cardiovasc Surg 131(3):671–678PubMedCrossRef
30.
Zurück zum Zitat Neptune ER, Frischmeyer PA, Arking DE, Myers L, Bunton TE, Gayraud B et al (2003) Dysregulation of TGF-beta activation contributes to pathogenesis in Marfan syndrome. Nat Genet 33(3):407–411PubMedCrossRef Neptune ER, Frischmeyer PA, Arking DE, Myers L, Bunton TE, Gayraud B et al (2003) Dysregulation of TGF-beta activation contributes to pathogenesis in Marfan syndrome. Nat Genet 33(3):407–411PubMedCrossRef
31.
Zurück zum Zitat Habashi JP, Judge DP, Holm TM, Cohn RD, Loeys BL, Cooper TK et al (2006) Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science 312(5770):117–121PubMedPubMedCentralCrossRef Habashi JP, Judge DP, Holm TM, Cohn RD, Loeys BL, Cooper TK et al (2006) Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science 312(5770):117–121PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Franken R, den Hartog AW, de Waard V, Engele L, Radonic T, Lutter R et al (2013) Circulating transforming growth factor-beta as a prognostic biomarker in Marfan syndrome. Int J Cardiol 168(3):2441–2446PubMedCrossRef Franken R, den Hartog AW, de Waard V, Engele L, Radonic T, Lutter R et al (2013) Circulating transforming growth factor-beta as a prognostic biomarker in Marfan syndrome. Int J Cardiol 168(3):2441–2446PubMedCrossRef
33.
Zurück zum Zitat Van Laer L, Dietz H, Loeys B (2014) Loeys-Dietz syndrome. Adv Exp Med Biol 802:95–105PubMedCrossRef Van Laer L, Dietz H, Loeys B (2014) Loeys-Dietz syndrome. Adv Exp Med Biol 802:95–105PubMedCrossRef
34.
Zurück zum Zitat Son BK, Sawaki D, Tomida S, Fujita D, Aizawa K, Aoki H et al (2015) Granulocyte macrophage colony-stimulating factor is required for aortic dissection/intramural haematoma. Nat Commun 6:6994PubMedCrossRef Son BK, Sawaki D, Tomida S, Fujita D, Aizawa K, Aoki H et al (2015) Granulocyte macrophage colony-stimulating factor is required for aortic dissection/intramural haematoma. Nat Commun 6:6994PubMedCrossRef
35.
Zurück zum Zitat Anzai A, Shimoda M, Endo J, Kohno T, Katsumata Y, Matsuhashi T et al (2015) Adventitial CXCL1/G-CSF expression in response to acute aortic dissection triggers local neutrophil recruitment and activation leading to aortic rupture. Circ Res 116(4):612–623PubMedCrossRef Anzai A, Shimoda M, Endo J, Kohno T, Katsumata Y, Matsuhashi T et al (2015) Adventitial CXCL1/G-CSF expression in response to acute aortic dissection triggers local neutrophil recruitment and activation leading to aortic rupture. Circ Res 116(4):612–623PubMedCrossRef
36.
Zurück zum Zitat Kurihara T, Shimizu-Hirota R, Shimoda M, Adachi T, Shimizu H, Weiss SJ et al (2012) Neutrophil-derived matrix metalloproteinase 9 triggers acute aortic dissection. Circulation 126(25):3070–3080PubMedCrossRef Kurihara T, Shimizu-Hirota R, Shimoda M, Adachi T, Shimizu H, Weiss SJ et al (2012) Neutrophil-derived matrix metalloproteinase 9 triggers acute aortic dissection. Circulation 126(25):3070–3080PubMedCrossRef
37.
Zurück zum Zitat Ma WG, Chou AS, Mok SCM, Ziganshin BA, Charilaou P, Zafar MA et al (2017) Positive family history of aortic dissection dramatically increases dissection risk in family members. Int J Cardiol 240:132–137PubMedCrossRef Ma WG, Chou AS, Mok SCM, Ziganshin BA, Charilaou P, Zafar MA et al (2017) Positive family history of aortic dissection dramatically increases dissection risk in family members. Int J Cardiol 240:132–137PubMedCrossRef
38.
Zurück zum Zitat Pape LA, Awais M, Woznicki EM, Suzuki T, Trimarchi S, Evangelista A et al (2015) Presentation, diagnosis, and outcomes of acute aortic dissection: 17-year trends from the international registry of acute aortic dissection. J Am Coll Cardiol 66(4):350–358PubMedCrossRef Pape LA, Awais M, Woznicki EM, Suzuki T, Trimarchi S, Evangelista A et al (2015) Presentation, diagnosis, and outcomes of acute aortic dissection: 17-year trends from the international registry of acute aortic dissection. J Am Coll Cardiol 66(4):350–358PubMedCrossRef
39.
Zurück zum Zitat Nienaber CA, Fattori R, Mehta RH, Richartz BM, Evangelista A, Petzsch M et al (2004) Gender-related differences in acute aortic dissection. Circulation 109(24):3014–3021PubMedCrossRef Nienaber CA, Fattori R, Mehta RH, Richartz BM, Evangelista A, Petzsch M et al (2004) Gender-related differences in acute aortic dissection. Circulation 109(24):3014–3021PubMedCrossRef
40.
Zurück zum Zitat Janosi RA, Bose D, Konorza T, Eggebrecht H, Tsagakis K, Jakob H et al (2011) Malperfusion in aortic dissection: diagnostic problems and therapeutic procedures. Herz 36(6):531–538PubMedCrossRef Janosi RA, Bose D, Konorza T, Eggebrecht H, Tsagakis K, Jakob H et al (2011) Malperfusion in aortic dissection: diagnostic problems and therapeutic procedures. Herz 36(6):531–538PubMedCrossRef
41.
Zurück zum Zitat Tolenaar JL, Froehlich W, Jonker FHW, Upchurch GR, Rampoldi V, Tsai TT et al (2014) Predicting in-hospital mortality in acute type B aortic dissection: evidence from international registry of acute aortic dissection. Circulation 130(11):S45–50PubMed Tolenaar JL, Froehlich W, Jonker FHW, Upchurch GR, Rampoldi V, Tsai TT et al (2014) Predicting in-hospital mortality in acute type B aortic dissection: evidence from international registry of acute aortic dissection. Circulation 130(11):S45–50PubMed
42.
Zurück zum Zitat Esvs Guidelines Committee, Riambau V, Böckler D, Brunkwall J, Cao P, Chiesa R et al (2017) Editor’s choice—management of descending thoracic aorta diseases: clinical practice guidelines of the European society for vascular surgery (ESVS). Eur J Vasc Endovasc Surg 53(1):4–52PubMedCrossRef Esvs Guidelines Committee, Riambau V, Böckler D, Brunkwall J, Cao P, Chiesa R et al (2017) Editor’s choice—management of descending thoracic aorta diseases: clinical practice guidelines of the European society for vascular surgery (ESVS). Eur J Vasc Endovasc Surg 53(1):4–52PubMedCrossRef
43.
Zurück zum Zitat Erbel R, Aboyans V, Boileau C, Bossone E, Bartolomeo RD, Eggebrecht H et al (2014) 2014 ESC guidelines on the diagnosis and treatment of aortic diseases: document covering acute and chronic aortic diseases of the thoracic and abdominal aorta of the adult. The task force for the diagnosis and treatment of aortic diseases of the European society of cardiology (ESC). Eur Heart J 35(41):2873–2926PubMedCrossRef Erbel R, Aboyans V, Boileau C, Bossone E, Bartolomeo RD, Eggebrecht H et al (2014) 2014 ESC guidelines on the diagnosis and treatment of aortic diseases: document covering acute and chronic aortic diseases of the thoracic and abdominal aorta of the adult. The task force for the diagnosis and treatment of aortic diseases of the European society of cardiology (ESC). Eur Heart J 35(41):2873–2926PubMedCrossRef
44.
Zurück zum Zitat Rogers AM, Hermann LK, Booher AM, Nienaber CA, Williams DM, Kazerooni EA et al (2011) Sensitivity of the aortic dissection detection risk score, a novel guideline-based tool for identification of acute aortic dissection at initial presentation: results from the international registry of acute aortic dissection. Circulation 123(20):2213–2218PubMedCrossRef Rogers AM, Hermann LK, Booher AM, Nienaber CA, Williams DM, Kazerooni EA et al (2011) Sensitivity of the aortic dissection detection risk score, a novel guideline-based tool for identification of acute aortic dissection at initial presentation: results from the international registry of acute aortic dissection. Circulation 123(20):2213–2218PubMedCrossRef
45.
Zurück zum Zitat Marill KA (2008) Serum D‑dimer is a sensitive test for the detection of acute aortic dissection: a pooled meta-analysis. J Emerg Med 34(4):367–376PubMedCrossRef Marill KA (2008) Serum D‑dimer is a sensitive test for the detection of acute aortic dissection: a pooled meta-analysis. J Emerg Med 34(4):367–376PubMedCrossRef
46.
Zurück zum Zitat Cui JS, Jing ZP, Zhuang SJ, Qi SH, Li L, Zhou JW et al (2015) D‑dimer as a biomarker for acute aortic dissection: a systematic review and meta-analysis. Medicine 94(4):e471PubMedPubMedCentralCrossRef Cui JS, Jing ZP, Zhuang SJ, Qi SH, Li L, Zhou JW et al (2015) D‑dimer as a biomarker for acute aortic dissection: a systematic review and meta-analysis. Medicine 94(4):e471PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Watanabe H, Horita N, Shibata Y, Minegishi S, Ota E, Kaneko T (2016) Diagnostic test accuracy of D‑dimer for acute aortic syndrome: systematic review and meta-analysis of 22 studies with 5000 subjects. Sci Rep 6:26893PubMedPubMedCentralCrossRef Watanabe H, Horita N, Shibata Y, Minegishi S, Ota E, Kaneko T (2016) Diagnostic test accuracy of D‑dimer for acute aortic syndrome: systematic review and meta-analysis of 22 studies with 5000 subjects. Sci Rep 6:26893PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Ohle R, Kareemi HK, Wells G, Perry JJ (2018) Clinical examination for acute aortic dissection: a systematic review and meta-analysis. Acad Emerg Med 25(4):397–412PubMedCrossRef Ohle R, Kareemi HK, Wells G, Perry JJ (2018) Clinical examination for acute aortic dissection: a systematic review and meta-analysis. Acad Emerg Med 25(4):397–412PubMedCrossRef
49.
Zurück zum Zitat Nazerian P, Mueller C, Soeiro AM, Leidel BA, Salvadeo SAT, Giachino F et al (2018) Diagnostic accuracy of the aortic dissection detection risk score plus D‑dimer for acute aortic syndromes: the ADvISED prospective multicenter study. Circulation 137(3):250–258PubMedCrossRef Nazerian P, Mueller C, Soeiro AM, Leidel BA, Salvadeo SAT, Giachino F et al (2018) Diagnostic accuracy of the aortic dissection detection risk score plus D‑dimer for acute aortic syndromes: the ADvISED prospective multicenter study. Circulation 137(3):250–258PubMedCrossRef
50.
Zurück zum Zitat Ohle R, Anjum O, Bleeker H, McIsaac S (2019) What is the specificity of the aortic dissection detection risk score in a low-prevalence population? Acad Emerg Med 26(6):632–638PubMed Ohle R, Anjum O, Bleeker H, McIsaac S (2019) What is the specificity of the aortic dissection detection risk score in a low-prevalence population? Acad Emerg Med 26(6):632–638PubMed
51.
Zurück zum Zitat Bagnall NM, Faiz O, Darzi A, Athanasiou T (2013) What is the utility of preoperative frailty assessment for risk stratification in cardiac surgery? Interact CardioVasc Thorac Surg 17(2):398–402PubMedPubMedCentralCrossRef Bagnall NM, Faiz O, Darzi A, Athanasiou T (2013) What is the utility of preoperative frailty assessment for risk stratification in cardiac surgery? Interact CardioVasc Thorac Surg 17(2):398–402PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Gorla R, Erbel R, Kahlert P, Tsagakis K, Jakob H, Mahabadi AA et al (2017) Accuracy of a diagnostic strategy combining aortic dissection detection risk score and D‑dimer levels in patients with suspected acute aortic syndrome. Eur Heart J Acute Cardiovasc Care 6(5):371–378PubMedCrossRef Gorla R, Erbel R, Kahlert P, Tsagakis K, Jakob H, Mahabadi AA et al (2017) Accuracy of a diagnostic strategy combining aortic dissection detection risk score and D‑dimer levels in patients with suspected acute aortic syndrome. Eur Heart J Acute Cardiovasc Care 6(5):371–378PubMedCrossRef
53.
Zurück zum Zitat Tsutsumi Y, Tsujimoto Y, Takahashi S, Tsuchiya A, Fukuma S, Yamamoto Y et al (2020) Accuracy of aortic dissection detection risk score alone or with D‑dimer: a systematic review and meta-analysis. Eur Heart J Acute Cardiovasc Care 9(3):S32–S9PubMedCrossRef Tsutsumi Y, Tsujimoto Y, Takahashi S, Tsuchiya A, Fukuma S, Yamamoto Y et al (2020) Accuracy of aortic dissection detection risk score alone or with D‑dimer: a systematic review and meta-analysis. Eur Heart J Acute Cardiovasc Care 9(3):S32–S9PubMedCrossRef
54.
Zurück zum Zitat Morello F, Bima P, Pivetta E, Santoro M, Catini E, Casanova B et al (2021) Development and validation of a simplified probability assessment score integrated with age-adjusted d‑dimer for diagnosis of acute aortic syndromes. J Am Heart Assoc 10(3):e18425PubMedPubMedCentralCrossRef Morello F, Bima P, Pivetta E, Santoro M, Catini E, Casanova B et al (2021) Development and validation of a simplified probability assessment score integrated with age-adjusted d‑dimer for diagnosis of acute aortic syndromes. J Am Heart Assoc 10(3):e18425PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Shahian DM, O’Brien SM, Filardo G, Ferraris VA, Haan CK, Rich JB et al (2009) The society of thoracic surgeons 2008 cardiac surgery risk models: part 1—coronary artery bypass grafting surgery. Ann Thorac Surg 88(1):S2–22PubMedCrossRef Shahian DM, O’Brien SM, Filardo G, Ferraris VA, Haan CK, Rich JB et al (2009) The society of thoracic surgeons 2008 cardiac surgery risk models: part 1—coronary artery bypass grafting surgery. Ann Thorac Surg 88(1):S2–22PubMedCrossRef
56.
Zurück zum Zitat Nashef SA, Roques F, Sharples LD, Nilsson J, Smith C, Goldstone AR et al (2012) EuroSCORE II. Eur J Cardiothorac Surg 41(4):734–744 (discussion 44–5)PubMedCrossRef Nashef SA, Roques F, Sharples LD, Nilsson J, Smith C, Goldstone AR et al (2012) EuroSCORE II. Eur J Cardiothorac Surg 41(4):734–744 (discussion 44–5)PubMedCrossRef
57.
Zurück zum Zitat Janosi RA, Rassaf T (2020) Improving risk prediction in patients undergoing TEVAR for type B aortic dissection. Int J Cardiol 303:74–75PubMedCrossRef Janosi RA, Rassaf T (2020) Improving risk prediction in patients undergoing TEVAR for type B aortic dissection. Int J Cardiol 303:74–75PubMedCrossRef
58.
Zurück zum Zitat Sepehri A, Beggs T, Hassan A, Rigatto C, Shaw-Daigle C, Tangri N et al (2014) The impact of frailty on outcomes after cardiac surgery: a systematic review. J Thorac Cardiovasc Surg 148(6):3110–3117PubMedCrossRef Sepehri A, Beggs T, Hassan A, Rigatto C, Shaw-Daigle C, Tangri N et al (2014) The impact of frailty on outcomes after cardiac surgery: a systematic review. J Thorac Cardiovasc Surg 148(6):3110–3117PubMedCrossRef
59.
Zurück zum Zitat Ganapathi AM, Englum BR, Hanna JM, Schechter MA, Gaca JG, Hurwitz LM et al (2014) Frailty and risk in proximal aortic surgery. J Thorac Cardiovasc Surg 147(1):186–91.e1PubMedCrossRef Ganapathi AM, Englum BR, Hanna JM, Schechter MA, Gaca JG, Hurwitz LM et al (2014) Frailty and risk in proximal aortic surgery. J Thorac Cardiovasc Surg 147(1):186–91.e1PubMedCrossRef
60.
Zurück zum Zitat Lytwyn J, Stammers AN, Kehler DS, Jung P, Alexander B, Hiebert BM et al (2017) The impact of frailty on functional survival in patients 1 year after cardiac surgery. J Thorac Cardiovasc Surg 154(6):1990–1999PubMedCrossRef Lytwyn J, Stammers AN, Kehler DS, Jung P, Alexander B, Hiebert BM et al (2017) The impact of frailty on functional survival in patients 1 year after cardiac surgery. J Thorac Cardiovasc Surg 154(6):1990–1999PubMedCrossRef
61.
Zurück zum Zitat Kim JB, Choo SJ, Kim WK, Kim HJ, Jung SH, Chung CH et al (2014) Outcomes of acute retrograde type A aortic dissection with an entry tear in descending aorta. Circulation 130(11):S39–44PubMed Kim JB, Choo SJ, Kim WK, Kim HJ, Jung SH, Chung CH et al (2014) Outcomes of acute retrograde type A aortic dissection with an entry tear in descending aorta. Circulation 130(11):S39–44PubMed
62.
Zurück zum Zitat Mahmoud KD, Sanon S, Habermann EB, Lennon RJ, Thomsen KM, Wood DL et al (2016) Perioperative cardiovascular risk of prior coronary stent implantation among patients undergoing noncardiac surgery. J Am Coll Cardiol 67(9):1038–1049PubMedCrossRef Mahmoud KD, Sanon S, Habermann EB, Lennon RJ, Thomsen KM, Wood DL et al (2016) Perioperative cardiovascular risk of prior coronary stent implantation among patients undergoing noncardiac surgery. J Am Coll Cardiol 67(9):1038–1049PubMedCrossRef
