Skip to main content
Erschienen in: Die Radiologie 4/2011

01.04.2011 | Leitthema

Normales Altern und seine Bildgebungskorrelate

verfasst von: Dr. L. Schuster, M. Essig, J. Schröder

Erschienen in: Die Radiologie | Ausgabe 4/2011

Einloggen, um Zugang zu erhalten

Zusammenfassung

Die Bildgebung trägt zu einem besseren Verständnis normaler Alterungsprozesse im Gehirn bei. Die Kenntnis physiologischer Altersprozesse im Gehirn ist erforderlich, um frühzeitig morphologische, funktionelle und biochemische Veränderungen einer neurodegenerativen Erkrankung diagnostizieren zu können. Im Hinblick auf Alterungsprozesse bestehen große interindividuelle Unterschiede innerhalb der jeweiligen Alterskohorten. In der Regel geht die Hirnalterung mit einer Verschlechterung kognitiver Funktionen einher. Simultan nimmt das durchschnittliche Hirnvolumen, insbesondere des Frontallappens, mit zunehmendem Alter ab. Korrespondierend weist auch das frontostriatothalamische Fasernetz eine starke Vulnerabilität für eine altersassoziierte Degeneration auf. Als Folge des Alterns nimmt die Faserintegrität der weißen Substanz ab, was sich in einem Abfall der fraktionierten Anisotropie (FA) in der Diffusionstensorbildgebung („diffusion tensor imaging“, DTI) widerspiegelt, Zudem treten T2-hyperintense Signalalterationen im Marklager, so genannte „white matter lesions“ auf. Des Weiteren nehmen der zerebrale Blutfluss (CBF) und das zerebrale Blutvolumen (CBV) ab. Im Verlauf des Lebens findet ferner eine Akkumulation von Eisen im Gehirn, v. a. in den Basalganglien statt. In der 1H-MR-Spektroskopie lässt sich im alternden Gehirn eine Abnahme der N-Acetyl-Aspartat- (NAA-)Konzentration als Korrelat eines verminderten neuronalen Metabolismus nachweisen.
Literatur
1.
Zurück zum Zitat Abe O, Aoki S, Hayashi N et al (2002) Normal aging in the central nervous system: quantitative MR diffusion-tensor analysis. Neurobiol Aging 23(3):433–441PubMedCrossRef Abe O, Aoki S, Hayashi N et al (2002) Normal aging in the central nervous system: quantitative MR diffusion-tensor analysis. Neurobiol Aging 23(3):433–441PubMedCrossRef
2.
Zurück zum Zitat Alexander GE, Crutcher MD, DeLong MR (1990) Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, „prefrontal“ and „limbic“ functions. Prog Brain Res 85:119–146PubMedCrossRef Alexander GE, Crutcher MD, DeLong MR (1990) Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, „prefrontal“ and „limbic“ functions. Prog Brain Res 85:119–146PubMedCrossRef
3.
Zurück zum Zitat Angelie E, Bonmartin A, Boudraa A et al (2001) Regional differences and metabolic changes in normal aging of the human brain: proton MR spectroscopic imaging study. AJNR Am J Neuroradiol 22:119–127PubMed Angelie E, Bonmartin A, Boudraa A et al (2001) Regional differences and metabolic changes in normal aging of the human brain: proton MR spectroscopic imaging study. AJNR Am J Neuroradiol 22:119–127PubMed
4.
Zurück zum Zitat Aoki S, Okada Y, Nishimura K et al (1989) Normal deposition of brain iron in childhood and adolescence: MR imaging at 1.5 T. Radiology 172(2):381–385PubMed Aoki S, Okada Y, Nishimura K et al (1989) Normal deposition of brain iron in childhood and adolescence: MR imaging at 1.5 T. Radiology 172(2):381–385PubMed
5.
Zurück zum Zitat Aquino D, Bizzi A, Grisoli M et al (2009) Age-related iron deposition in the basal ganglia: quantitative analysis in healthy subjects. Radiology 252(1):165–172PubMedCrossRef Aquino D, Bizzi A, Grisoli M et al (2009) Age-related iron deposition in the basal ganglia: quantitative analysis in healthy subjects. Radiology 252(1):165–172PubMedCrossRef
