Skip to main content
Erschienen in: Inflammation 4/2023

23.05.2023 | RESEARCH

Phillygenin Ameliorates Carbon Tetrachloride-Induced Liver Fibrosis: Suppression of Inflammation and Wnt/β-Catenin Signaling Pathway

verfasst von: Cheng Wang, Yanfang Liu, Lihong Gong, Xinyan Xue, Ke Fu, Cheng Ma, Yunxia Li

Erschienen in: Inflammation | Ausgabe 4/2023

Einloggen, um Zugang zu erhalten

Abstract

Liver fibrosis (LF) is caused by the chronic wound healing response to liver injury from various origins. Among the causes, inflammatory response is the central trigger of LF. Phillygenin (PHI) is a lignan derived from Forsythia suspensa, which has significant anti-inflammatory properties. However, the effect of PHI on improving LF and the underlying mechanism have rarely been studied. In this study, we used carbon tetrachloride (CCl4) to establish a mouse model of LF. Through histological analysis of liver tissue, and measurement of the levels of hepatocyte damage markers (ALT, AST, TBIL, TBA) and four indicators of LF (Col IV, HA, LN, PC-III) in serum, it was shown that PHI improved liver function and reduced the progress of LF. Subsequently, the detection of fibrogenic biomarkers in liver tissue showed that PHI inhibited the activation of hepatic stellate cells (HSCs). Next, the expression of inflammatory markers in liver tissue/serum was detected by immunohistochemistry, RT-qPCR, and ELISA, suggesting that PHI inhibited inflammation during LF. Similarly, in vitro experiments also confirmed that PHI could inhibit lipopolysaccharide-induced inflammatory responses in RAW264.7 cells, which showed strong anti-inflammatory effects. In addition, the results of network pharmacology, molecular docking, RT-qPCR and western blot confirmed that PHI could alleviate CCl4-induced LF by inhibiting the Wnt/β-catenin pathway. In conclusion, our research showed that PHI curbed LF through inhibition of HSC activation and collagen accumulation via inhibiting multiple profibrogenic factors, modulating a variety of inflammatory factors, and suppressing the Wnt/β-catenin pathway.
Literatur
1.
Zurück zum Zitat Tacke, F., and C. Trautwein. 2015. Mechanisms of liver fibrosis resolution. Journal of hepatology 63 (4): 1038–1039.PubMedCrossRef Tacke, F., and C. Trautwein. 2015. Mechanisms of liver fibrosis resolution. Journal of hepatology 63 (4): 1038–1039.PubMedCrossRef
2.
Zurück zum Zitat Kisseleva, T., and D. Brenner. 2021. Molecular and cellular mechanisms of liver fibrosis and its regression. Nature reviews Gastroenterology & hepatology 18 (3): 151–166.CrossRef Kisseleva, T., and D. Brenner. 2021. Molecular and cellular mechanisms of liver fibrosis and its regression. Nature reviews Gastroenterology & hepatology 18 (3): 151–166.CrossRef
3.
Zurück zum Zitat Aydın, M., and K. Akçalı. 2018. Liver fibrosis. The Turkish journal of gastroenterology : The official journal of Turkish Society of Gastroenterology 29 (1): 14–21.PubMedCrossRef Aydın, M., and K. Akçalı. 2018. Liver fibrosis. The Turkish journal of gastroenterology : The official journal of Turkish Society of Gastroenterology 29 (1): 14–21.PubMedCrossRef
4.
Zurück zum Zitat Higashi, T., S.L. Friedman, and Y. Hoshida. 2017. Hepatic stellate cells as key target in liver fibrosis. Advanced Drug Delivery Reviews 121: 27–42.PubMedPubMedCentralCrossRef Higashi, T., S.L. Friedman, and Y. Hoshida. 2017. Hepatic stellate cells as key target in liver fibrosis. Advanced Drug Delivery Reviews 121: 27–42.PubMedPubMedCentralCrossRef
5.
Zurück zum Zitat Sun, M., and T. Kisseleva. 2015. Reversibility of liver fibrosis. Clinics and Research in Hepatology and Gastroenterology 39 Suppl 1(0 1):S60–63. Sun, M., and T. Kisseleva. 2015. Reversibility of liver fibrosis. Clinics and Research in Hepatology and Gastroenterology 39 Suppl 1(0 1):S60–63.
6.
Zurück zum Zitat Parola, M., and M. Pinzani. 2019. Liver fibrosis: Pathophysiology, pathogenetic targets and clinical issues. Molecular Aspects of Medicine 65: 37–55.PubMedCrossRef Parola, M., and M. Pinzani. 2019. Liver fibrosis: Pathophysiology, pathogenetic targets and clinical issues. Molecular Aspects of Medicine 65: 37–55.PubMedCrossRef