63.
Zurück zum Zitat van Diepen S, Bakal JA, McAlister FA, Ezekowitz JA (2011) Mortality and readmission of patients with heart failure, atrial fibrillation, or coronary artery disease undergoing noncardiac surgery: an analysis of 38 047 patients. Circulation 124(3):289–296PubMedCrossRef van Diepen S, Bakal JA, McAlister FA, Ezekowitz JA (2011) Mortality and readmission of patients with heart failure, atrial fibrillation, or coronary artery disease undergoing noncardiac surgery: an analysis of 38 047 patients. Circulation 124(3):289–296PubMedCrossRef
64.
Zurück zum Zitat Samarendra P, Mangione MP (2015) Aortic stenosis and perioperative risk with noncardiac surgery. J Am Coll Cardiol 65(3):295–302PubMedCrossRef Samarendra P, Mangione MP (2015) Aortic stenosis and perioperative risk with noncardiac surgery. J Am Coll Cardiol 65(3):295–302PubMedCrossRef
65.
Zurück zum Zitat Smilowitz NR, Armanious A, Bangalore S, Ramakrishna H, Berger JS (2019) Cardiovascular outcomes of patients with pulmonary hypertension undergoing noncardiac surgery. Am J Cardiol 123(9):1532–1537PubMedPubMedCentralCrossRef Smilowitz NR, Armanious A, Bangalore S, Ramakrishna H, Berger JS (2019) Cardiovascular outcomes of patients with pulmonary hypertension undergoing noncardiac surgery. Am J Cardiol 123(9):1532–1537PubMedPubMedCentralCrossRef
66.
Zurück zum Zitat Smilowitz NR, Berger JS (2020) Perioperative cardiovascular risk assessment and management for noncardiac surgery: a review. JAMA 324(3):279–290PubMedCrossRef Smilowitz NR, Berger JS (2020) Perioperative cardiovascular risk assessment and management for noncardiac surgery: a review. JAMA 324(3):279–290PubMedCrossRef
67.
Zurück zum Zitat Shiga T, Wajima Z, Apfel CC, Inoue T, Ohe Y (2006) Diagnostic accuracy of transesophageal echocardiography, helical computed tomography, and magnetic resonance imaging for suspected thoracic aortic dissection: systematic review and meta-analysis. Arch Intern Med 166(13):1350–1356PubMedCrossRef Shiga T, Wajima Z, Apfel CC, Inoue T, Ohe Y (2006) Diagnostic accuracy of transesophageal echocardiography, helical computed tomography, and magnetic resonance imaging for suspected thoracic aortic dissection: systematic review and meta-analysis. Arch Intern Med 166(13):1350–1356PubMedCrossRef
68.
Zurück zum Zitat Expert Panels on Vascular Imaging and Interventional Radiology, Bonci G, Steigner ML, Hanley M, Braun AR et al (2017) ACR appropriateness criteria((R)) thoracic aorta Interventional planning and follow-up. J Am Coll Radiol 14(11S):S570–S83 Expert Panels on Vascular Imaging and Interventional Radiology, Bonci G, Steigner ML, Hanley M, Braun AR et al (2017) ACR appropriateness criteria((R)) thoracic aorta Interventional planning and follow-up. J Am Coll Radiol 14(11S):S570–S83
70.
Zurück zum Zitat Goldstein SA, Evangelista A, Abbara S, Arai A, Asch FM, Badano LP et al (2015) Multimodality imaging of diseases of the thoracic aorta in adults: from the American society of echocardiography and the European association of cardiovascular imaging: endorsed by the society of cardiovascular computed tomography and society for cardiovascular magnetic resonance. J Am Soc Echocardiogr 28(2):119–182PubMedCrossRef Goldstein SA, Evangelista A, Abbara S, Arai A, Asch FM, Badano LP et al (2015) Multimodality imaging of diseases of the thoracic aorta in adults: from the American society of echocardiography and the European association of cardiovascular imaging: endorsed by the society of cardiovascular computed tomography and society for cardiovascular magnetic resonance. J Am Soc Echocardiogr 28(2):119–182PubMedCrossRef
71.
Zurück zum Zitat Janosi RA, Gorla R, Rogmann K, Kahlert P, Tsagakis K, Dohle DS et al (2015) Validation of intravascular ultrasound for measurement of aortic diameters: comparison with multi-detector computed tomography. Minim Invasive Ther Allied Technol 24(5):289–295PubMedCrossRef Janosi RA, Gorla R, Rogmann K, Kahlert P, Tsagakis K, Dohle DS et al (2015) Validation of intravascular ultrasound for measurement of aortic diameters: comparison with multi-detector computed tomography. Minim Invasive Ther Allied Technol 24(5):289–295PubMedCrossRef
72.
Zurück zum Zitat Lortz J, Tsagakis K, Rammos C, Lind A, Schlosser T, Jakob H et al (2018) Hemodynamic changes lead to alterations in aortic diameters and may challenge further stent graft sizing in acute aortic syndrome. J Thorac Dis 10(6):3482–3489PubMedPubMedCentralCrossRef Lortz J, Tsagakis K, Rammos C, Lind A, Schlosser T, Jakob H et al (2018) Hemodynamic changes lead to alterations in aortic diameters and may challenge further stent graft sizing in acute aortic syndrome. J Thorac Dis 10(6):3482–3489PubMedPubMedCentralCrossRef
73.
Zurück zum Zitat Lortz J, Tsagakis K, Rammos C, Horacek M, Schlosser T, Jakob H et al (2018) Intravascular ultrasound assisted sizing in thoracic endovascular aortic repair improves aortic remodeling in Type B aortic dissection. PLoS ONE 13(4):e196180PubMedPubMedCentralCrossRef Lortz J, Tsagakis K, Rammos C, Horacek M, Schlosser T, Jakob H et al (2018) Intravascular ultrasound assisted sizing in thoracic endovascular aortic repair improves aortic remodeling in Type B aortic dissection. PLoS ONE 13(4):e196180PubMedPubMedCentralCrossRef
74.
Zurück zum Zitat Lortz J, Papathanasiou M, Rammos C, Steinmetz M, Lind A, Tsagakis K et al (2019) High intimal flap mobility assessed by intravascular ultrasound is associated with better short-term results after TEVAR in chronic aortic dissection. Sci Rep 9(1):7267PubMedPubMedCentralCrossRef Lortz J, Papathanasiou M, Rammos C, Steinmetz M, Lind A, Tsagakis K et al (2019) High intimal flap mobility assessed by intravascular ultrasound is associated with better short-term results after TEVAR in chronic aortic dissection. Sci Rep 9(1):7267PubMedPubMedCentralCrossRef
75.
Zurück zum Zitat Belkin N, Jackson BM, Foley PJ, Damrauer SM, Kalapatapu V, Golden MA et al (2020) The use of intravascular ultrasound in the treatment of type B aortic dissection with thoracic endovascular aneurysm repair is associated with improved long-term survival. J Vasc Surg 72(2):490–497PubMedCrossRef Belkin N, Jackson BM, Foley PJ, Damrauer SM, Kalapatapu V, Golden MA et al (2020) The use of intravascular ultrasound in the treatment of type B aortic dissection with thoracic endovascular aneurysm repair is associated with improved long-term survival. J Vasc Surg 72(2):490–497PubMedCrossRef
76.
Zurück zum Zitat Flors L, Leiva-Salinas C, Norton PT, Patrie JT, Hagspiel KD (2014) Imaging follow-up of endovascular repair of type B aortic dissection with dual-source, dual-energy CT and late delayed-phase scans. J Vasc Interv Radiol 25(3):435–442PubMedCrossRef Flors L, Leiva-Salinas C, Norton PT, Patrie JT, Hagspiel KD (2014) Imaging follow-up of endovascular repair of type B aortic dissection with dual-source, dual-energy CT and late delayed-phase scans. J Vasc Interv Radiol 25(3):435–442PubMedCrossRef
77.
Zurück zum Zitat Czerny M, Pacini D, Aboyans V, Al-Attar N, Eggebrecht H, Evangelista A et al (2021) Current options and recommendations for the use of thoracic endovascular aortic repair in acute and chronic thoracic aortic disease: an expert consensus document of the European society for cardiology (ESC) working group of cardiovascular surgery, the ESC working group on aorta and peripheral vascular diseases, the European association of percutaneous cardiovascular interventions (EAPCI) of the ESC and the European association for cardio-thoracic surgery (EACTS). Eur J Cardiothorac Surg 59(1):65–73PubMedCrossRef Czerny M, Pacini D, Aboyans V, Al-Attar N, Eggebrecht H, Evangelista A et al (2021) Current options and recommendations for the use of thoracic endovascular aortic repair in acute and chronic thoracic aortic disease: an expert consensus document of the European society for cardiology (ESC) working group of cardiovascular surgery, the ESC working group on aorta and peripheral vascular diseases, the European association of percutaneous cardiovascular interventions (EAPCI) of the ESC and the European association for cardio-thoracic surgery (EACTS). Eur J Cardiothorac Surg 59(1):65–73PubMedCrossRef
78.
Zurück zum Zitat Oberhuber A, Schabhasian D, Kohlschmitt R, Rottbauer W, Orend K‑H, Rasche V (2015) The bird beak configuration has no adverse effect in a magnetic resonance functional analysis of thoracic stent grafts after traumatic aortic transection. J Vasc Surg 61(2):365–373PubMedCrossRef Oberhuber A, Schabhasian D, Kohlschmitt R, Rottbauer W, Orend K‑H, Rasche V (2015) The bird beak configuration has no adverse effect in a magnetic resonance functional analysis of thoracic stent grafts after traumatic aortic transection. J Vasc Surg 61(2):365–373PubMedCrossRef
79.
Zurück zum Zitat Janosi RA, Tsagakis K, Bettin M, Kahlert P, Horacek M, Al-Rashid F et al (2015) Thoracic aortic aneurysm expansion due to late distal stent graft-induced new entry. Catheter Cardiovasc Interv 85(2):E43–E53PubMedCrossRef Janosi RA, Tsagakis K, Bettin M, Kahlert P, Horacek M, Al-Rashid F et al (2015) Thoracic aortic aneurysm expansion due to late distal stent graft-induced new entry. Catheter Cardiovasc Interv 85(2):E43–E53PubMedCrossRef
80.
Zurück zum Zitat Eggebrecht H, Thompson M, Rousseau H, Czerny M, Lonn L, Mehta RH et al (2009) Retrograde ascending aortic dissection during or after thoracic aortic stent graft placement: insight from the European registry on endovascular aortic repair complications. Circulation 120(11):S276–81PubMed Eggebrecht H, Thompson M, Rousseau H, Czerny M, Lonn L, Mehta RH et al (2009) Retrograde ascending aortic dissection during or after thoracic aortic stent graft placement: insight from the European registry on endovascular aortic repair complications. Circulation 120(11):S276–81PubMed
81.
Zurück zum Zitat Huang CY, Chen CW, Chen PL, Chen WY, Chen IM, Hsu CP et al (2016) Association between aortic remodeling and stent graft-induced new entry in extensive residual type A dissecting aortic aneurysm after hybrid arch repair. Ann Vasc Surg 31:60–69PubMedCrossRef Huang CY, Chen CW, Chen PL, Chen WY, Chen IM, Hsu CP et al (2016) Association between aortic remodeling and stent graft-induced new entry in extensive residual type A dissecting aortic aneurysm after hybrid arch repair. Ann Vasc Surg 31:60–69PubMedCrossRef
82.
Zurück zum Zitat JCS Joint Working Group (2013) Guidelines for diagnosis and treatment of aortic aneurysm and aortic dissection (JCS 2011): digest version. Circ J 77(3):789–828CrossRef JCS Joint Working Group (2013) Guidelines for diagnosis and treatment of aortic aneurysm and aortic dissection (JCS 2011): digest version. Circ J 77(3):789–828CrossRef
83.
Zurück zum Zitat Riambau V, Bockler D, Brunkwall J, Cao P, Chiesa R, Coppi G et al (2017) Editor’s choice—management of descending thoracic aorta diseases: clinical practice guidelines of the European society for vascular surgery (ESVS). Eur J Vasc Endovasc Surg 53(1):4–52PubMedCrossRef Riambau V, Bockler D, Brunkwall J, Cao P, Chiesa R, Coppi G et al (2017) Editor’s choice—management of descending thoracic aorta diseases: clinical practice guidelines of the European society for vascular surgery (ESVS). Eur J Vasc Endovasc Surg 53(1):4–52PubMedCrossRef
84.
Zurück zum Zitat Czerny M, Schmidli J, Adler S, van den Berg JC, Bertoglio L, Carrel T et al (2019) Editor’s choice—current options and recommendations for the treatment of thoracic aortic pathologies involving the aortic arch: an expert consensus document of the European association for cardio-thoracic surgery (EACTS) & the European society for vascular surgery (ESVS). Eur J Vasc Endovasc Surg 57(2):165–198PubMedCrossRef Czerny M, Schmidli J, Adler S, van den Berg JC, Bertoglio L, Carrel T et al (2019) Editor’s choice—current options and recommendations for the treatment of thoracic aortic pathologies involving the aortic arch: an expert consensus document of the European association for cardio-thoracic surgery (EACTS) & the European society for vascular surgery (ESVS). Eur J Vasc Endovasc Surg 57(2):165–198PubMedCrossRef
85.
Zurück zum Zitat Nauta FJ, Trimarchi S, Kamman AV, Moll FL, van Herwaarden JA, Patel HJ et al (2016) Update in the management of type B aortic dissection. Vasc Med 21(3):251–263PubMedCrossRef Nauta FJ, Trimarchi S, Kamman AV, Moll FL, van Herwaarden JA, Patel HJ et al (2016) Update in the management of type B aortic dissection. Vasc Med 21(3):251–263PubMedCrossRef
86.
Zurück zum Zitat Tsai TT, Nienaber CA, Eagle KA (2005) Acute aortic syndromes. Circulation 112(24):3802–3813PubMedCrossRef Tsai TT, Nienaber CA, Eagle KA (2005) Acute aortic syndromes. Circulation 112(24):3802–3813PubMedCrossRef
87.
Zurück zum Zitat Zimmerman KP, Oderich G, Pochettino A, Hanson KT, Habermann EB, Bower TC et al (2016) Improving mortality trends for hospitalization of aortic dissection in the national inpatient sample. J Vasc Surg 64(3):606–15.e1PubMedCrossRef Zimmerman KP, Oderich G, Pochettino A, Hanson KT, Habermann EB, Bower TC et al (2016) Improving mortality trends for hospitalization of aortic dissection in the national inpatient sample. J Vasc Surg 64(3):606–15.e1PubMedCrossRef
88.
Zurück zum Zitat Suzuki T, Isselbacher EM, Nienaber CA, Pyeritz RE, Eagle KA, Tsai TT et al (2012) Type-selective benefits of medications in treatment of acute aortic dissection (from the international registry of acute aortic dissection [IRAD]). Am J Cardiol 109(1):122–127PubMedCrossRef Suzuki T, Isselbacher EM, Nienaber CA, Pyeritz RE, Eagle KA, Tsai TT et al (2012) Type-selective benefits of medications in treatment of acute aortic dissection (from the international registry of acute aortic dissection [IRAD]). Am J Cardiol 109(1):122–127PubMedCrossRef
89.
Zurück zum Zitat Neal B, MacMahon S, Chapman N, Blood Pressure Lowering Treatment Trialists’ Collaboration (2000) Effects of ACE inhibitors, calcium antagonists, and other blood-pressure-lowering drugs: results of prospectively designed overviews of randomised trials. Blood pressure lowering treatment Trialists’ collaboration. Lancet 356(9246):1955–1964PubMedCrossRef Neal B, MacMahon S, Chapman N, Blood Pressure Lowering Treatment Trialists’ Collaboration (2000) Effects of ACE inhibitors, calcium antagonists, and other blood-pressure-lowering drugs: results of prospectively designed overviews of randomised trials. Blood pressure lowering treatment Trialists’ collaboration. Lancet 356(9246):1955–1964PubMedCrossRef
90.
Zurück zum Zitat Jonker FH, Trimarchi S, Rampoldi V, Patel HJ, O’Gara P, Peterson MD et al (2012) Aortic expansion after acute type B aortic dissection. Ann Thorac Surg 94(4):1223–1229PubMedCrossRef Jonker FH, Trimarchi S, Rampoldi V, Patel HJ, O’Gara P, Peterson MD et al (2012) Aortic expansion after acute type B aortic dissection. Ann Thorac Surg 94(4):1223–1229PubMedCrossRef
91.
Zurück zum Zitat van Bogerijen GH, Tolenaar JL, Rampoldi V, Moll FL, van Herwaarden JA, Jonker FH et al (2014) Predictors of aortic growth in uncomplicated type B aortic dissection. J Vasc Surg 59(4):1134–1143PubMedCrossRef van Bogerijen GH, Tolenaar JL, Rampoldi V, Moll FL, van Herwaarden JA, Jonker FH et al (2014) Predictors of aortic growth in uncomplicated type B aortic dissection. J Vasc Surg 59(4):1134–1143PubMedCrossRef
92.
Zurück zum Zitat Hatzaras IS, Bible JE, Koullias GJ, Tranquilli M, Singh M, Elefteriades JA (2007) Role of exertion or emotion as inciting events for acute aortic dissection. Am J Cardiol 100(9):1470–1472PubMedCrossRef Hatzaras IS, Bible JE, Koullias GJ, Tranquilli M, Singh M, Elefteriades JA (2007) Role of exertion or emotion as inciting events for acute aortic dissection. Am J Cardiol 100(9):1470–1472PubMedCrossRef