6.
Zurück zum Zitat Bendlin BB, Fitzgerald ME, Ries ML et al (2010) White matter in aging and cognition: a cross-sectional study of microstructure in adults aged eighteen to eighty-three. Dev Neuropsychol 35(3):257–277PubMedCrossRef Bendlin BB, Fitzgerald ME, Ries ML et al (2010) White matter in aging and cognition: a cross-sectional study of microstructure in adults aged eighteen to eighty-three. Dev Neuropsychol 35(3):257–277PubMedCrossRef
7.
Zurück zum Zitat Berg D, Youdim MB (2006) Role of iron in neurodegenerative disorders. Top Magn Reson Imaging 17(1):5–17PubMedCrossRef Berg D, Youdim MB (2006) Role of iron in neurodegenerative disorders. Top Magn Reson Imaging 17(1):5–17PubMedCrossRef
8.
Zurück zum Zitat Biagi L, Abbruzzese A, Bianchi MC et al (2007) Age dependence of cerebral perfusion assessed by magnetic resonance continuous arterial spin labeling. J Magn Reson Imaging 25(4):696–702PubMedCrossRef Biagi L, Abbruzzese A, Bianchi MC et al (2007) Age dependence of cerebral perfusion assessed by magnetic resonance continuous arterial spin labeling. J Magn Reson Imaging 25(4):696–702PubMedCrossRef
9.
Zurück zum Zitat Brooks JC, Roberts N, Kemp GJ et al (2001) A proton magnetic resonance spectroscopy study of age-related changes in frontal lobe metabolite concentrations. Cereb Cortex 11:598–605PubMedCrossRef Brooks JC, Roberts N, Kemp GJ et al (2001) A proton magnetic resonance spectroscopy study of age-related changes in frontal lobe metabolite concentrations. Cereb Cortex 11:598–605PubMedCrossRef
10.
Zurück zum Zitat Chang L, Ernst T, Poland RE et al (1996) In vivo proton magnetic resonance spectroscopy of the normal aging human brain. Life Sci 58:2049–2056PubMedCrossRef Chang L, Ernst T, Poland RE et al (1996) In vivo proton magnetic resonance spectroscopy of the normal aging human brain. Life Sci 58:2049–2056PubMedCrossRef
11.
Zurück zum Zitat Connor JR, Menzies SL, St Martin SM, Mufson EJ (1990) Cellular distribution of transferrin, ferritin, and iron in normal and aged human brains. J Neurosci Res 27(4):595–611PubMedCrossRef Connor JR, Menzies SL, St Martin SM, Mufson EJ (1990) Cellular distribution of transferrin, ferritin, and iron in normal and aged human brains. J Neurosci Res 27(4):595–611PubMedCrossRef
12.
Zurück zum Zitat Craik FIM, Jennings JM (1992) Human memory. In: Craik FIM, Salthouse TA (eds) The handbook of aging and cognition. Lawrence Erlbaum, Hillsdale, NY, pp 51–110 Craik FIM, Jennings JM (1992) Human memory. In: Craik FIM, Salthouse TA (eds) The handbook of aging and cognition. Lawrence Erlbaum, Hillsdale, NY, pp 51–110
13.
Zurück zum Zitat Cummings JL (1993) Frontal-subcortical circuits and human behavior. Arch Neurol 50(8):873–880PubMed Cummings JL (1993) Frontal-subcortical circuits and human behavior. Arch Neurol 50(8):873–880PubMed
14.
Zurück zum Zitat Drayer BP (1988) Imaging of the aging brain. Part I. Normal findings. Radiology 166(3):785–796PubMed Drayer BP (1988) Imaging of the aging brain. Part I. Normal findings. Radiology 166(3):785–796PubMed
15.
Zurück zum Zitat Du AT, Schuff N, Chao LL et al (2005) White matter lesions are associated with cortical atrophy more than entorhinal and hippocampal atrophy. Neurobiol Aging 26(4):553–559PubMedCrossRef Du AT, Schuff N, Chao LL et al (2005) White matter lesions are associated with cortical atrophy more than entorhinal and hippocampal atrophy. Neurobiol Aging 26(4):553–559PubMedCrossRef
16.
Zurück zum Zitat Good CD, Johnsrude IS, Ashburner J et al (2001) A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage 14(1 Pt 1):21–36PubMedCrossRef Good CD, Johnsrude IS, Ashburner J et al (2001) A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage 14(1 Pt 1):21–36PubMedCrossRef
17.
Zurück zum Zitat Gutteridge JM, Westermarck T, Santavuori P (1983) Iron and oxygen radicals in tissue damage: implications for the neuronal ceroid lipofuscinoses. Acta Neurol Scand 68(6):365–370PubMedCrossRef Gutteridge JM, Westermarck T, Santavuori P (1983) Iron and oxygen radicals in tissue damage: implications for the neuronal ceroid lipofuscinoses. Acta Neurol Scand 68(6):365–370PubMedCrossRef
18.
Zurück zum Zitat Haacke EM, Cheng NY, House MJ et al (2005) Imaging iron stores in the brain using magnetic resonance imaging. Magn Reson Imaging 23(1):1–25PubMedCrossRef Haacke EM, Cheng NY, House MJ et al (2005) Imaging iron stores in the brain using magnetic resonance imaging. Magn Reson Imaging 23(1):1–25PubMedCrossRef
19.
Zurück zum Zitat Hallgren B, Sourander P (1958) The effect of age on the non-haemin iron in the human brain. J Neurochem 3(1):41–51PubMedCrossRef Hallgren B, Sourander P (1958) The effect of age on the non-haemin iron in the human brain. J Neurochem 3(1):41–51PubMedCrossRef
20.
Zurück zum Zitat Head D, Buckner RL, Shimony JS et al (2004) Differential vulnerability of anterior white matter in nondemented aging with minimal acceleration in dementia of the Alzheimer type: evidence from diffusion tensor imaging. Cereb Cortex 14(4):410–423PubMedCrossRef Head D, Buckner RL, Shimony JS et al (2004) Differential vulnerability of anterior white matter in nondemented aging with minimal acceleration in dementia of the Alzheimer type: evidence from diffusion tensor imaging. Cereb Cortex 14(4):410–423PubMedCrossRef
21.
Zurück zum Zitat Hikita T, Abe K, Sakoda S et al (2005) Determination of transverse relaxation rate for estimating iron deposits in central nervous system. Neurosci Res 51(1):67–71PubMedCrossRef Hikita T, Abe K, Sakoda S et al (2005) Determination of transverse relaxation rate for estimating iron deposits in central nervous system. Neurosci Res 51(1):67–71PubMedCrossRef
22.
Zurück zum Zitat Hill JM, Switzer RC 3rd (1984) The regional distribution and cellular localization of iron in the rat brain. Neuroscience 11(3):595–603PubMedCrossRef Hill JM, Switzer RC 3rd (1984) The regional distribution and cellular localization of iron in the rat brain. Neuroscience 11(3):595–603PubMedCrossRef
23.
Zurück zum Zitat Hock A, Demmel U, Schicha H et al (1975) Trace element concentration in human brain. Activation analysis of cobalt, iron, rubidium, selenium, zinc, chromium, silver, cesium, antimony and scandium. Brain 98(1):49–64PubMedCrossRef Hock A, Demmel U, Schicha H et al (1975) Trace element concentration in human brain. Activation analysis of cobalt, iron, rubidium, selenium, zinc, chromium, silver, cesium, antimony and scandium. Brain 98(1):49–64PubMedCrossRef
24.
Zurück zum Zitat Insausti R, Insausti AM, Sobreviela MT et al (1998) Human medial temporal lobe in aging: anatomical basis of memory preservation. Microsc Res Tech 43(1):8–15PubMedCrossRef Insausti R, Insausti AM, Sobreviela MT et al (1998) Human medial temporal lobe in aging: anatomical basis of memory preservation. Microsc Res Tech 43(1):8–15PubMedCrossRef
25.
Zurück zum Zitat Jernigan TL, Archibald SL, Berhow MT et al (1991) Cerebral structure on MRI, Part I: Localization of age-related changes. Biol Psychiatry 29(1):55–67PubMedCrossRef Jernigan TL, Archibald SL, Berhow MT et al (1991) Cerebral structure on MRI, Part I: Localization of age-related changes. Biol Psychiatry 29(1):55–67PubMedCrossRef
26.