93.
Zurück zum Zitat Tazaki J, Morimoto T, Sakata R, Okabayashi H, Yamazaki F, Nishiwaki N et al (2014) Impact of statin therapy on patients with coronary heart disease and aortic aneurysm or dissection. J Vasc Surg 60(3):604–12.e2PubMedCrossRef Tazaki J, Morimoto T, Sakata R, Okabayashi H, Yamazaki F, Nishiwaki N et al (2014) Impact of statin therapy on patients with coronary heart disease and aortic aneurysm or dissection. J Vasc Surg 60(3):604–12.e2PubMedCrossRef
94.
Zurück zum Zitat Kato T, Motoji Y, Tamaki M, Inagaki M, Tsunekawa T, Hirakawa A et al (2020) Clinical benefits of fast-track rehabilitation program for patients with uncomplicated type B acute aortic dissection. Gen Thorac Cardiovasc Surg 68(11):1234–1239PubMedCrossRef Kato T, Motoji Y, Tamaki M, Inagaki M, Tsunekawa T, Hirakawa A et al (2020) Clinical benefits of fast-track rehabilitation program for patients with uncomplicated type B acute aortic dissection. Gen Thorac Cardiovasc Surg 68(11):1234–1239PubMedCrossRef
95.
Zurück zum Zitat Niino T, Hata M, Sezai A, Yoshitake I, Unosawa S, Shimura K et al (2009) Optimal clinical pathway for the patient with type B acute aortic dissection. Circ J 73(2):264–268PubMedCrossRef Niino T, Hata M, Sezai A, Yoshitake I, Unosawa S, Shimura K et al (2009) Optimal clinical pathway for the patient with type B acute aortic dissection. Circ J 73(2):264–268PubMedCrossRef
96.
Zurück zum Zitat Durham CA, Aranson NJ, Ergul EA, Wang LJ, Patel VI, Cambria RP et al (2015) Aneurysmal degeneration of the thoracoabdominal aorta after medical management of type B aortic dissections. J Vasc Surg 62(4):900–906PubMedCrossRef Durham CA, Aranson NJ, Ergul EA, Wang LJ, Patel VI, Cambria RP et al (2015) Aneurysmal degeneration of the thoracoabdominal aorta after medical management of type B aortic dissections. J Vasc Surg 62(4):900–906PubMedCrossRef
97.
Zurück zum Zitat Moulakakis KG, Mylonas SN, Dalainas I, Kakisis J, Kotsis T, Liapis CD (2014) Management of complicated and uncomplicated acute type B dissection. A systematic review and meta-analysis. Ann Cardiothorac Surg 3(3):234–246PubMedPubMedCentral Moulakakis KG, Mylonas SN, Dalainas I, Kakisis J, Kotsis T, Liapis CD (2014) Management of complicated and uncomplicated acute type B dissection. A systematic review and meta-analysis. Ann Cardiothorac Surg 3(3):234–246PubMedPubMedCentral
99.
Zurück zum Zitat Carino D, Singh M, Molardi A, Agostinelli A, Goldoni M, Pacini D et al (2019) Non‑A non‑B aortic dissection: a systematic review and meta-analysis. Eur J Cardiothorac Surg 55(4):653–659PubMedCrossRef Carino D, Singh M, Molardi A, Agostinelli A, Goldoni M, Pacini D et al (2019) Non‑A non‑B aortic dissection: a systematic review and meta-analysis. Eur J Cardiothorac Surg 55(4):653–659PubMedCrossRef
100.
Zurück zum Zitat Brunkwall J, Kasprzak P, Verhoeven E, Heijmen R, Taylor P, Trialists A et al (2014) Endovascular repair of acute uncomplicated aortic type B dissection promotes aortic remodelling: 1 year results of the ADSORB trial. Eur J Vasc Endovasc Surg 48(3):285–291PubMedCrossRef Brunkwall J, Kasprzak P, Verhoeven E, Heijmen R, Taylor P, Trialists A et al (2014) Endovascular repair of acute uncomplicated aortic type B dissection promotes aortic remodelling: 1 year results of the ADSORB trial. Eur J Vasc Endovasc Surg 48(3):285–291PubMedCrossRef
102.
Zurück zum Zitat Gao HQ, Xu SD, Ren CW, Yang S, Liu CL, Zhen J et al (2019) Analysis of perioperative outcome and long-term survival rate of thoracic endovascular aortic repair in uncomplicated type B dissection: single-centre experience with 751 patients. Eur J Cardiothorac Surg 56(6):1090–1096PubMedCrossRef Gao HQ, Xu SD, Ren CW, Yang S, Liu CL, Zhen J et al (2019) Analysis of perioperative outcome and long-term survival rate of thoracic endovascular aortic repair in uncomplicated type B dissection: single-centre experience with 751 patients. Eur J Cardiothorac Surg 56(6):1090–1096PubMedCrossRef
103.
Zurück zum Zitat Wang GJ, Cambria RP, Lombardi JV, Azizzadeh A, White RA, Abel DB et al (2019) Thirty-day outcomes from the society for vascular surgery vascular quality initiative thoracic endovascular aortic repair for type B dissection project. J Vasc Surg 69(3):680–691PubMedCrossRef Wang GJ, Cambria RP, Lombardi JV, Azizzadeh A, White RA, Abel DB et al (2019) Thirty-day outcomes from the society for vascular surgery vascular quality initiative thoracic endovascular aortic repair for type B dissection project. J Vasc Surg 69(3):680–691PubMedCrossRef
104.
Zurück zum Zitat Qin YL, Wang F, Li TX, Ding W, Deng G, Xie B et al (2016) Endovascular repair compared with medical management of patients with uncomplicated type B acute aortic dissection. J Am Coll Cardiol 67(24):2835–2842PubMedCrossRef Qin YL, Wang F, Li TX, Ding W, Deng G, Xie B et al (2016) Endovascular repair compared with medical management of patients with uncomplicated type B acute aortic dissection. J Am Coll Cardiol 67(24):2835–2842PubMedCrossRef
105.
Zurück zum Zitat Iannuzzi JC, Stapleton SM, Bababekov YJ, Chang D, Lancaster RT, Conrad MF et al (2018) Favorable impact of thoracic endovascular aortic repair on survival of patients with acute uncomplicated type B aortic dissection. J Vasc Surg 68(6):1649–1655PubMedCrossRef Iannuzzi JC, Stapleton SM, Bababekov YJ, Chang D, Lancaster RT, Conrad MF et al (2018) Favorable impact of thoracic endovascular aortic repair on survival of patients with acute uncomplicated type B aortic dissection. J Vasc Surg 68(6):1649–1655PubMedCrossRef
106.
Zurück zum Zitat Xiang D, Kan X, Liang H, Xiong B, Liang B, Wang L et al (2021) Comparison of mid-term outcomes of endovascular repair and medical management in patients with acute uncomplicated type B aortic dissection. J Thorac Cardiovasc Surg 162(1):26–36.e1PubMedCrossRef Xiang D, Kan X, Liang H, Xiong B, Liang B, Wang L et al (2021) Comparison of mid-term outcomes of endovascular repair and medical management in patients with acute uncomplicated type B aortic dissection. J Thorac Cardiovasc Surg 162(1):26–36.e1PubMedCrossRef
107.
Zurück zum Zitat Nienaber CA, Rousseau H, Eggebrecht H, Kische S, Fattori R, Rehders TC et al (2009) Randomized comparison of strategies for type B aortic dissection: the INvestigation of STEnt Grafts in Aortic Dissection (INSTEAD) trial. Circulation 120(25):2519–2528PubMedCrossRef Nienaber CA, Rousseau H, Eggebrecht H, Kische S, Fattori R, Rehders TC et al (2009) Randomized comparison of strategies for type B aortic dissection: the INvestigation of STEnt Grafts in Aortic Dissection (INSTEAD) trial. Circulation 120(25):2519–2528PubMedCrossRef
108.
Zurück zum Zitat Nienaber CA, Kische S, Rousseau H, Eggebrecht H, Rehders TC, Kundt G et al (2013) Endovascular repair of type B aortic dissection: long-term results of the randomized investigation of stent grafts in aortic dissection trial. Circ Cardiovasc Interv 6(4):407–416PubMedCrossRef Nienaber CA, Kische S, Rousseau H, Eggebrecht H, Rehders TC, Kundt G et al (2013) Endovascular repair of type B aortic dissection: long-term results of the randomized investigation of stent grafts in aortic dissection trial. Circ Cardiovasc Interv 6(4):407–416PubMedCrossRef
109.
Zurück zum Zitat Hossack M, Patel S, Gambardella I, Neequaye S, Antoniou GA, Torella F (2020) Endovascular vs. medical management for uncomplicated acute and sub-acute type B aortic dissection: a meta-analysis. Eur J Vasc Endovasc Surg 59(5):794–807PubMedCrossRef Hossack M, Patel S, Gambardella I, Neequaye S, Antoniou GA, Torella F (2020) Endovascular vs. medical management for uncomplicated acute and sub-acute type B aortic dissection: a meta-analysis. Eur J Vasc Endovasc Surg 59(5):794–807PubMedCrossRef
110.
Zurück zum Zitat Cambria RP, Conrad MF (2016) Thoracic endovascular aneurysm repair for uncomplicated type B dissection. J Vasc Surg 64(6):1558–1559PubMedCrossRef Cambria RP, Conrad MF (2016) Thoracic endovascular aneurysm repair for uncomplicated type B dissection. J Vasc Surg 64(6):1558–1559PubMedCrossRef
111.
Zurück zum Zitat Spinelli D, Benedetto F, Donato R, Piffaretti G, Marrocco-Trischitta MM, Patel HJ et al (2018) Current evidence in predictors of aortic growth and events in acute type B aortic dissection. J Vasc Surg 68(6):1925–35.e8PubMedCrossRef Spinelli D, Benedetto F, Donato R, Piffaretti G, Marrocco-Trischitta MM, Patel HJ et al (2018) Current evidence in predictors of aortic growth and events in acute type B aortic dissection. J Vasc Surg 68(6):1925–35.e8PubMedCrossRef
112.
Zurück zum Zitat Kato M, Bai H, Sato K, Kawamoto S, Kaneko M, Ueda T et al (1995) Determining surgical indications for acute type B dissection based on enlargement of aortic diameter during the chronic phase. Circulation 92(9):II107–12PubMedCrossRef Kato M, Bai H, Sato K, Kawamoto S, Kaneko M, Ueda T et al (1995) Determining surgical indications for acute type B dissection based on enlargement of aortic diameter during the chronic phase. Circulation 92(9):II107–12PubMedCrossRef
113.
Zurück zum Zitat Kudo T, Mikamo A, Kurazumi H, Suzuki R, Morikage N, Hamano K (2014) Predictors of late aortic events after Stanford type B acute aortic dissection. J Thorac Cardiovasc Surg 148(1):98–104PubMedCrossRef Kudo T, Mikamo A, Kurazumi H, Suzuki R, Morikage N, Hamano K (2014) Predictors of late aortic events after Stanford type B acute aortic dissection. J Thorac Cardiovasc Surg 148(1):98–104PubMedCrossRef
114.
Zurück zum Zitat Onitsuka S, Akashi H, Tayama K, Okazaki T, Ishihara K, Hiromatsu S et al (2004) Long-term outcome and prognostic predictors of medically treated acute type B aortic dissections. Ann Thorac Surg 78(4):1268–1273PubMedCrossRef Onitsuka S, Akashi H, Tayama K, Okazaki T, Ishihara K, Hiromatsu S et al (2004) Long-term outcome and prognostic predictors of medically treated acute type B aortic dissections. Ann Thorac Surg 78(4):1268–1273PubMedCrossRef
115.
Zurück zum Zitat Van Maele M, Mufty H, Maleux G, Houthoofd S, Daenens K, Fourneau I (2021) Predictive factors of operative need in medically managed type B aortic dissections. Ann Vasc Surg 71:437–443PubMedCrossRef Van Maele M, Mufty H, Maleux G, Houthoofd S, Daenens K, Fourneau I (2021) Predictive factors of operative need in medically managed type B aortic dissections. Ann Vasc Surg 71:437–443PubMedCrossRef
116.
Zurück zum Zitat Marui A, Mochizuki T, Koyama T, Mitsui N (2007) Degree of fusiform dilatation of the proximal descending aorta in type B acute aortic dissection can predict late aortic events. J Thorac Cardiovasc Surg 134(5):1163–1170PubMedCrossRef Marui A, Mochizuki T, Koyama T, Mitsui N (2007) Degree of fusiform dilatation of the proximal descending aorta in type B acute aortic dissection can predict late aortic events. J Thorac Cardiovasc Surg 134(5):1163–1170PubMedCrossRef
117.
Zurück zum Zitat Song JM, Kim SD, Kim JH, Kim MJ, Kang DH, Seo JB et al (2007) Long-term predictors of descending aorta aneurysmal change in patients with aortic dissection. J Am Coll Cardiol 50(8):799–804PubMedCrossRef Song JM, Kim SD, Kim JH, Kim MJ, Kang DH, Seo JB et al (2007) Long-term predictors of descending aorta aneurysmal change in patients with aortic dissection. J Am Coll Cardiol 50(8):799–804PubMedCrossRef
118.
Zurück zum Zitat Tsai TT, Evangelista A, Nienaber CA, Myrmel T, Meinhardt G, Cooper JV et al (2007) Partial thrombosis of the false lumen in patients with acute type B aortic dissection. N Engl J Med 357(4):349–359PubMedCrossRef Tsai TT, Evangelista A, Nienaber CA, Myrmel T, Meinhardt G, Cooper JV et al (2007) Partial thrombosis of the false lumen in patients with acute type B aortic dissection. N Engl J Med 357(4):349–359PubMedCrossRef
119.
Zurück zum Zitat Akutsu K, Nejima J, Kiuchi K, Sasaki K, Ochi M, Tanaka K et al (2004) Effects of the patent false lumen on the long-term outcome of type B acute aortic dissection. Eur J Cardiothorac Surg 26(2):359–366PubMedCrossRef Akutsu K, Nejima J, Kiuchi K, Sasaki K, Ochi M, Tanaka K et al (2004) Effects of the patent false lumen on the long-term outcome of type B acute aortic dissection. Eur J Cardiothorac Surg 26(2):359–366PubMedCrossRef
120.
Zurück zum Zitat Chang CP, Liu JC, Liou YM, Chang SS, Chen JY (2008) The role of false lumen size in prediction of in-hospital complications after acute type B aortic dissection. J Am Coll Cardiol 52(14):1170–1176PubMedCrossRef Chang CP, Liu JC, Liou YM, Chang SS, Chen JY (2008) The role of false lumen size in prediction of in-hospital complications after acute type B aortic dissection. J Am Coll Cardiol 52(14):1170–1176PubMedCrossRef
121.
Zurück zum Zitat Delsart P, Beregi JP, Devos P, Haulon S, Midulla M, Mounier-Vehier C (2014) Thrombocytopenia: an early marker of late mortality in type B aortic dissection. Heart Vessels 29(2):220–230PubMedCrossRef Delsart P, Beregi JP, Devos P, Haulon S, Midulla M, Mounier-Vehier C (2014) Thrombocytopenia: an early marker of late mortality in type B aortic dissection. Heart Vessels 29(2):220–230PubMedCrossRef
122.
Zurück zum Zitat Grommes J, Greiner A, Bendermacher B, Erlmeier M, Frech A, Belau P et al (2014) Risk factors for mortality and failure of conservative treatment after aortic type B dissection. J Thorac Cardiovasc Surg 148(5):2155–60.e1PubMedCrossRef Grommes J, Greiner A, Bendermacher B, Erlmeier M, Frech A, Belau P et al (2014) Risk factors for mortality and failure of conservative treatment after aortic type B dissection. J Thorac Cardiovasc Surg 148(5):2155–60.e1PubMedCrossRef
123.
Zurück zum Zitat Kitada S, Akutsu K, Tamori Y, Yoshimuta T, Hashimoto H, Takeshita S (2008) Usefulness of fibrinogen/fibrin degradation product to predict poor one-year outcome of medically treated patients with acute type B aortic dissection. Am J Cardiol 101(9):1341–1344PubMedCrossRef Kitada S, Akutsu K, Tamori Y, Yoshimuta T, Hashimoto H, Takeshita S (2008) Usefulness of fibrinogen/fibrin degradation product to predict poor one-year outcome of medically treated patients with acute type B aortic dissection. Am J Cardiol 101(9):1341–1344PubMedCrossRef
124.
Zurück zum Zitat Kitamura T, Torii S, Oka N, Horai T, Itatani K, Yoshii T et al (2015) Impact of the entry site on late outcome in acute Stanford type B aortic dissectiondagger. Eur J Cardiothorac Surg 48(5):655–661 (discussion 61–2)PubMedCrossRef Kitamura T, Torii S, Oka N, Horai T, Itatani K, Yoshii T et al (2015) Impact of the entry site on late outcome in acute Stanford type B aortic dissectiondagger. Eur J Cardiothorac Surg 48(5):655–661 (discussion 61–2)PubMedCrossRef
125.
Zurück zum Zitat Kunishige H, Myojin K, Ishibashi Y, Ishii K, Kawasaki M, Oka J (2006) Predictors of surgical indications for acute type B aortic dissection based on enlargement of aortic diameter during the chronic phase. Jpn J Thorac Cardiovasc Surg 54(11):477–482PubMedCrossRef Kunishige H, Myojin K, Ishibashi Y, Ishii K, Kawasaki M, Oka J (2006) Predictors of surgical indications for acute type B aortic dissection based on enlargement of aortic diameter during the chronic phase. Jpn J Thorac Cardiovasc Surg 54(11):477–482PubMedCrossRef
126.
Zurück zum Zitat Miyahara S, Mukohara N, Fukuzumi M, Morimoto N, Murakami H, Nakagiri K et al (2011) Long-term follow-up of acute type B aortic dissection: ulcer-like projections in thrombosed false lumen play a role in late aortic events. J Thorac Cardiovasc Surg 142(2):e25–e31PubMedCrossRef Miyahara S, Mukohara N, Fukuzumi M, Morimoto N, Murakami H, Nakagiri K et al (2011) Long-term follow-up of acute type B aortic dissection: ulcer-like projections in thrombosed false lumen play a role in late aortic events. J Thorac Cardiovasc Surg 142(2):e25–e31PubMedCrossRef