Zurück zum Zitat Johnson DK, Barrow W, Anderson R et al (2010) Diagnostic utility of cerebral white matter integrity in early Alzheimer’s disease. Int J Neurosci 120(8):544–550PubMedCrossRef Johnson DK, Barrow W, Anderson R et al (2010) Diagnostic utility of cerebral white matter integrity in early Alzheimer’s disease. Int J Neurosci 120(8):544–550PubMedCrossRef
27.
Zurück zum Zitat Jolles J (1986) Cognitive, emotional and behavioral dysfunctions in aging and dementia. Prog Brain Res 70:15–39PubMedCrossRef Jolles J (1986) Cognitive, emotional and behavioral dysfunctions in aging and dementia. Prog Brain Res 70:15–39PubMedCrossRef
28.
Zurück zum Zitat Kemper T (1994) Neuroanatomical and neuropathological changes during aging and dementia. In: Albert ML, Knoefel JE (eds) Clinical neurology of aging. Oxford University Press, New York, pp 3–67 Kemper T (1994) Neuroanatomical and neuropathological changes during aging and dementia. In: Albert ML, Knoefel JE (eds) Clinical neurology of aging. Oxford University Press, New York, pp 3–67
29.
Zurück zum Zitat Kuczynski B, Targan E, Madison C et al (2010) White matter integrity and cortical metabolic associations in aging and dementia. Alzheimers Dement 6(1):54–62PubMedCrossRef Kuczynski B, Targan E, Madison C et al (2010) White matter integrity and cortical metabolic associations in aging and dementia. Alzheimers Dement 6(1):54–62PubMedCrossRef
30.
Zurück zum Zitat Lee C, Lopez OL, Becker JT et al (2009) Imaging cerebral blood flow in the cognitively normal aging brain with arterial spin labeling: implications for imaging of neurodegenerative disease. J Neuroimaging 19(4):344–352PubMedCrossRef Lee C, Lopez OL, Becker JT et al (2009) Imaging cerebral blood flow in the cognitively normal aging brain with arterial spin labeling: implications for imaging of neurodegenerative disease. J Neuroimaging 19(4):344–352PubMedCrossRef
31.
Zurück zum Zitat Levenson CW, Cutler RG, Ladenheim B et al (2004) Role of dietary iron restriction in a mouse model of Parkinson’s disease. Exp Neurol 190(2):506–514PubMedCrossRef Levenson CW, Cutler RG, Ladenheim B et al (2004) Role of dietary iron restriction in a mouse model of Parkinson’s disease. Exp Neurol 190(2):506–514PubMedCrossRef
32.
Zurück zum Zitat Maudsley A, Domenig C, Govind V et al (2009) Mapping of brain metabolite distributions by volumetric proton MR spectroscopic imaging (MRSI). Magn Reson Med 61:548–559PubMedCrossRef Maudsley A, Domenig C, Govind V et al (2009) Mapping of brain metabolite distributions by volumetric proton MR spectroscopic imaging (MRSI). Magn Reson Med 61:548–559PubMedCrossRef
33.
Zurück zum Zitat Meyer JS, Kawamura J, Terayama Y (1994) Cerebral blood flow and metabolism with normal and abnormal aging. In: Albert ML, Knoefel JE (eds) Clinical neurology of aging. Oxford University Press, London, pp 214–234 Meyer JS, Kawamura J, Terayama Y (1994) Cerebral blood flow and metabolism with normal and abnormal aging. In: Albert ML, Knoefel JE (eds) Clinical neurology of aging. Oxford University Press, London, pp 214–234
34.
Zurück zum Zitat Milton WJ, Atlas SW, Lexa FJ et al (1991) Deep gray matter hypointensity patterns with aging in healthy adults: MR imaging at 1.5 T. Radiology 181(3):715–719PubMed Milton WJ, Atlas SW, Lexa FJ et al (1991) Deep gray matter hypointensity patterns with aging in healthy adults: MR imaging at 1.5 T. Radiology 181(3):715–719PubMed
35.
Zurück zum Zitat Moseley M (2002) Diffusion tensor imaging and aging – a review. NMR Biomed 15(7–8):553–560 Moseley M (2002) Diffusion tensor imaging and aging – a review. NMR Biomed 15(7–8):553–560
36.