127.
Zurück zum Zitat Ueki C, Sakaguchi G, Shimamoto T, Komiya T (2014) Prognostic factors in patients with uncomplicated acute type B aortic dissection. Ann Thorac Surg 97(3):767–773 (discussion 73)PubMedCrossRef Ueki C, Sakaguchi G, Shimamoto T, Komiya T (2014) Prognostic factors in patients with uncomplicated acute type B aortic dissection. Ann Thorac Surg 97(3):767–773 (discussion 73)PubMedCrossRef
128.
Zurück zum Zitat Winnerkvist A, Lockowandt U, Rasmussen E, Radegran K (2006) A prospective study of medically treated acute type B aortic dissection. Eur J Vasc Endovasc Surg 32(4):349–355PubMedCrossRef Winnerkvist A, Lockowandt U, Rasmussen E, Radegran K (2006) A prospective study of medically treated acute type B aortic dissection. Eur J Vasc Endovasc Surg 32(4):349–355PubMedCrossRef
129.
Zurück zum Zitat Sueyoshi E, Sakamoto I, Hayashi K, Yamaguchi T, Imada T (2004) Growth rate of aortic diameter in patients with type B aortic dissection during the chronic phase. Circulation 110(11):II256–61PubMed Sueyoshi E, Sakamoto I, Hayashi K, Yamaguchi T, Imada T (2004) Growth rate of aortic diameter in patients with type B aortic dissection during the chronic phase. Circulation 110(11):II256–61PubMed
130.
Zurück zum Zitat Evangelista A, Salas A, Ribera A, Ferreira-Gonzalez I, Cuellar H, Pineda V et al (2012) Long-term outcome of aortic dissection with patent false lumen: predictive role of entry tear size and location. Circulation 125(25):3133–3141PubMedCrossRef Evangelista A, Salas A, Ribera A, Ferreira-Gonzalez I, Cuellar H, Pineda V et al (2012) Long-term outcome of aortic dissection with patent false lumen: predictive role of entry tear size and location. Circulation 125(25):3133–3141PubMedCrossRef
131.
Zurück zum Zitat Tanaka A, Sakakibara M, Ishii H, Hayashida R, Jinno Y, Okumura S et al (2014) Influence of the false lumen status on clinical outcomes in patients with acute type B aortic dissection. J Vasc Surg 59(2):321–326PubMedCrossRef Tanaka A, Sakakibara M, Ishii H, Hayashida R, Jinno Y, Okumura S et al (2014) Influence of the false lumen status on clinical outcomes in patients with acute type B aortic dissection. J Vasc Surg 59(2):321–326PubMedCrossRef
132.
Zurück zum Zitat Takahashi J, Wakamatsu Y, Okude J, Kanaoka T, Sanefuji Y, Gohda T et al (2008) Maximum aortic diameter as a simple predictor of acute type B aortic dissection. Ann Thorac Cardiovasc Surg 14(5):303–310PubMed Takahashi J, Wakamatsu Y, Okude J, Kanaoka T, Sanefuji Y, Gohda T et al (2008) Maximum aortic diameter as a simple predictor of acute type B aortic dissection. Ann Thorac Cardiovasc Surg 14(5):303–310PubMed
133.
Zurück zum Zitat Loewe C, Czerny M, Sodeck GH, Ta J, Schoder M, Funovics M et al (2012) A new mechanism by which an acute type B aortic dissection is primarily complicated, becomes complicated, or remains uncomplicated. Ann Thorac Surg 93(4):1215–1222PubMedCrossRef Loewe C, Czerny M, Sodeck GH, Ta J, Schoder M, Funovics M et al (2012) A new mechanism by which an acute type B aortic dissection is primarily complicated, becomes complicated, or remains uncomplicated. Ann Thorac Surg 93(4):1215–1222PubMedCrossRef
134.
Zurück zum Zitat Weiss G, Wolner I, Folkmann S, Sodeck G, Schmidli J, Grabenwoger M et al (2012) The location of the primary entry tear in acute type B aortic dissection affects early outcome. Eur J Cardiothorac Surg 42(3):571–576PubMedCrossRef Weiss G, Wolner I, Folkmann S, Sodeck G, Schmidli J, Grabenwoger M et al (2012) The location of the primary entry tear in acute type B aortic dissection affects early outcome. Eur J Cardiothorac Surg 42(3):571–576PubMedCrossRef
135.
Zurück zum Zitat Tolenaar JL, van Keulen JW, Jonker FH, van Herwaarden JA, Verhagen HJ, Moll FL et al (2013) Morphologic predictors of aortic dilatation in type B aortic dissection. J Vasc Surg 58(5):1220–1225PubMedCrossRef Tolenaar JL, van Keulen JW, Jonker FH, van Herwaarden JA, Verhagen HJ, Moll FL et al (2013) Morphologic predictors of aortic dilatation in type B aortic dissection. J Vasc Surg 58(5):1220–1225PubMedCrossRef
136.
Zurück zum Zitat Tadros RO, Tang GHL, Barnes HJ, Mousavi I, Kovacic JC, Faries P et al (2019) Optimal treatment of uncomplicated type B aortic dissection: JACC review topic of the week. J Am Coll Cardiol 74(11):1494–1504PubMedCrossRef Tadros RO, Tang GHL, Barnes HJ, Mousavi I, Kovacic JC, Faries P et al (2019) Optimal treatment of uncomplicated type B aortic dissection: JACC review topic of the week. J Am Coll Cardiol 74(11):1494–1504PubMedCrossRef
137.
Zurück zum Zitat Lavingia KS, Larion S, Ahanchi SS, Ammar CP, Bhasin M, Mirza AK et al (2015) Volumetric analysis of the initial index computed tomography scan can predict the natural history of acute uncomplicated type B dissections. J Vasc Surg 62(4):893–899PubMedCrossRef Lavingia KS, Larion S, Ahanchi SS, Ammar CP, Bhasin M, Mirza AK et al (2015) Volumetric analysis of the initial index computed tomography scan can predict the natural history of acute uncomplicated type B dissections. J Vasc Surg 62(4):893–899PubMedCrossRef
138.
Zurück zum Zitat Ray HM, Durham CA, Ocazionez D, Charlton-Ouw KM, Estrera AL, Miller CC 3rd et al (2016) Predictors of intervention and mortality in patients with uncomplicated acute type B aortic dissection. J Vasc Surg 64(6):1560–1568PubMedCrossRef Ray HM, Durham CA, Ocazionez D, Charlton-Ouw KM, Estrera AL, Miller CC 3rd et al (2016) Predictors of intervention and mortality in patients with uncomplicated acute type B aortic dissection. J Vasc Surg 64(6):1560–1568PubMedCrossRef
141.
Zurück zum Zitat Kamman AV, Brunkwall J, Verhoeven EL, Heijmen RH, Trimarchi S, ADSORB trialists (2017) Predictors of aortic growth in uncomplicated type B aortic dissection from the acute dissection stent grafting or best medical treatment (ADSORB) database. J Vasc Surg 65(4):964–71.e3PubMedCrossRef Kamman AV, Brunkwall J, Verhoeven EL, Heijmen RH, Trimarchi S, ADSORB trialists (2017) Predictors of aortic growth in uncomplicated type B aortic dissection from the acute dissection stent grafting or best medical treatment (ADSORB) database. J Vasc Surg 65(4):964–71.e3PubMedCrossRef
142.
Zurück zum Zitat Codner JA, Lou X, Duwayri YM, Chen EP, Binongo JN, Moon R et al (2019) The distance of the primary intimal tear from the left subclavian artery predicts aortic growth in uncomplicated type B aortic dissection. J Vasc Surg 69(3):692–700PubMedCrossRef Codner JA, Lou X, Duwayri YM, Chen EP, Binongo JN, Moon R et al (2019) The distance of the primary intimal tear from the left subclavian artery predicts aortic growth in uncomplicated type B aortic dissection. J Vasc Surg 69(3):692–700PubMedCrossRef
143.
Zurück zum Zitat Matsushita A, Tabata M, Mihara W, Shimamoto T, Komiya T, Takanashi S et al (2020) Risk score system for late aortic events in patients with uncomplicated type B aortic dissection. J Thorac Cardiovasc Surg 159(6):2173–83.e1PubMedCrossRef Matsushita A, Tabata M, Mihara W, Shimamoto T, Komiya T, Takanashi S et al (2020) Risk score system for late aortic events in patients with uncomplicated type B aortic dissection. J Thorac Cardiovasc Surg 159(6):2173–83.e1PubMedCrossRef
144.
Zurück zum Zitat Sailer AM, Nelemans PJ, Hastie TJ, Chin AS, Huininga M, Chiu P et al (2017) Prognostic significance of early aortic remodeling in acute uncomplicated type B aortic dissection and intramural hematoma. J Thorac Cardiovasc Surg 154(4):1192–1200PubMedPubMedCentralCrossRef Sailer AM, Nelemans PJ, Hastie TJ, Chin AS, Huininga M, Chiu P et al (2017) Prognostic significance of early aortic remodeling in acute uncomplicated type B aortic dissection and intramural hematoma. J Thorac Cardiovasc Surg 154(4):1192–1200PubMedPubMedCentralCrossRef
146.
Zurück zum Zitat Afifi RO, Sandhu HK, Leake SS, Boutrous ML, Kumar V 3rd, Azizzadeh A et al (2015) Outcomes of patients with acute type B (deBakey III) aortic dissection: a 13-year, single-center experience. Circulation 132(8):748–754PubMedPubMedCentralCrossRef Afifi RO, Sandhu HK, Leake SS, Boutrous ML, Kumar V 3rd, Azizzadeh A et al (2015) Outcomes of patients with acute type B (deBakey III) aortic dissection: a 13-year, single-center experience. Circulation 132(8):748–754PubMedPubMedCentralCrossRef
147.
Zurück zum Zitat Ramdass M (2015) TEVAR for symptomatic Stanford B dissection: a systematic review of 30-day mortality and morbidity. Thorac Cardiovasc Surg 63(2):97–112PubMed Ramdass M (2015) TEVAR for symptomatic Stanford B dissection: a systematic review of 30-day mortality and morbidity. Thorac Cardiovasc Surg 63(2):97–112PubMed
148.
Zurück zum Zitat Gargiulo M, Bianchini Massoni C, Gallitto E, Freyrie A, Trimarchi S, Faggioli G et al (2014) Lower limb malperfusion in type B aortic dissection: a systematic review. Ann Cardiothorac Surg 3(4):351–367PubMedPubMedCentral Gargiulo M, Bianchini Massoni C, Gallitto E, Freyrie A, Trimarchi S, Faggioli G et al (2014) Lower limb malperfusion in type B aortic dissection: a systematic review. Ann Cardiothorac Surg 3(4):351–367PubMedPubMedCentral
149.
Zurück zum Zitat Bavaria JE, Brinkman WT, Hughes GC, Shah AS, Charlton-Ouw KM, Azizzadeh A et al (2022) Five-year outcomes of endovascular repair of complicated acute type B aortic dissections. J Thorac Cardiovasc Surg 163(2):539–548.e2PubMedCrossRef Bavaria JE, Brinkman WT, Hughes GC, Shah AS, Charlton-Ouw KM, Azizzadeh A et al (2022) Five-year outcomes of endovascular repair of complicated acute type B aortic dissections. J Thorac Cardiovasc Surg 163(2):539–548.e2PubMedCrossRef
150.
Zurück zum Zitat Conrad MF, Ergul EA, Patel VI, Paruchuri V, Kwolek CJ, Cambria RP (2010) Management of diseases of the descending thoracic aorta in the endovascular era: a medicare population study. Ann Surg 252(4):603–610PubMedCrossRef Conrad MF, Ergul EA, Patel VI, Paruchuri V, Kwolek CJ, Cambria RP (2010) Management of diseases of the descending thoracic aorta in the endovascular era: a medicare population study. Ann Surg 252(4):603–610PubMedCrossRef
151.
Zurück zum Zitat Chou HP, Chang HT, Chen CK, Shih CC, Sung SH, Chen TJ et al (2015) Outcome comparison between thoracic endovascular and open repair for type B aortic dissection: a population-based longitudinal study. J Chin Med Assoc 78(4):241–248PubMedCrossRef Chou HP, Chang HT, Chen CK, Shih CC, Sung SH, Chen TJ et al (2015) Outcome comparison between thoracic endovascular and open repair for type B aortic dissection: a population-based longitudinal study. J Chin Med Assoc 78(4):241–248PubMedCrossRef
152.
Zurück zum Zitat Sachs T, Pomposelli F, Hagberg R, Hamdan A, Wyers M, Giles K et al (2010) Open and endovascular repair of type B aortic dissection in the nationwide inpatient sample. J Vasc Surg 52(4):860–866 (discussion 6)PubMedCrossRef Sachs T, Pomposelli F, Hagberg R, Hamdan A, Wyers M, Giles K et al (2010) Open and endovascular repair of type B aortic dissection in the nationwide inpatient sample. J Vasc Surg 52(4):860–866 (discussion 6)PubMedCrossRef
153.
Zurück zum Zitat Luebke T, Brunkwall J (2010) Outcome of patients with open and endovascular repair in acute complicated type B aortic dissection: a systematic review and meta-analysis of case series and comparative studies. J Cardiovasc Surg 51(5):613–632 Luebke T, Brunkwall J (2010) Outcome of patients with open and endovascular repair in acute complicated type B aortic dissection: a systematic review and meta-analysis of case series and comparative studies. J Cardiovasc Surg 51(5):613–632
154.
Zurück zum Zitat Luebke T, Brunkwall J (2014) Cost-effectiveness of endovascular versus open repair of acute complicated type B aortic dissections. J Vasc Surg 59(5):1247–1255PubMedCrossRef Luebke T, Brunkwall J (2014) Cost-effectiveness of endovascular versus open repair of acute complicated type B aortic dissections. J Vasc Surg 59(5):1247–1255PubMedCrossRef
155.
Zurück zum Zitat Hogendoorn W, Hunink MG, Schlosser FJ, Moll FL, Sumpio BE, Muhs BE (2014) Endovascular vs. open repair of complicated acute type B aortic dissections. J Endovasc Ther 21(4):503–514PubMedCrossRef Hogendoorn W, Hunink MG, Schlosser FJ, Moll FL, Sumpio BE, Muhs BE (2014) Endovascular vs. open repair of complicated acute type B aortic dissections. J Endovasc Ther 21(4):503–514PubMedCrossRef
157.
Zurück zum Zitat Xue Y, Ge Y, Ge X, Miao J, Fan W, Rong D et al (2020) Association between extent of stent-graft coverage and thoracic aortic remodeling after endovascular repair of type B aortic dissection. J Endovasc Ther 27(2):211–220PubMedCrossRef Xue Y, Ge Y, Ge X, Miao J, Fan W, Rong D et al (2020) Association between extent of stent-graft coverage and thoracic aortic remodeling after endovascular repair of type B aortic dissection. J Endovasc Ther 27(2):211–220PubMedCrossRef
158.
Zurück zum Zitat Trimarchi S, Jonker FH, Muhs BE, Grassi V, Righini P, Upchurch GR et al (2010) Long-term outcomes of surgical aortic fenestration for complicated acute type B aortic dissections. J Vasc Surg 52(2):261–266PubMedCrossRef Trimarchi S, Jonker FH, Muhs BE, Grassi V, Righini P, Upchurch GR et al (2010) Long-term outcomes of surgical aortic fenestration for complicated acute type B aortic dissections. J Vasc Surg 52(2):261–266PubMedCrossRef
159.
Zurück zum Zitat Szeberin Z, Dósa E, Fehérvári M, Csobay-Novák C, Pintér N, Entz L (2015) Early and long-term outcome after open surgical suprarenal aortic fenestration in patients with complicated acute type B aortic dissection. Eur J Vasc Endovasc Surg 50(1):44–50PubMedCrossRef Szeberin Z, Dósa E, Fehérvári M, Csobay-Novák C, Pintér N, Entz L (2015) Early and long-term outcome after open surgical suprarenal aortic fenestration in patients with complicated acute type B aortic dissection. Eur J Vasc Endovasc Surg 50(1):44–50PubMedCrossRef
160.
Zurück zum Zitat Norton EL, Williams DM, Kim KM, Khaja MS, Wu X, Patel HJ et al (2020) Management of acute type B aortic dissection with malperfusion via endovascular fenestration/stenting. J Thorac Cardiovasc Surg 160(5):1151–61.e1PubMedCrossRef Norton EL, Williams DM, Kim KM, Khaja MS, Wu X, Patel HJ et al (2020) Management of acute type B aortic dissection with malperfusion via endovascular fenestration/stenting. J Thorac Cardiovasc Surg 160(5):1151–61.e1PubMedCrossRef
161.
Zurück zum Zitat Nienaber CA, Kische S, Zeller T, Rehders TC, Schneider H, Lorenzen B et al (2006) Provisional extension to induce complete attachment after stent-graft placement in type B aortic dissection: the PETTICOAT concept. J Endovasc Ther 13(6):738–746PubMedCrossRef Nienaber CA, Kische S, Zeller T, Rehders TC, Schneider H, Lorenzen B et al (2006) Provisional extension to induce complete attachment after stent-graft placement in type B aortic dissection: the PETTICOAT concept. J Endovasc Ther 13(6):738–746PubMedCrossRef
162.
Zurück zum Zitat Lombardi JV, Cambria RP, Nienaber CA, Chiesa R, Mossop P, Haulon S et al (2019) Five-year results from the study of thoracic aortic type B dissection using endoluminal repair (STABLE I) study of endovascular treatment of complicated type B aortic dissection using a composite device design. J Vasc Surg 70(4):1072–81.e2PubMedCrossRef Lombardi JV, Cambria RP, Nienaber CA, Chiesa R, Mossop P, Haulon S et al (2019) Five-year results from the study of thoracic aortic type B dissection using endoluminal repair (STABLE I) study of endovascular treatment of complicated type B aortic dissection using a composite device design. J Vasc Surg 70(4):1072–81.e2PubMedCrossRef