Zurück zum Zitat Mu Q, Xie J, Wen Z et al (1999) A quantitative MR study of the hippocampal formation, the amygdala, and the temporal horn of the lateral ventricle in healthy subjects 40 to 90 years of age. AJNR Am J Neuroradiol 20(2):207–211PubMed Mu Q, Xie J, Wen Z et al (1999) A quantitative MR study of the hippocampal formation, the amygdala, and the temporal horn of the lateral ventricle in healthy subjects 40 to 90 years of age. AJNR Am J Neuroradiol 20(2):207–211PubMed
37.
Zurück zum Zitat Nordahl CW, Ranganath C, Yonelinas AP et al (2006) White matter changes compromise prefrontal cortex function in healthy elderly individuals. J Cogn Neurosci 18(3):418–429PubMedCrossRef Nordahl CW, Ranganath C, Yonelinas AP et al (2006) White matter changes compromise prefrontal cortex function in healthy elderly individuals. J Cogn Neurosci 18(3):418–429PubMedCrossRef
38.
Zurück zum Zitat Ogg RJ, Langston JW, Haacke EM et al (1999) The correlation between phase shifts in gradient-echo MR images and regional brain iron concentration. Magn Reson Imaging 17(8):1141–1148PubMedCrossRef Ogg RJ, Langston JW, Haacke EM et al (1999) The correlation between phase shifts in gradient-echo MR images and regional brain iron concentration. Magn Reson Imaging 17(8):1141–1148PubMedCrossRef
39.
Zurück zum Zitat Parkes LM, Rashid W, Chard DT, Tofts PS (2004) Normal cerebral perfusion measurements using arterial spin labeling: reproducibility, stability, and age and gender effects. Magn Reson Med 51(4):736–743PubMedCrossRef Parkes LM, Rashid W, Chard DT, Tofts PS (2004) Normal cerebral perfusion measurements using arterial spin labeling: reproducibility, stability, and age and gender effects. Magn Reson Med 51(4):736–743PubMedCrossRef
40.
Zurück zum Zitat Peters A (2002) The effects of normal aging on myelin and nerve fibers: a review. J Neurocytol 31(8–9):581–593 Peters A (2002) The effects of normal aging on myelin and nerve fibers: a review. J Neurocytol 31(8–9):581–593
41.
Zurück zum Zitat Pfefferbaum A, Mathalon DH, Sullivan EV et al (1994) A quantitative magnetic resonance imaging study of changes in brain morphology from infancy to late adulthood. Arch Neurol 51(9):874–887PubMed Pfefferbaum A, Mathalon DH, Sullivan EV et al (1994) A quantitative magnetic resonance imaging study of changes in brain morphology from infancy to late adulthood. Arch Neurol 51(9):874–887PubMed
42.
Zurück zum Zitat Raz N, Rodriguez KM (2006) Differential aging of the brain: patterns, cognitive correlates and modifiers. Neurosci Biobehav Rev 30(6):730–748PubMedCrossRef Raz N, Rodriguez KM (2006) Differential aging of the brain: patterns, cognitive correlates and modifiers. Neurosci Biobehav Rev 30(6):730–748PubMedCrossRef
43.
Zurück zum Zitat Raz N (200) Aging of the brain and its impact on cognitive performance: integration of structural and functionel findings. In: Craik FIM, Salthouse TA (eds) Handbook of aging and cognition, vol 2. Lawrence Erlbaum, Hillsdale, NY, pp 1–90 Raz N (200) Aging of the brain and its impact on cognitive performance: integration of structural and functionel findings. In: Craik FIM, Salthouse TA (eds) Handbook of aging and cognition, vol 2. Lawrence Erlbaum, Hillsdale, NY, pp 1–90
44.
Zurück zum Zitat Reed BR, Eberling JL, Mungas D et al (2004) Effects of white matter lesions and lacunes on cortical function. Arch Neurol 61(10):1545–1550PubMedCrossRef Reed BR, Eberling JL, Mungas D et al (2004) Effects of white matter lesions and lacunes on cortical function. Arch Neurol 61(10):1545–1550PubMedCrossRef
45.
Zurück zum Zitat Rees S (1976) A quantitative electron microscopic study of the ageing human cerebral cortex. Acta Neuropathol 36(4):347–362PubMedCrossRef Rees S (1976) A quantitative electron microscopic study of the ageing human cerebral cortex. Acta Neuropathol 36(4):347–362PubMedCrossRef
46.
Zurück zum Zitat Salat DH, Tuch DS, Hevelone ND et al (2005) Age-related changes in prefrontal white matter measured by diffusion tensor imaging. Ann N Y Acad Sci 1064:37–49PubMedCrossRef Salat DH, Tuch DS, Hevelone ND et al (2005) Age-related changes in prefrontal white matter measured by diffusion tensor imaging. Ann N Y Acad Sci 1064:37–49PubMedCrossRef
47.
Zurück zum Zitat Scheltens P, Barkhof F, Valk J et al (1992) White matter lesions on magnetic resonance imaging in clinically diagnosed Alzheimer’s disease. Evidence for heterogeneity. Brain 115(Pt 3):735–748PubMedCrossRef Scheltens P, Barkhof F, Valk J et al (1992) White matter lesions on magnetic resonance imaging in clinically diagnosed Alzheimer’s disease. Evidence for heterogeneity. Brain 115(Pt 3):735–748PubMedCrossRef
48.
Zurück zum Zitat Schenck JF, Zimmerman EA, Li Z et al (2006) High-field magnetic resonance imaging of brain iron in Alzheimer disease. Top Magn Reson Imaging 17(1):41–50PubMedCrossRef Schenck JF, Zimmerman EA, Li Z et al (2006) High-field magnetic resonance imaging of brain iron in Alzheimer disease. Top Magn Reson Imaging 17(1):41–50PubMedCrossRef
49.
Zurück zum Zitat Song SK, Sun SW, Ju WK et al (2003) Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. Neuroimage 20(3):1714–1722PubMedCrossRef Song SK, Sun SW, Ju WK et al (2003) Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. Neuroimage 20(3):1714–1722PubMedCrossRef
50.
Zurück zum Zitat Song SK, Sun SW, Ramsbottom MJ et al (2002) Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. Neuroimage 17(3):1429–1436PubMedCrossRef Song SK, Sun SW, Ramsbottom MJ et al (2002) Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. Neuroimage 17(3):1429–1436PubMedCrossRef
51.
Zurück zum Zitat Sullivan EV, Adalsteinsson E, Hedehus M et al (2001) Equivalent disruption of regional white matter microstructure in ageing healthy men and women. Neuroreport 12(1):99–104PubMedCrossRef Sullivan EV, Adalsteinsson E, Hedehus M et al (2001) Equivalent disruption of regional white matter microstructure in ageing healthy men and women. Neuroreport 12(1):99–104PubMedCrossRef
52.
Zurück zum Zitat Sullivan EV, Rohlfing T, Pfefferbaum A (2010) Longitudinal study of callosal microstructure in the normal adult aging brain using quantitative DTI fiber tracking. Dev Neuropsychol 35(3):233–256PubMedCrossRef Sullivan EV, Rohlfing T, Pfefferbaum A (2010) Longitudinal study of callosal microstructure in the normal adult aging brain using quantitative DTI fiber tracking. Dev Neuropsychol 35(3):233–256PubMedCrossRef
53.
Zurück zum Zitat Sullivan EV, Rohlfing T, Pfefferbaum A (2010) Quantitative fiber tracking of lateral and interhemispheric white matter systems in normal aging: relations to timed performance. Neurobiol Aging 31(3):464–481PubMedCrossRef Sullivan EV, Rohlfing T, Pfefferbaum A (2010) Quantitative fiber tracking of lateral and interhemispheric white matter systems in normal aging: relations to timed performance. Neurobiol Aging 31(3):464–481PubMedCrossRef
54.
Zurück zum Zitat Thomas LO, Boyko OB, Anthony DC, Burger PC (1993) MR detection of brain iron. AJNR Am J Neuroradiol 14(5):1043–1048PubMed Thomas LO, Boyko OB, Anthony DC, Burger PC (1993) MR detection of brain iron. AJNR Am J Neuroradiol 14(5):1043–1048PubMed
55.