163.
Zurück zum Zitat Lombardi JV, Gleason TG, Panneton JM, Starnes BW, Dake MD, Haulon S et al (2020) STABLE II clinical trial on endovascular treatment of acute, complicated type B aortic dissection with a composite device design. J Vasc Surg 71(4):1077–87.e2PubMedCrossRef Lombardi JV, Gleason TG, Panneton JM, Starnes BW, Dake MD, Haulon S et al (2020) STABLE II clinical trial on endovascular treatment of acute, complicated type B aortic dissection with a composite device design. J Vasc Surg 71(4):1077–87.e2PubMedCrossRef
164.
Zurück zum Zitat Sobocinski J, Dias NV, Hongku K, Lombardi JV, Zhou Q, Saunders AT et al (2020) Thoracic endovascular aortic repair with stent grafts alone or with a composite device design in patients with acute type B aortic dissection in the setting of malperfusion. J Vasc Surg 71(2):400–7.e2PubMedCrossRef Sobocinski J, Dias NV, Hongku K, Lombardi JV, Zhou Q, Saunders AT et al (2020) Thoracic endovascular aortic repair with stent grafts alone or with a composite device design in patients with acute type B aortic dissection in the setting of malperfusion. J Vasc Surg 71(2):400–7.e2PubMedCrossRef
165.
Zurück zum Zitat Bertoglio L, Rinaldi E, Melissano G, Chiesa R (2019) The PETTICOAT concept for endovascular treatment of type B aortic dissection. J Cardiovasc Surg 60(1):91–99CrossRef Bertoglio L, Rinaldi E, Melissano G, Chiesa R (2019) The PETTICOAT concept for endovascular treatment of type B aortic dissection. J Cardiovasc Surg 60(1):91–99CrossRef
166.
Zurück zum Zitat Rong D, Ge Y, Liu J, Liu X, Guo W (2019) Combined proximal descending aortic endografting plus distal bare metal stenting (PETTICOAT technique) versus conventional proximal descending aortic stent graft repair for complicated type B aortic dissections. Cochrane Database Syst Rev 2019(10):CD13149PubMedPubMedCentral Rong D, Ge Y, Liu J, Liu X, Guo W (2019) Combined proximal descending aortic endografting plus distal bare metal stenting (PETTICOAT technique) versus conventional proximal descending aortic stent graft repair for complicated type B aortic dissections. Cochrane Database Syst Rev 2019(10):CD13149PubMedPubMedCentral
167.
Zurück zum Zitat Melissano G, Bertoglio L, Rinaldi E, Mascia D, Kahlberg A, Loschi D et al (2018) Satisfactory short-term outcomes of the STABILISE technique for type B aortic dissection. J Vasc Surg 68(4):966–975PubMedCrossRef Melissano G, Bertoglio L, Rinaldi E, Mascia D, Kahlberg A, Loschi D et al (2018) Satisfactory short-term outcomes of the STABILISE technique for type B aortic dissection. J Vasc Surg 68(4):966–975PubMedCrossRef
168.
Zurück zum Zitat Faure EM, El Batti S, Abou Rjeili M, Julia P, Alsac JM (2018) Mid-term outcomes of stent assisted balloon induced Intimal disruption and relamination in aortic dissection repair (STABILISE) in acute type B aortic dissection. Eur J Vasc Endovasc Surg 56(2):209–215PubMedCrossRef Faure EM, El Batti S, Abou Rjeili M, Julia P, Alsac JM (2018) Mid-term outcomes of stent assisted balloon induced Intimal disruption and relamination in aortic dissection repair (STABILISE) in acute type B aortic dissection. Eur J Vasc Endovasc Surg 56(2):209–215PubMedCrossRef
169.
Zurück zum Zitat Massmann A, Kunihara T, Fries P, Schneider G, Buecker A, Schäfers H‑J (2014) Uncovered stent implantation in complicated acute aortic dissection type B. J Thorac Cardiovasc Surg 148(6):3003–3011PubMedCrossRef Massmann A, Kunihara T, Fries P, Schneider G, Buecker A, Schäfers H‑J (2014) Uncovered stent implantation in complicated acute aortic dissection type B. J Thorac Cardiovasc Surg 148(6):3003–3011PubMedCrossRef
170.
Zurück zum Zitat Kreibich M, Siepe M, Berger T, Kondov S, Morlock J, Pingpoh C et al (2021) The frozen elephant trunk technique for the treatment of type B and type non‑A non‑B aortic dissection. Eur J Vasc Endovasc Surg 61(1):107–113PubMedCrossRef Kreibich M, Siepe M, Berger T, Kondov S, Morlock J, Pingpoh C et al (2021) The frozen elephant trunk technique for the treatment of type B and type non‑A non‑B aortic dissection. Eur J Vasc Endovasc Surg 61(1):107–113PubMedCrossRef
171.
Zurück zum Zitat Weiss G, Tsagakis K, Jakob H, Di Bartolomeo R, Pacini D, Barberio G et al (2015) The frozen elephant trunk technique for the treatment of complicated type B aortic dissection with involvement of the aortic arch: multicentre early experience. Eur J Cardiothorac Surg 47(1):106–114 (discussion 14)PubMedCrossRef Weiss G, Tsagakis K, Jakob H, Di Bartolomeo R, Pacini D, Barberio G et al (2015) The frozen elephant trunk technique for the treatment of complicated type B aortic dissection with involvement of the aortic arch: multicentre early experience. Eur J Cardiothorac Surg 47(1):106–114 (discussion 14)PubMedCrossRef
172.
Zurück zum Zitat Luo C, Qi R, Zhong Y, Chen S, Liu H, Guo R et al (2021) Early and long-term follow-up for chronic type B and type non‑A non‑B aortic dissection using the frozen elephant trunk technique. Front Cardiovasc Med 8:714638PubMedPubMedCentralCrossRef Luo C, Qi R, Zhong Y, Chen S, Liu H, Guo R et al (2021) Early and long-term follow-up for chronic type B and type non‑A non‑B aortic dissection using the frozen elephant trunk technique. Front Cardiovasc Med 8:714638PubMedPubMedCentralCrossRef
173.
Zurück zum Zitat Nienaber CA, Zannetti S, Barbieri B, Kische S, Schareck W, Rehders TC et al (2005) INvestigation of STEnt grafts in patients with type B Aortic Dissection: design of the INSTEAD trial—a prospective, multicenter, European randomized trial. Am Heart J 149(4):592–599PubMedCrossRef Nienaber CA, Zannetti S, Barbieri B, Kische S, Schareck W, Rehders TC et al (2005) INvestigation of STEnt grafts in patients with type B Aortic Dissection: design of the INSTEAD trial—a prospective, multicenter, European randomized trial. Am Heart J 149(4):592–599PubMedCrossRef
174.
Zurück zum Zitat Nienaber CA, Kische S, Akin I, Rousseau H, Eggebrecht H, Fattori R et al (2010) Strategies for subacute/chronic type B aortic dissection: the Investigation Of Stent Grafts in Patients with type B Aortic Dissection (INSTEAD) trial 1‑year outcome. J Thorac Cardiovasc Surg 140(6):S101–8 (discussion S42)PubMedCrossRef Nienaber CA, Kische S, Akin I, Rousseau H, Eggebrecht H, Fattori R et al (2010) Strategies for subacute/chronic type B aortic dissection: the Investigation Of Stent Grafts in Patients with type B Aortic Dissection (INSTEAD) trial 1‑year outcome. J Thorac Cardiovasc Surg 140(6):S101–8 (discussion S42)PubMedCrossRef
175.
Zurück zum Zitat Usai MV, Nugroho NT, Oberhuber A, Asciutto G (2021) Influence of TEVAR on blood pressure in subacute type B aortic dissection (TBAD) patients with refractory and non-refractory arterial hypertension. Int Angiol 40(1):60–66PubMedCrossRef Usai MV, Nugroho NT, Oberhuber A, Asciutto G (2021) Influence of TEVAR on blood pressure in subacute type B aortic dissection (TBAD) patients with refractory and non-refractory arterial hypertension. Int Angiol 40(1):60–66PubMedCrossRef
176.
Zurück zum Zitat Svensson LG, Kouchoukos NT, Miller DC, Bavaria JE, Coselli JS, Curi MA et al (2008) Expert consensus document on the treatment of descending thoracic aortic disease using endovascular stent-grafts. Ann Thorac Surg 85(1):S1–41PubMedCrossRef Svensson LG, Kouchoukos NT, Miller DC, Bavaria JE, Coselli JS, Curi MA et al (2008) Expert consensus document on the treatment of descending thoracic aortic disease using endovascular stent-grafts. Ann Thorac Surg 85(1):S1–41PubMedCrossRef
177.
Zurück zum Zitat Spanos K, Nana P, Behrendt CA, Kouvelos G, Panuccio G, Heidemann F et al (2021) Management of descending thoracic aortic diseases: similarities and differences among cardiovascular guidelines. J Endovasc Ther 28(2):323–331PubMedCrossRef Spanos K, Nana P, Behrendt CA, Kouvelos G, Panuccio G, Heidemann F et al (2021) Management of descending thoracic aortic diseases: similarities and differences among cardiovascular guidelines. J Endovasc Ther 28(2):323–331PubMedCrossRef
178.
Zurück zum Zitat Tian DH, De Silva RP, Wang T, Yan TD (2014) Open surgical repair for chronic type B aortic dissection: a systematic review. Ann Cardiothorac Surg 3(4):340–350PubMedPubMedCentral Tian DH, De Silva RP, Wang T, Yan TD (2014) Open surgical repair for chronic type B aortic dissection: a systematic review. Ann Cardiothorac Surg 3(4):340–350PubMedPubMedCentral
179.
Zurück zum Zitat Thrumurthy SG, Karthikesalingam A, Patterson BO, Holt PJ, Hinchliffe RJ, Loftus IM et al (2011) A systematic review of mid-term outcomes of thoracic endovascular repair (TEVAR) of chronic type B aortic dissection. Eur J Vasc Endovasc Surg 42(5):632–647PubMedCrossRef Thrumurthy SG, Karthikesalingam A, Patterson BO, Holt PJ, Hinchliffe RJ, Loftus IM et al (2011) A systematic review of mid-term outcomes of thoracic endovascular repair (TEVAR) of chronic type B aortic dissection. Eur J Vasc Endovasc Surg 42(5):632–647PubMedCrossRef
180.
Zurück zum Zitat Boufi M, Patterson BO, Grima MJ, Karthikesalingam A, Hudda MT, Holt PJ et al (2017) Systematic review of reintervention after thoracic endovascular repair for chronic type B dissection. Ann Thorac Surg 103(6):1992–2004PubMedCrossRef Boufi M, Patterson BO, Grima MJ, Karthikesalingam A, Hudda MT, Holt PJ et al (2017) Systematic review of reintervention after thoracic endovascular repair for chronic type B dissection. Ann Thorac Surg 103(6):1992–2004PubMedCrossRef
181.
Zurück zum Zitat Wang J, Wang T, Zhao J, Ma Y, Huang B, Yang Y et al (2021) Comparison of clinical outcomes following one versus two stage hybrid repair of thoraco-abdominal aortic aneurysms: a comprehensive meta-analysis. Eur J Vasc Endovasc Surg 61(3):396–406PubMedCrossRef Wang J, Wang T, Zhao J, Ma Y, Huang B, Yang Y et al (2021) Comparison of clinical outcomes following one versus two stage hybrid repair of thoraco-abdominal aortic aneurysms: a comprehensive meta-analysis. Eur J Vasc Endovasc Surg 61(3):396–406PubMedCrossRef
182.
Zurück zum Zitat Jain A, Flohr TF, Johnston WF, Tracci MC, Cherry KJ, Upchurch GR Jr. et al (2016) Staged hybrid repair of extensive thoracoabdominal aortic aneurysms secondary to chronic aortic dissection. J Vasc Surg 63(1):62–69PubMedCrossRef Jain A, Flohr TF, Johnston WF, Tracci MC, Cherry KJ, Upchurch GR Jr. et al (2016) Staged hybrid repair of extensive thoracoabdominal aortic aneurysms secondary to chronic aortic dissection. J Vasc Surg 63(1):62–69PubMedCrossRef
183.
Zurück zum Zitat Johnston WF, Upchurch GR Jr., Tracci MC, Cherry KJ, Ailawadi G, Kern JA (2012) Staged hybrid approach using proximal thoracic endovascular aneurysm repair and distal open repair for the treatment of extensive thoracoabdominal aortic aneurysms. J Vasc Surg 56(6):1495–1502PubMedPubMedCentralCrossRef Johnston WF, Upchurch GR Jr., Tracci MC, Cherry KJ, Ailawadi G, Kern JA (2012) Staged hybrid approach using proximal thoracic endovascular aneurysm repair and distal open repair for the treatment of extensive thoracoabdominal aortic aneurysms. J Vasc Surg 56(6):1495–1502PubMedPubMedCentralCrossRef
186.
Zurück zum Zitat Kitagawa A, Greenberg RK, Eagleton MJ, Mastracci TM, Roselli EE (2013) Fenestrated and branched endovascular aortic repair for chronic type B aortic dissection with thoracoabdominal aneurysms. J Vasc Surg 58(3):625–634PubMedCrossRef Kitagawa A, Greenberg RK, Eagleton MJ, Mastracci TM, Roselli EE (2013) Fenestrated and branched endovascular aortic repair for chronic type B aortic dissection with thoracoabdominal aneurysms. J Vasc Surg 58(3):625–634PubMedCrossRef
187.
Zurück zum Zitat Oikonomou K, Kasprzak P, Katsargyris A, Marques De Marino P, Pfister K, Verhoeven ELG (2019) Mid-term results of fenestrated/branched stent grafting to treat post-dissection thoraco-abdominal aneurysms. Eur J Vasc Endovasc Surg 57(1):102–109PubMedCrossRef Oikonomou K, Kasprzak P, Katsargyris A, Marques De Marino P, Pfister K, Verhoeven ELG (2019) Mid-term results of fenestrated/branched stent grafting to treat post-dissection thoraco-abdominal aneurysms. Eur J Vasc Endovasc Surg 57(1):102–109PubMedCrossRef
188.
Zurück zum Zitat Spanos K, Kolbel T, Rohlffs F, Heidemann F, Giannoukas AD, Debus SE et al (2019) Intentional targeted false lumen occlusion after aortic dissection: a systematic review of the literature. Ann Vasc Surg 56:317–329PubMedCrossRef Spanos K, Kolbel T, Rohlffs F, Heidemann F, Giannoukas AD, Debus SE et al (2019) Intentional targeted false lumen occlusion after aortic dissection: a systematic review of the literature. Ann Vasc Surg 56:317–329PubMedCrossRef
189.
Zurück zum Zitat Boufi M, Patterson BO, Loundou AD, Boyer L, Grima MJ, Loftus IM et al (2019) Endovascular versus open repair for chronic type B dissection treatment: a meta-analysis. Ann Thorac Surg 107(5):1559–1570PubMedCrossRef Boufi M, Patterson BO, Loundou AD, Boyer L, Grima MJ, Loftus IM et al (2019) Endovascular versus open repair for chronic type B dissection treatment: a meta-analysis. Ann Thorac Surg 107(5):1559–1570PubMedCrossRef
190.
Zurück zum Zitat Dong Z, Fu W, Wang Y, Wang C, Yan Z, Guo D et al (2010) Stent graft-induced new entry after endovascular repair for Stanford type B aortic dissection. J Vasc Surg 52(6):1450–1457PubMedCrossRef Dong Z, Fu W, Wang Y, Wang C, Yan Z, Guo D et al (2010) Stent graft-induced new entry after endovascular repair for Stanford type B aortic dissection. J Vasc Surg 52(6):1450–1457PubMedCrossRef
191.
Zurück zum Zitat D’Cruz RT, Syn N, Wee I, Choong A, Singapore Vascular Surgical Collaborative (SingVaSC) (2019) Risk factors for distal stent graft-induced new entry in type B aortic dissections: systematic review and meta-analysis. J Vasc Surg 70(5):1682–93.e1PubMedCrossRef D’Cruz RT, Syn N, Wee I, Choong A, Singapore Vascular Surgical Collaborative (SingVaSC) (2019) Risk factors for distal stent graft-induced new entry in type B aortic dissections: systematic review and meta-analysis. J Vasc Surg 70(5):1682–93.e1PubMedCrossRef
192.
Zurück zum Zitat Canaud L, Gandet T, Sfeir J, Ozdemir BA, Solovei L, Alric P (2019) Risk factors for distal stent graft-induced new entry tear after endovascular repair of thoracic aortic dissection. J Vasc Surg 69(5):1610–1614PubMedCrossRef Canaud L, Gandet T, Sfeir J, Ozdemir BA, Solovei L, Alric P (2019) Risk factors for distal stent graft-induced new entry tear after endovascular repair of thoracic aortic dissection. J Vasc Surg 69(5):1610–1614PubMedCrossRef
193.
Zurück zum Zitat Lortz J, Leinburger F, Tsagakis K, Rammos C, Lind A, Schlosser T et al (2019) Distal stent graft induced new entry: risk factors in acute and chronic type B aortic dissections. Eur J Vasc Endovasc Surg 58(6):822–830PubMedCrossRef Lortz J, Leinburger F, Tsagakis K, Rammos C, Lind A, Schlosser T et al (2019) Distal stent graft induced new entry: risk factors in acute and chronic type B aortic dissections. Eur J Vasc Endovasc Surg 58(6):822–830PubMedCrossRef
194.
195.
Zurück zum Zitat Simon F, Oberhuber A (2016) Ischemia and reperfusion injury of the spinal cord: experimental strategies to examine postischemic paraplegia. Neural Regen Res 11(3):414PubMedPubMedCentralCrossRef Simon F, Oberhuber A (2016) Ischemia and reperfusion injury of the spinal cord: experimental strategies to examine postischemic paraplegia. Neural Regen Res 11(3):414PubMedPubMedCentralCrossRef
196.