Zurück zum Zitat Tisserand DJ, Jolles J (2003) On the involvement of prefrontal networks in cognitive ageing. Cortex 39(4–5):1107–1128 Tisserand DJ, Jolles J (2003) On the involvement of prefrontal networks in cognitive ageing. Cortex 39(4–5):1107–1128
56.
Zurück zum Zitat Tisserand DJ, Pruessner JC, Sanz Arigita EJ et al (2002) Regional frontal cortical volumes decrease differentially in aging: a MRI study to compare volumetric approaches and voxel-based morphometry. Neuroimage 17(2):657–669PubMedCrossRef Tisserand DJ, Pruessner JC, Sanz Arigita EJ et al (2002) Regional frontal cortical volumes decrease differentially in aging: a MRI study to compare volumetric approaches and voxel-based morphometry. Neuroimage 17(2):657–669PubMedCrossRef
57.
Zurück zum Zitat Tisserand DJ, Visser PJ, van Boxtel MP, Jolles J (2000) The relation between global and limbic brain volumes on MRI and cognitive performance in healthy individuals across the age range. Neurobiol Aging 21(4):569–576PubMedCrossRef Tisserand DJ, Visser PJ, van Boxtel MP, Jolles J (2000) The relation between global and limbic brain volumes on MRI and cognitive performance in healthy individuals across the age range. Neurobiol Aging 21(4):569–576PubMedCrossRef
58.
Zurück zum Zitat Tullberg M, Fletcher E, DeCarli C et al (2004) White matter lesions impair frontal lobe function regardless of their location. Neurology 63(2):246–253PubMed Tullberg M, Fletcher E, DeCarli C et al (2004) White matter lesions impair frontal lobe function regardless of their location. Neurology 63(2):246–253PubMed
59.
Zurück zum Zitat Van der Werf YD, Tisserand DJ, Visser PJ et al (2001) Thalamic volume predicts performance on tests of cognitive speed and decreases in healthy aging. A magnetic resonance imaging-based volumetric analysis. Brain Res Cogn Brain Res 11(3):377–385CrossRef Van der Werf YD, Tisserand DJ, Visser PJ et al (2001) Thalamic volume predicts performance on tests of cognitive speed and decreases in healthy aging. A magnetic resonance imaging-based volumetric analysis. Brain Res Cogn Brain Res 11(3):377–385CrossRef
60.
Zurück zum Zitat Vernooij MW, de Groot M, Van der Lugt A et al (2008) White matter atrophy and lesion formation explain the loss of structural integrity of white matter in aging. Neuroimage 43(3):470–477PubMedCrossRef Vernooij MW, de Groot M, Van der Lugt A et al (2008) White matter atrophy and lesion formation explain the loss of structural integrity of white matter in aging. Neuroimage 43(3):470–477PubMedCrossRef
61.
Zurück zum Zitat Volkow ND, Wang GJ, Fowler JS et al (1996) Measuring age-related changes in dopamine D2 receptors with 11C-raclopride and 18F-N-methylspiroperidol. Psychiatry Res 67(1):11–16PubMedCrossRef Volkow ND, Wang GJ, Fowler JS et al (1996) Measuring age-related changes in dopamine D2 receptors with 11C-raclopride and 18F-N-methylspiroperidol. Psychiatry Res 67(1):11–16PubMedCrossRef
62.
Zurück zum Zitat Wenz F, Rempp K, Brix G et al (1996) Age dependency of the regional cerebral blood volume (rCBV) measured with dynamic susceptibility contrast MR imaging (DSC). Magn Reson Imaging 14(2):157–162PubMedCrossRef Wenz F, Rempp K, Brix G et al (1996) Age dependency of the regional cerebral blood volume (rCBV) measured with dynamic susceptibility contrast MR imaging (DSC). Magn Reson Imaging 14(2):157–162PubMedCrossRef
Metadaten
Titel
Normales Altern und seine Bildgebungskorrelate
verfasst von
Dr. L. Schuster
M. Essig
J. Schröder
Publikationsdatum
01.04.2011
Verlag
Springer-Verlag
Erschienen in
Die Radiologie / Ausgabe 4/2011
Print ISSN: 2731-7048
Elektronische ISSN: 2731-7056
DOI
https://doi.org/10.1007/s00117-010-2093-7