Zurück zum Zitat Heber UM, Mayrhofer M, Gottardi R, Kari FA, Heber S, Windisch A et al (2021) The intraspinal arterial collateral network: a new anatomical basis for understanding and preventing paraplegia during aortic repair. Eur J Cardiothorac Surg 59(1):137–144PubMedCrossRef Heber UM, Mayrhofer M, Gottardi R, Kari FA, Heber S, Windisch A et al (2021) The intraspinal arterial collateral network: a new anatomical basis for understanding and preventing paraplegia during aortic repair. Eur J Cardiothorac Surg 59(1):137–144PubMedCrossRef
197.
Zurück zum Zitat Shijo T, Kuratani T, Shimamura K, Kin K, Masada K, Goto T et al (2020) Extrathoracic collaterals to critical segmental arteries after endovascular thoraco-abdominal aneurysm repair. Interact CardioVasc Thorac Surg 30(6):932–939PubMedCrossRef Shijo T, Kuratani T, Shimamura K, Kin K, Masada K, Goto T et al (2020) Extrathoracic collaterals to critical segmental arteries after endovascular thoraco-abdominal aneurysm repair. Interact CardioVasc Thorac Surg 30(6):932–939PubMedCrossRef
198.
Zurück zum Zitat Scali ST, Giles KA, Wang GJ, Kubilis P, Neal D, Huber TS et al (2020) National incidence, mortality outcomes, and predictors of spinal cord ischemia after thoracic endovascular aortic repair. J Vasc Surg 72(1):92–104PubMedCrossRef Scali ST, Giles KA, Wang GJ, Kubilis P, Neal D, Huber TS et al (2020) National incidence, mortality outcomes, and predictors of spinal cord ischemia after thoracic endovascular aortic repair. J Vasc Surg 72(1):92–104PubMedCrossRef
199.
Zurück zum Zitat Keith CJ Jr., Passman MA, Carignan MJ, Parmar GM, Nagre SB, Patterson MA et al (2012) Protocol implementation of selective postoperative lumbar spinal drainage after thoracic aortic endograft. J Vasc Surg 55(1):1–8 (discussion 8)PubMedCrossRef Keith CJ Jr., Passman MA, Carignan MJ, Parmar GM, Nagre SB, Patterson MA et al (2012) Protocol implementation of selective postoperative lumbar spinal drainage after thoracic aortic endograft. J Vasc Surg 55(1):1–8 (discussion 8)PubMedCrossRef
202.
Zurück zum Zitat Etz CD, Weigang E, Hartert M, Lonn L, Mestres CA, Di Bartolomeo R et al (2015) Contemporary spinal cord protection during thoracic and thoracoabdominal aortic surgery and endovascular aortic repair: a position paper of the vascular domain of the European association for cardio-thoracic surgerydagger. Eur J Cardiothorac Surg 47(6):943–957PubMedCrossRef Etz CD, Weigang E, Hartert M, Lonn L, Mestres CA, Di Bartolomeo R et al (2015) Contemporary spinal cord protection during thoracic and thoracoabdominal aortic surgery and endovascular aortic repair: a position paper of the vascular domain of the European association for cardio-thoracic surgerydagger. Eur J Cardiothorac Surg 47(6):943–957PubMedCrossRef
203.
Zurück zum Zitat Gravereaux EC, Faries PL, Burks JA, Latessa V, Spielvogel D, Hollier LH et al (2001) Risk of spinal cord ischemia after endograft repair of thoracic aortic aneurysms. J Vasc Surg 34(6):997–1003PubMedCrossRef Gravereaux EC, Faries PL, Burks JA, Latessa V, Spielvogel D, Hollier LH et al (2001) Risk of spinal cord ischemia after endograft repair of thoracic aortic aneurysms. J Vasc Surg 34(6):997–1003PubMedCrossRef
204.
Zurück zum Zitat Katsargyris A, Oikonomou K, Kouvelos G, Renner H, Ritter W, Verhoeven ELG (2015) Spinal cord ischemia after endovascular repair of thoracoabdominal aortic aneurysms with fenestrated and branched stent grafts. J Vasc Surg 62(6):1450–1456PubMedCrossRef Katsargyris A, Oikonomou K, Kouvelos G, Renner H, Ritter W, Verhoeven ELG (2015) Spinal cord ischemia after endovascular repair of thoracoabdominal aortic aneurysms with fenestrated and branched stent grafts. J Vasc Surg 62(6):1450–1456PubMedCrossRef
205.
Zurück zum Zitat Heidemann F, Kolbel T, Kuchenbecker J, Kreutzburg T, Debus ES, Larena-Avellaneda A et al (2020) Incidence, predictors, and outcomes of spinal cord ischemia in elective complex endovascular aortic repair: an analysis of health insurance claims. J Vasc Surg 72(3):837–848PubMedCrossRef Heidemann F, Kolbel T, Kuchenbecker J, Kreutzburg T, Debus ES, Larena-Avellaneda A et al (2020) Incidence, predictors, and outcomes of spinal cord ischemia in elective complex endovascular aortic repair: an analysis of health insurance claims. J Vasc Surg 72(3):837–848PubMedCrossRef
206.
Zurück zum Zitat Behzadi F, Kim M, Zielke T, Bechara CF, Schwartz J, Prabhu VC (2021) Lumbar drains for vascular procedures: an institutional protocol review and guidelines. World Neurosurg 149:e947–e957PubMedCrossRef Behzadi F, Kim M, Zielke T, Bechara CF, Schwartz J, Prabhu VC (2021) Lumbar drains for vascular procedures: an institutional protocol review and guidelines. World Neurosurg 149:e947–e957PubMedCrossRef
207.
Zurück zum Zitat Aucoin VJ, Eagleton MJ, Farber MA, Oderich GS, Schanzer A, Timaran CH et al (2021) Spinal cord protection practices used during endovascular repair of complex aortic aneurysms by the U.S. aortic research consortium. J Vasc Surg 73(1):323–330PubMedCrossRef Aucoin VJ, Eagleton MJ, Farber MA, Oderich GS, Schanzer A, Timaran CH et al (2021) Spinal cord protection practices used during endovascular repair of complex aortic aneurysms by the U.S. aortic research consortium. J Vasc Surg 73(1):323–330PubMedCrossRef
208.
Zurück zum Zitat Simon FHP, Erhart P, Vcelar B, Scheuerle A, Schelzig H, Oberhuber A (2016) Erythropoietin preconditioning improves clinical and histologic outcome in an acute spinal cord ischemia and reperfusion rabbit model. J Vasc Surg 64(6):1797–1804PubMedCrossRef Simon FHP, Erhart P, Vcelar B, Scheuerle A, Schelzig H, Oberhuber A (2016) Erythropoietin preconditioning improves clinical and histologic outcome in an acute spinal cord ischemia and reperfusion rabbit model. J Vasc Surg 64(6):1797–1804PubMedCrossRef
209.
Zurück zum Zitat Dijkstra ML, Vainas T, Zeebregts CJ, Hooft L, van der Laan MJ (2018) Editor’s choice—spinal cord ischaemia in endovascular thoracic and thoraco-abdominal aortic repair: review of preventive strategies. Eur J Vasc Endovasc Surg 55(6):829–841PubMedCrossRef Dijkstra ML, Vainas T, Zeebregts CJ, Hooft L, van der Laan MJ (2018) Editor’s choice—spinal cord ischaemia in endovascular thoracic and thoraco-abdominal aortic repair: review of preventive strategies. Eur J Vasc Endovasc Surg 55(6):829–841PubMedCrossRef
211.
Zurück zum Zitat Wong CS, Healy D, Canning C, Coffey JC, Boyle JR, Walsh SR (2012) A systematic review of spinal cord injury and cerebrospinal fluid drainage after thoracic aortic endografting. J Vasc Surg 56(5):1438–1447PubMedCrossRef Wong CS, Healy D, Canning C, Coffey JC, Boyle JR, Walsh SR (2012) A systematic review of spinal cord injury and cerebrospinal fluid drainage after thoracic aortic endografting. J Vasc Surg 56(5):1438–1447PubMedCrossRef
212.
Zurück zum Zitat Karkkainen JM, Cirillo-Penn NC, Sen I, Tenorio ER, Mauermann WJ, Gilkey GD et al (2020) Cerebrospinal fluid drainage complications during first stage and completion fenestrated-branched endovascular aortic repair. J Vasc Surg 71(4):1109–18.e2PubMedCrossRef Karkkainen JM, Cirillo-Penn NC, Sen I, Tenorio ER, Mauermann WJ, Gilkey GD et al (2020) Cerebrospinal fluid drainage complications during first stage and completion fenestrated-branched endovascular aortic repair. J Vasc Surg 71(4):1109–18.e2PubMedCrossRef
213.
Zurück zum Zitat Wynn MM, Mell MW, Tefera G, Hoch JR, Acher CW (2009) Complications of spinal fluid drainage in thoracoabdominal aortic aneurysm repair: a report of 486 patients treated from 1987 to 2008. J Vasc Surg 49(1):29–34 (discussion –5)PubMedCrossRef Wynn MM, Mell MW, Tefera G, Hoch JR, Acher CW (2009) Complications of spinal fluid drainage in thoracoabdominal aortic aneurysm repair: a report of 486 patients treated from 1987 to 2008. J Vasc Surg 49(1):29–34 (discussion –5)PubMedCrossRef
215.
Zurück zum Zitat Meylaerts SA, Jacobs MJ, van Iterson V, De Haan P, Kalkman CJ (1999) Comparison of transcranial motor evoked potentials and somatosensory evoked potentials during thoracoabdominal aortic aneurysm repair. Ann Surg 230(6):742–749PubMedPubMedCentralCrossRef Meylaerts SA, Jacobs MJ, van Iterson V, De Haan P, Kalkman CJ (1999) Comparison of transcranial motor evoked potentials and somatosensory evoked potentials during thoracoabdominal aortic aneurysm repair. Ann Surg 230(6):742–749PubMedPubMedCentralCrossRef
216.
Zurück zum Zitat Jacobs MJ, Meylaerts SA, de Haan P, de Mol BA, Kalkman CJ (1999) Strategies to prevent neurologic deficit based on motor-evoked potentials in type I and II thoracoabdominal aortic aneurysm repair. J Vasc Surg 29(1):48–57 (discussion –9)PubMedCrossRef Jacobs MJ, Meylaerts SA, de Haan P, de Mol BA, Kalkman CJ (1999) Strategies to prevent neurologic deficit based on motor-evoked potentials in type I and II thoracoabdominal aortic aneurysm repair. J Vasc Surg 29(1):48–57 (discussion –9)PubMedCrossRef
217.
Zurück zum Zitat Liu LY, Callahan B, Peterss S, Dumfarth J, Tranquilli M, Ziganshin BA et al (2016) Neuromonitoring using motor and somatosensory evoked potentials in aortic surgery. J Card Surg 31(6):383–389PubMedCrossRef Liu LY, Callahan B, Peterss S, Dumfarth J, Tranquilli M, Ziganshin BA et al (2016) Neuromonitoring using motor and somatosensory evoked potentials in aortic surgery. J Card Surg 31(6):383–389PubMedCrossRef
218.
Zurück zum Zitat Luehr M, Mohr FW, Etz CD (2016) Indirect neuromonitoring of the spinal cord by near-infrared spectroscopy of the paraspinous thoracic and lumbar muscles in aortic surgery. Thorac Cardiovasc Surg 64(4):333–335PubMed Luehr M, Mohr FW, Etz CD (2016) Indirect neuromonitoring of the spinal cord by near-infrared spectroscopy of the paraspinous thoracic and lumbar muscles in aortic surgery. Thorac Cardiovasc Surg 64(4):333–335PubMed
220.
Zurück zum Zitat Etz CD, von Aspern K, Gudehus S, Luehr M, Girrbach FF, Ender J et al (2013) Near-infrared spectroscopy monitoring of the collateral network prior to, during, and after thoracoabdominal aortic repair: a pilot study. Eur J Vasc Endovasc Surg 46(6):651–656PubMedCrossRef Etz CD, von Aspern K, Gudehus S, Luehr M, Girrbach FF, Ender J et al (2013) Near-infrared spectroscopy monitoring of the collateral network prior to, during, and after thoracoabdominal aortic repair: a pilot study. Eur J Vasc Endovasc Surg 46(6):651–656PubMedCrossRef
221.
Zurück zum Zitat Oostveen CN, Weerwind PW, Bergs PPE, Schmidli J, Buhlmann R, Schefold JC et al (2020) Neurophysiological and paraspinal oximetry monitoring to detect spinal cord ischemia in patients during and after descending aortic repair: an international multicenter explorative study. Contemp Clin Trials Commun 17:100545PubMedPubMedCentralCrossRef Oostveen CN, Weerwind PW, Bergs PPE, Schmidli J, Buhlmann R, Schefold JC et al (2020) Neurophysiological and paraspinal oximetry monitoring to detect spinal cord ischemia in patients during and after descending aortic repair: an international multicenter explorative study. Contemp Clin Trials Commun 17:100545PubMedPubMedCentralCrossRef
222.
Zurück zum Zitat Petroff D, Czerny M, Kolbel T, Melissano G, Lonn L, Haunschild J et al (2019) Paraplegia prevention in aortic aneurysm repair by thoracoabdominal staging with ‘minimally invasive staged segmental artery coil embolisation’ (MIS(2)ACE): trial protocol for a randomised controlled multicentre trial. BMJ Open 9(3):e25488PubMedPubMedCentralCrossRef Petroff D, Czerny M, Kolbel T, Melissano G, Lonn L, Haunschild J et al (2019) Paraplegia prevention in aortic aneurysm repair by thoracoabdominal staging with ‘minimally invasive staged segmental artery coil embolisation’ (MIS(2)ACE): trial protocol for a randomised controlled multicentre trial. BMJ Open 9(3):e25488PubMedPubMedCentralCrossRef
223.
Zurück zum Zitat Huang TY, Chung HW, Chen MY, Giiang LH, Chin SC, Lee CS et al (2004) Supratentorial cerebrospinal fluid production rate in healthy adults: quantification with two-dimensional cine phase-contrast MR imaging with high temporal and spatial resolution. Radiology 233(2):603–608PubMedCrossRef Huang TY, Chung HW, Chen MY, Giiang LH, Chin SC, Lee CS et al (2004) Supratentorial cerebrospinal fluid production rate in healthy adults: quantification with two-dimensional cine phase-contrast MR imaging with high temporal and spatial resolution. Radiology 233(2):603–608PubMedCrossRef
224.
Zurück zum Zitat Sueda T, Takahashi S (2018) Spinal cord injury as a complication of thoracic endovascular aneurysm repair. Surg Today 48(5):473–477PubMedCrossRef Sueda T, Takahashi S (2018) Spinal cord injury as a complication of thoracic endovascular aneurysm repair. Surg Today 48(5):473–477PubMedCrossRef
225.
Zurück zum Zitat Ullery BW, Cheung AT, Fairman RM, Jackson BM, Woo EY, Bavaria J et al (2011) Risk factors, outcomes, and clinical manifestations of spinal cord ischemia following thoracic endovascular aortic repair. J Vasc Surg 54(3):677–684PubMedCrossRef Ullery BW, Cheung AT, Fairman RM, Jackson BM, Woo EY, Bavaria J et al (2011) Risk factors, outcomes, and clinical manifestations of spinal cord ischemia following thoracic endovascular aortic repair. J Vasc Surg 54(3):677–684PubMedCrossRef
226.
Zurück zum Zitat Acher C, Acher CW, Marks E, Wynn M (2016) Intraoperative neuroprotective interventions prevent spinal cord ischemia and injury in thoracic endovascular aortic repair. J Vasc Surg 63(6):1458–1465PubMedCrossRef Acher C, Acher CW, Marks E, Wynn M (2016) Intraoperative neuroprotective interventions prevent spinal cord ischemia and injury in thoracic endovascular aortic repair. J Vasc Surg 63(6):1458–1465PubMedCrossRef
227.
Zurück zum Zitat Svensson LG, Crawford ES, Hess KR, Coselli JS, Safi HJ (1993) Experience with 1509 patients undergoing thoracoabdominal aortic operations. J Vasc Surg 17(2):357–368 (discussion 68–70)PubMedCrossRef Svensson LG, Crawford ES, Hess KR, Coselli JS, Safi HJ (1993) Experience with 1509 patients undergoing thoracoabdominal aortic operations. J Vasc Surg 17(2):357–368 (discussion 68–70)PubMedCrossRef
228.
Zurück zum Zitat Schwab FD (2020) S3-Kardiologische-Rehabilitation-in-D-A-CH_2020-12.pdf (AWMF-Registernummer: 133–001) Schwab FD (2020) S3-Kardiologische-Rehabilitation-in-D-A-CH_2020-12.pdf (AWMF-Registernummer: 133–001)
229.
Zurück zum Zitat Corone S, Iliou MC, Pierre B, Feige JM, Odjinkem D, Farrokhi T et al (2009) French registry of cases of type I acute aortic dissection admitted to a cardiac rehabilitation center after surgery. Eur J Cardiovasc Prev Rehabil 16(1):91–95PubMedCrossRef Corone S, Iliou MC, Pierre B, Feige JM, Odjinkem D, Farrokhi T et al (2009) French registry of cases of type I acute aortic dissection admitted to a cardiac rehabilitation center after surgery. Eur J Cardiovasc Prev Rehabil 16(1):91–95PubMedCrossRef
230.
Zurück zum Zitat Delsart P, Maldonado-Kauffmann P, Bic M, Boudghene-Stambouli F, Sobocinski J, Juthier F et al (2016) Post aortic dissection: gap between activity recommendation and real life patients aerobic capacities. Int J Cardiol 219:271–276PubMedCrossRef Delsart P, Maldonado-Kauffmann P, Bic M, Boudghene-Stambouli F, Sobocinski J, Juthier F et al (2016) Post aortic dissection: gap between activity recommendation and real life patients aerobic capacities. Int J Cardiol 219:271–276PubMedCrossRef
231.
Zurück zum Zitat Fuglsang S, Heiberg J, Hjortdal VE, Laustsen S (2017) Exercise-based cardiac rehabilitation in surgically treated type‑A aortic dissection patients. Scand Cardiovasc J 51(2):99–105PubMedCrossRef Fuglsang S, Heiberg J, Hjortdal VE, Laustsen S (2017) Exercise-based cardiac rehabilitation in surgically treated type‑A aortic dissection patients. Scand Cardiovasc J 51(2):99–105PubMedCrossRef
232.
Zurück zum Zitat Inoue T, Ichihara T, Sakaguchi H, Kanamori T (2014) Early rehabilitation program in uncomplicated Stanford type B acute aortic dissection. Kyobu Geka 67(9):781–788PubMed Inoue T, Ichihara T, Sakaguchi H, Kanamori T (2014) Early rehabilitation program in uncomplicated Stanford type B acute aortic dissection. Kyobu Geka 67(9):781–788PubMed
233.
Zurück zum Zitat Meinlschmidt G, Berdajs D, Moser-Starck R, Frick A, Gross S, Schurr U et al (2020) Perceived need for psychosocial support after aortic dissection: cross-sectional survey. J Particip Med 12(3):e15447PubMedPubMedCentralCrossRef Meinlschmidt G, Berdajs D, Moser-Starck R, Frick A, Gross S, Schurr U et al (2020) Perceived need for psychosocial support after aortic dissection: cross-sectional survey. J Particip Med 12(3):e15447PubMedPubMedCentralCrossRef
234.
Zurück zum Zitat Genoni M, Paul M, Jenni R, Graves K, Seifert B, Turina M (2001) Chronic beta-blocker therapy improves outcome and reduces treatment costs in chronic type B aortic dissection. Eur J Cardiothorac Surg 19(5):606–610PubMedCrossRef Genoni M, Paul M, Jenni R, Graves K, Seifert B, Turina M (2001) Chronic beta-blocker therapy improves outcome and reduces treatment costs in chronic type B aortic dissection. Eur J Cardiothorac Surg 19(5):606–610PubMedCrossRef
235.
Zurück zum Zitat Brooke BS, Habashi JP, Judge DP, Patel N, Loeys B, Dietz HC 3rd (2008) Angiotensin II blockade and aortic-root dilation in Marfan’s syndrome. N Engl J Med 358(26):2787–2795PubMedPubMedCentralCrossRef Brooke BS, Habashi JP, Judge DP, Patel N, Loeys B, Dietz HC 3rd (2008) Angiotensin II blockade and aortic-root dilation in Marfan’s syndrome. N Engl J Med 358(26):2787–2795PubMedPubMedCentralCrossRef
236.
Zurück zum Zitat Groenink M, den Hartog AW, Franken R, Radonic T, de Waard V, Timmermans J et al (2013) Losartan reduces aortic dilatation rate in adults with Marfan syndrome: a randomized controlled trial. Eur Heart J 34(45):3491–3500PubMedCrossRef Groenink M, den Hartog AW, Franken R, Radonic T, de Waard V, Timmermans J et al (2013) Losartan reduces aortic dilatation rate in adults with Marfan syndrome: a randomized controlled trial. Eur Heart J 34(45):3491–3500PubMedCrossRef
237.
Zurück zum Zitat Lee SJ, Oh J, Ko YG, Lee S, Chang BC, Lee DY et al (2016) The beneficial effect of renin-angiotensin-aldosterone system blockade in Marfan syndrome patients after aortic root replacement. Yonsei Med J 57(1):81–87PubMedCrossRef Lee SJ, Oh J, Ko YG, Lee S, Chang BC, Lee DY et al (2016) The beneficial effect of renin-angiotensin-aldosterone system blockade in Marfan syndrome patients after aortic root replacement. Yonsei Med J 57(1):81–87PubMedCrossRef
238.
Zurück zum Zitat Eggebrecht H, Schmermund A, von Birgelen C, Naber CK, Bartel T, Wenzel RR et al (2005) Resistant hypertension in patients with chronic aortic dissection. J Hum Hypertens 19(3):227–231PubMedCrossRef Eggebrecht H, Schmermund A, von Birgelen C, Naber CK, Bartel T, Wenzel RR et al (2005) Resistant hypertension in patients with chronic aortic dissection. J Hum Hypertens 19(3):227–231PubMedCrossRef
239.
Zurück zum Zitat Delsart P, Delahaye C, Devos P, Domanski O, Azzaoui R, Sobocinski J et al (2021) Prognostic value of aerobic capacity and exercise oxygen pulse in postaortic dissection patients. Clin Cardiol 44(2):252–260PubMedCrossRef Delsart P, Delahaye C, Devos P, Domanski O, Azzaoui R, Sobocinski J et al (2021) Prognostic value of aerobic capacity and exercise oxygen pulse in postaortic dissection patients. Clin Cardiol 44(2):252–260PubMedCrossRef
240.
Zurück zum Zitat Chaddha A, Kline-Rogers E, Woznicki EM, Brook R, Housholder-Hughes S, Braverman AC et al (2014) Cardiology patient page. Activity recommendations for postaortic dissection patients. Circulation 130(16):e140–e142PubMedCrossRef Chaddha A, Kline-Rogers E, Woznicki EM, Brook R, Housholder-Hughes S, Braverman AC et al (2014) Cardiology patient page. Activity recommendations for postaortic dissection patients. Circulation 130(16):e140–e142PubMedCrossRef
241.
Zurück zum Zitat Chaddha A, Eagle KA, Braverman AC, Kline-Rogers E, Hirsch AT, Brook R et al (2015) Exercise and physical activity for the post-aortic dissection patient: the clinician’s conundrum. Clin Cardiol 38(11):647–651PubMedPubMedCentralCrossRef Chaddha A, Eagle KA, Braverman AC, Kline-Rogers E, Hirsch AT, Brook R et al (2015) Exercise and physical activity for the post-aortic dissection patient: the clinician’s conundrum. Clin Cardiol 38(11):647–651PubMedPubMedCentralCrossRef
242.
Zurück zum Zitat Thijssen CGE, Bons LR, Gokalp AL, Van Kimmenade RRJ, Mokhles MM, Pelliccia A et al (2019) Exercise and sports participation in patients with thoracic aortic disease: a review. Expert Rev Cardiovasc Ther 17(4):251–266PubMedCrossRef Thijssen CGE, Bons LR, Gokalp AL, Van Kimmenade RRJ, Mokhles MM, Pelliccia A et al (2019) Exercise and sports participation in patients with thoracic aortic disease: a review. Expert Rev Cardiovasc Ther 17(4):251–266PubMedCrossRef
243.
Zurück zum Zitat Chaddha A, Kline-Rogers E, Braverman AC, Erickson SR, Jackson EA, Franklin BA et al (2015) Survivors of aortic dissection: activity, mental health, and sexual function. Clin Cardiol 38(11):652–659PubMedPubMedCentralCrossRef Chaddha A, Kline-Rogers E, Braverman AC, Erickson SR, Jackson EA, Franklin BA et al (2015) Survivors of aortic dissection: activity, mental health, and sexual function. Clin Cardiol 38(11):652–659PubMedPubMedCentralCrossRef
244.
Zurück zum Zitat DeFabio DC, DeFabio CJ (2021) Exercise parameters for the chronic type B aortic dissection patient: a literature review and case report. Postgrad Med 133(2):217–222PubMedCrossRef DeFabio DC, DeFabio CJ (2021) Exercise parameters for the chronic type B aortic dissection patient: a literature review and case report. Postgrad Med 133(2):217–222PubMedCrossRef
245.
Zurück zum Zitat Jette M, Sidney K, Blumchen G (1990) Metabolic equivalents (METS) in exercise testing, exercise prescription, and evaluation of functional capacity. Clin Cardiol 13(8):555–565PubMedCrossRef Jette M, Sidney K, Blumchen G (1990) Metabolic equivalents (METS) in exercise testing, exercise prescription, and evaluation of functional capacity. Clin Cardiol 13(8):555–565PubMedCrossRef
246.
Zurück zum Zitat Borg G (2004) Anstrengungsempfinden und körperliche Aktivität. Dtsch Arztebl 101(15):A-1016–C-821 Borg G (2004) Anstrengungsempfinden und körperliche Aktivität. Dtsch Arztebl 101(15):A-1016–C-821
247.
Zurück zum Zitat Lin Y, Chen Y, Zhang H, Peng Y, Li S, Huang X et al (2020) Predictors of return to work after open triple-branched stent graft placement for acute type A aortic dissection. Interact CardioVasc Thorac Surg 30(1):99–106PubMedCrossRef Lin Y, Chen Y, Zhang H, Peng Y, Li S, Huang X et al (2020) Predictors of return to work after open triple-branched stent graft placement for acute type A aortic dissection. Interact CardioVasc Thorac Surg 30(1):99–106PubMedCrossRef
248.
Zurück zum Zitat Deutsche Rentenversicherung Bund (2013) Sozialmedizinisches Glossar der Deutschen Rentenversicherung Deutsche Rentenversicherung Bund (2013) Sozialmedizinisches Glossar der Deutschen Rentenversicherung
251.
Zurück zum Zitat Rothenberg KA, George EL, Trickey AW, Barreto NB, Johnson TM 2nd, Hall DE et al (2020) Assessment of the risk analysis index for prediction of mortality, major complications, and length of stay in patients who underwent vascular surgery. Ann Vasc Surg 66:442–453PubMedPubMedCentralCrossRef Rothenberg KA, George EL, Trickey AW, Barreto NB, Johnson TM 2nd, Hall DE et al (2020) Assessment of the risk analysis index for prediction of mortality, major complications, and length of stay in patients who underwent vascular surgery. Ann Vasc Surg 66:442–453PubMedPubMedCentralCrossRef
252.
Zurück zum Zitat Barbey SM, Scali ST, Kubilis P, Beck AW, Goodney P, Giles KA et al (2019) Interaction between frailty and sex on mortality after elective abdominal aortic aneurysm repair. J Vasc Surg 70(6):1831–1843PubMedPubMedCentralCrossRef Barbey SM, Scali ST, Kubilis P, Beck AW, Goodney P, Giles KA et al (2019) Interaction between frailty and sex on mortality after elective abdominal aortic aneurysm repair. J Vasc Surg 70(6):1831–1843PubMedPubMedCentralCrossRef
253.
Zurück zum Zitat Mende A, Riegel AK, Plumer L, Olotu C, Goetz AE, Kiefmann R (2019) Determinants of perioperative outcome in frail older patients. Dtsch Arztebl Int 116(5):73–82PubMedPubMedCentral Mende A, Riegel AK, Plumer L, Olotu C, Goetz AE, Kiefmann R (2019) Determinants of perioperative outcome in frail older patients. Dtsch Arztebl Int 116(5):73–82PubMedPubMedCentral
254.
Zurück zum Zitat Sasajima Y, Sasajima T, Azuma N, Akazawa K, Saito Y, Inaba M et al (2012) Factors related to postoperative delirium in patients with lower limb ischaemia: a prospective cohort study. Eur J Vasc Endovasc Surg 44(4):411–415PubMedCrossRef Sasajima Y, Sasajima T, Azuma N, Akazawa K, Saito Y, Inaba M et al (2012) Factors related to postoperative delirium in patients with lower limb ischaemia: a prospective cohort study. Eur J Vasc Endovasc Surg 44(4):411–415PubMedCrossRef
255.
Zurück zum Zitat Bachmann S, Finger C, Huss A, Egger M, Stuck AE, Clough-Gorr KM (2010) Inpatient rehabilitation specifically designed for geriatric patients: systematic review and meta-analysis of randomised controlled trials. BMJ 340:c1718PubMedPubMedCentralCrossRef Bachmann S, Finger C, Huss A, Egger M, Stuck AE, Clough-Gorr KM (2010) Inpatient rehabilitation specifically designed for geriatric patients: systematic review and meta-analysis of randomised controlled trials. BMJ 340:c1718PubMedPubMedCentralCrossRef
256.
Zurück zum Zitat Albus C, Waller C, Fritzsche K, Gunold H, Haass M, Hamann B et al (2018) Bedeutung von psychosozialen Faktoren in der Kardiologie—Update 2018. Kardiologe 12(5):312–331CrossRef Albus C, Waller C, Fritzsche K, Gunold H, Haass M, Hamann B et al (2018) Bedeutung von psychosozialen Faktoren in der Kardiologie—Update 2018. Kardiologe 12(5):312–331CrossRef
257.
Zurück zum Zitat Lin Y, Chen Y, Peng Y, Xu S, Li S, Huang X et al (2021) Symptoms of post-traumatic stress disorder and associated risk factors in type A aortic dissection. J Cardiovasc Surg 62(3):286–293CrossRef Lin Y, Chen Y, Peng Y, Xu S, Li S, Huang X et al (2021) Symptoms of post-traumatic stress disorder and associated risk factors in type A aortic dissection. J Cardiovasc Surg 62(3):286–293CrossRef
258.
Zurück zum Zitat Pasadyn SR, Roselli EE, Artis AS, Pasadyn CL, Phelan D, Hurley K et al (2020) From tear to fear: posttraumatic stress disorder in patients with acute type A aortic dissection. J Am Heart Assoc 9(9):e15060PubMedPubMedCentralCrossRef Pasadyn SR, Roselli EE, Artis AS, Pasadyn CL, Phelan D, Hurley K et al (2020) From tear to fear: posttraumatic stress disorder in patients with acute type A aortic dissection. J Am Heart Assoc 9(9):e15060PubMedPubMedCentralCrossRef
259.
Zurück zum Zitat Langheim E (2019) Somatische Folgen von Traumatisierungen aus Sicht der Kardiologie. Psychother Dialog 20(02):56–60CrossRef Langheim E (2019) Somatische Folgen von Traumatisierungen aus Sicht der Kardiologie. Psychother Dialog 20(02):56–60CrossRef
260.
Zurück zum Zitat Hata M, Yoshitake I, Wakui S, Unosawa S, Takahashi K, Kimura H et al (2012) Sleep disorders and aortic dissection in a working population. Surg Today 42(4):403–405PubMedCrossRef Hata M, Yoshitake I, Wakui S, Unosawa S, Takahashi K, Kimura H et al (2012) Sleep disorders and aortic dissection in a working population. Surg Today 42(4):403–405PubMedCrossRef
261.
Zurück zum Zitat Martin G, Patel N, Grant Y, Jenkins M, Gibbs R, Bicknell C (2018) Antihypertensive medication adherence in chronic type B aortic dissection is an important consideration in the management debate. J Vasc Surg 68(3):693–9.e2PubMedCrossRef Martin G, Patel N, Grant Y, Jenkins M, Gibbs R, Bicknell C (2018) Antihypertensive medication adherence in chronic type B aortic dissection is an important consideration in the management debate. J Vasc Surg 68(3):693–9.e2PubMedCrossRef
262.
Zurück zum Zitat BÄK, KBV, AWMF (2021) Nationale VersorgungsLeitlinie Chronische Herzinsuffizienz – Leitlinienreport, 3rd edn. BÄK, KBV, AWMF (2021) Nationale VersorgungsLeitlinie Chronische Herzinsuffizienz – Leitlinienreport, 3rd edn.
263.
Zurück zum Zitat Herrmann-Lingen C, Buss U, Snaith RP (1993) Hospital Anxiety and Depression Scale – Deutsche Version (HADS-D). Manual. Huber, Berlin Herrmann-Lingen C, Buss U, Snaith RP (1993) Hospital Anxiety and Depression Scale – Deutsche Version (HADS-D). Manual. Huber, Berlin
264.
Zurück zum Zitat Herrmann-Lingen C, Buss U, Snaith RP (2011) Hospital Anxiety and Depression Scale – deutsche Version (HADS-D), 3rd edn. Huber Herrmann-Lingen C, Buss U, Snaith RP (2011) Hospital Anxiety and Depression Scale – deutsche Version (HADS-D), 3rd edn. Huber
265.
Zurück zum Zitat Löwe B, Decker O, Muller S, Brahler E, Schellberg D, Herzog W et al (2008) Validation and standardization of the generalized anxiety disorder screener (GAD-7) in the general population. Med Care 46(3):266–274PubMedCrossRef Löwe B, Decker O, Muller S, Brahler E, Schellberg D, Herzog W et al (2008) Validation and standardization of the generalized anxiety disorder screener (GAD-7) in the general population. Med Care 46(3):266–274PubMedCrossRef
266.
Zurück zum Zitat Löwe B, Spitzer RL, Grafe K, Kroenke K, Quenter A, Zipfel S et al (2004) Comparative validity of three screening questionnaires for DSM-IV depressive disorders and physicians’ diagnoses. J Affect Disord 78(2):131–140PubMedCrossRef Löwe B, Spitzer RL, Grafe K, Kroenke K, Quenter A, Zipfel S et al (2004) Comparative validity of three screening questionnaires for DSM-IV depressive disorders and physicians’ diagnoses. J Affect Disord 78(2):131–140PubMedCrossRef
267.
Zurück zum Zitat Spitzer RL, Kroenke K, Williams JB, Lowe B (2006) A brief measure for assessing generalized anxiety disorder: the GAD‑7. Arch Intern Med 166(10):1092–1097PubMedCrossRef Spitzer RL, Kroenke K, Williams JB, Lowe B (2006) A brief measure for assessing generalized anxiety disorder: the GAD‑7. Arch Intern Med 166(10):1092–1097PubMedCrossRef
268.
Zurück zum Zitat Kroenke K, Spitzer RL, Williams JB, Monahan PO, Lowe B (2007) Anxiety disorders in primary care: prevalence, impairment, comorbidity, and detection. Ann Intern Med 146(5):317–325PubMedCrossRef Kroenke K, Spitzer RL, Williams JB, Monahan PO, Lowe B (2007) Anxiety disorders in primary care: prevalence, impairment, comorbidity, and detection. Ann Intern Med 146(5):317–325PubMedCrossRef
269.
Zurück zum Zitat Maercker A, Schützwohl M (1998) Erfassung von psychischen Belastungsfolgen: Die Impact of Event Skala-revidierte Version (IES-R). Diagnostica 44(3):130–140 Maercker A, Schützwohl M (1998) Erfassung von psychischen Belastungsfolgen: Die Impact of Event Skala-revidierte Version (IES-R). Diagnostica 44(3):130–140
270.
Zurück zum Zitat BÄK, KBV, AWMF (2019) Nationale VersorgungsLeitlinie Chronische KHK BÄK, KBV, AWMF (2019) Nationale VersorgungsLeitlinie Chronische KHK
Metadaten
Titel
Interdisciplinary German clinical practice guidelines on the management of type B aortic dissection
verfasst von
Univ. Prof. Dr. A. Oberhuber
A. Raddatz
S. Betge
C. Ploenes
W. Ito
R. A. Janosi
C. Ott
E. Langheim
M. Czerny
R. Puls
A. Maßmann
K. Zeyer
H. Schelzig
Publikationsdatum
24.04.2023
Verlag
Springer Medizin
Erschienen in
Gefässchirurgie / Ausgabe Sonderheft 1/2023
Print ISSN: 0948-7034
Elektronische ISSN: 1434-3932
DOI
https://doi.org/10.1007/s00772-023-00995-5