Weitere Artikel der Ausgabe 4/2011

Die Radiologie 4/2011 Zur Ausgabe

Berufsverband der Deutschen Radiologen (BDR) - Mitteilungen

Mitteilungen BDR

Darf man die Behandlung eines Neonazis ablehnen?

08.05.2024 Gesellschaft Nachrichten

In einer Leseranfrage in der Zeitschrift Journal of the American Academy of Dermatology möchte ein anonymer Dermatologe bzw. eine anonyme Dermatologin wissen, ob er oder sie einen Patienten behandeln muss, der eine rassistische Tätowierung trägt.

Ein Drittel der jungen Ärztinnen und Ärzte erwägt abzuwandern

07.05.2024 Klinik aktuell Nachrichten

Extreme Arbeitsverdichtung und kaum Supervision: Dr. Andrea Martini, Sprecherin des Bündnisses Junge Ärztinnen und Ärzte (BJÄ) über den Frust des ärztlichen Nachwuchses und die Vorteile des Rucksack-Modells.

Endlich: Zi zeigt, mit welchen PVS Praxen zufrieden sind

IT für Ärzte Nachrichten

Darauf haben viele Praxen gewartet: Das Zi hat eine Liste von Praxisverwaltungssystemen veröffentlicht, die von Nutzern positiv bewertet werden. Eine gute Grundlage für wechselwillige Ärztinnen und Psychotherapeuten.

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.