Vorsicht, erhöhte Blutungsgefahr nach PCI!

10.05.2024 Koronare Herzerkrankung Nachrichten

Nach PCI besteht ein erhöhtes Blutungsrisiko, wenn die Behandelten eine verminderte linksventrikuläre Ejektionsfraktion aufweisen. Das Risiko ist umso höher, je stärker die Pumpfunktion eingeschränkt ist.

Darf man die Behandlung eines Neonazis ablehnen?

08.05.2024 Gesellschaft Nachrichten

In einer Leseranfrage in der Zeitschrift Journal of the American Academy of Dermatology möchte ein anonymer Dermatologe bzw. eine anonyme Dermatologin wissen, ob er oder sie einen Patienten behandeln muss, der eine rassistische Tätowierung trägt.

Deutlich weniger Infektionen: Wundprotektoren schützen!

08.05.2024 Postoperative Wundinfektion Nachrichten

Der Einsatz von Wundprotektoren bei offenen Eingriffen am unteren Gastrointestinaltrakt schützt vor Infektionen im Op.-Gebiet – und dient darüber hinaus der besseren Sicht. Das bestätigt mit großer Robustheit eine randomisierte Studie im Fachblatt JAMA Surgery.

Chirurginnen und Chirurgen sind stark suizidgefährdet

07.05.2024 Suizid Nachrichten

Der belastende Arbeitsalltag wirkt sich negativ auf die psychische Gesundheit der Angehörigen ärztlicher Berufsgruppen aus. Chirurginnen und Chirurgen bilden da keine Ausnahme, im Gegenteil.

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

S3-Leitlinie „Diagnostik und Therapie des Karpaltunnelsyndroms“

Karpaltunnelsyndrom BDC Leitlinien Webinare
CME: 2 Punkte

Das Karpaltunnelsyndrom ist die häufigste Kompressionsneuropathie peripherer Nerven. Obwohl die Anamnese mit dem nächtlichen Einschlafen der Hand (Brachialgia parästhetica nocturna) sehr typisch ist, ist eine klinisch-neurologische Untersuchung und Elektroneurografie in manchen Fällen auch eine Neurosonografie erforderlich. Im Anfangsstadium sind konservative Maßnahmen (Handgelenksschiene, Ergotherapie) empfehlenswert. Bei nicht Ansprechen der konservativen Therapie oder Auftreten von neurologischen Ausfällen ist eine Dekompression des N. medianus am Karpaltunnel indiziert.

Prof. Dr. med. Gregor Antoniadis
Berufsverband der Deutschen Chirurgie e.V.

S2e-Leitlinie „Distale Radiusfraktur“

Radiusfraktur BDC Leitlinien Webinare
CME: 2 Punkte

Das Webinar beschäftigt sich mit Fragen und Antworten zu Diagnostik und Klassifikation sowie Möglichkeiten des Ausschlusses von Zusatzverletzungen. Die Referenten erläutern, welche Frakturen konservativ behandelt werden können und wie. Das Webinar beantwortet die Frage nach aktuellen operativen Therapiekonzepten: Welcher Zugang, welches Osteosynthesematerial? Auf was muss bei der Nachbehandlung der distalen Radiusfraktur geachtet werden?

PD Dr. med. Oliver Pieske
Dr. med. Benjamin Meyknecht
Berufsverband der Deutschen Chirurgie e.V.

S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“

Appendizitis BDC Leitlinien Webinare
CME: 2 Punkte

Inhalte des Webinars zur S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“ sind die Darstellung des Projektes und des Erstellungswegs zur S1-Leitlinie, die Erläuterung der klinischen Relevanz der Klassifikation EAES 2015, die wissenschaftliche Begründung der wichtigsten Empfehlungen und die Darstellung stadiengerechter Therapieoptionen.

Dr. med. Mihailo Andric
Berufsverband der Deutschen Chirurgie e.V.