7.
Zurück zum Zitat Llovet, J.M., J. Zucman-Rossi, E. Pikarsky, B. Sangro, M. Schwartz, M. Sherman, G. Gores. 2016. Hepatocellular carcinoma. Nat Rev Dis Primers 2: 16018 Llovet, J.M., J. Zucman-Rossi, E. Pikarsky, B. Sangro, M. Schwartz, M. Sherman, G. Gores. 2016. Hepatocellular carcinoma. Nat Rev Dis Primers 2: 16018
9.
Zurück zum Zitat Du, B., L. Zhang, Y. Sun, G. Zhang, J. Yao, M. Jiang, L. Pan, and C. Sun. 2019. Phillygenin exhibits anti-inflammatory activity through modulating multiple cellular behaviors of mouse lymphocytes. Immunopharmacology and Immunotoxicology 41 (1): 76–85.PubMedCrossRef Du, B., L. Zhang, Y. Sun, G. Zhang, J. Yao, M. Jiang, L. Pan, and C. Sun. 2019. Phillygenin exhibits anti-inflammatory activity through modulating multiple cellular behaviors of mouse lymphocytes. Immunopharmacology and Immunotoxicology 41 (1): 76–85.PubMedCrossRef
10.
Zurück zum Zitat Hu, N., C. Wang, X. Dai, M. Zhou, L. Gong, L. Yu, C. Peng, and Y. Li. 2020. Phillygenin inhibits LPS-induced activation and inflammation of LX2 cells by TLR4/MyD88/NF-κB signaling pathway. Journal of Ethnopharmacology 248: 112361.PubMedCrossRef Hu, N., C. Wang, X. Dai, M. Zhou, L. Gong, L. Yu, C. Peng, and Y. Li. 2020. Phillygenin inhibits LPS-induced activation and inflammation of LX2 cells by TLR4/MyD88/NF-κB signaling pathway. Journal of Ethnopharmacology 248: 112361.PubMedCrossRef
11.
Zurück zum Zitat Katoh, M. 2018. Multi-layered prevention and treatment of chronic inflammation, organ fibrosis and cancer associated with canonical WNT/β-catenin signaling activation (Review). International Journal of Molecular Medicine 42 (2): 713–725.PubMedPubMedCentral Katoh, M. 2018. Multi-layered prevention and treatment of chronic inflammation, organ fibrosis and cancer associated with canonical WNT/β-catenin signaling activation (Review). International Journal of Molecular Medicine 42 (2): 713–725.PubMedPubMedCentral
12.
Zurück zum Zitat Schunk, S.J., J. Floege, D. Fliser, and T. Speer. 2021. WNT-β-catenin signalling - a versatile player in kidney injury and repair. Nature Reviews. Nephrology 17 (3): 172–184.PubMedCrossRef Schunk, S.J., J. Floege, D. Fliser, and T. Speer. 2021. WNT-β-catenin signalling - a versatile player in kidney injury and repair. Nature Reviews. Nephrology 17 (3): 172–184.PubMedCrossRef
13.
Zurück zum Zitat Guo, Y., L. Xiao, L. Sun, and F. Liu. 2012. Wnt/beta-catenin signaling: A promising new target for fibrosis diseases. Physiological Research 61 (4): 337–346.PubMedCrossRef Guo, Y., L. Xiao, L. Sun, and F. Liu. 2012. Wnt/beta-catenin signaling: A promising new target for fibrosis diseases. Physiological Research 61 (4): 337–346.PubMedCrossRef
14.
Zurück zum Zitat Li, W., C. Zhu, Y. Li, Q. Wu, and R. Gao. 2014. Mest attenuates CCl4-induced liver fibrosis in rats by inhibiting the Wnt/β-catenin signaling pathway. Gut Liver 8 (3): 282–291.PubMedCrossRef Li, W., C. Zhu, Y. Li, Q. Wu, and R. Gao. 2014. Mest attenuates CCl4-induced liver fibrosis in rats by inhibiting the Wnt/β-catenin signaling pathway. Gut Liver 8 (3): 282–291.PubMedCrossRef
15.
Zurück zum Zitat Rong, X., J. Liu, X. Yao, T. Jiang, Y. Wang, and F. Xie. 2019. Human bone marrow mesenchymal stem cells-derived exosomes alleviate liver fibrosis through the Wnt/β-catenin pathway. Stem Cell Research & Therapy 10 (1): 98.CrossRef Rong, X., J. Liu, X. Yao, T. Jiang, Y. Wang, and F. Xie. 2019. Human bone marrow mesenchymal stem cells-derived exosomes alleviate liver fibrosis through the Wnt/β-catenin pathway. Stem Cell Research & Therapy 10 (1): 98.CrossRef
16.
Zurück zum Zitat Liu, Q.W., Y.M. Ying, J.X. Zhou, W.J. Zhang, Z.X. Liu, B.B. Jia, H.C. Gu, C.Y. Zhao, X.H. Guan, K.Y. Deng, et al. 2022. Human amniotic mesenchymal stem cells-derived IGFBP-3, DKK-3, and DKK-1 attenuate liver fibrosis through inhibiting hepatic stellate cell activation by blocking Wnt/β-catenin signaling pathway in mice. Stem Cell Research & Therapy 13 (1): 224.CrossRef Liu, Q.W., Y.M. Ying, J.X. Zhou, W.J. Zhang, Z.X. Liu, B.B. Jia, H.C. Gu, C.Y. Zhao, X.H. Guan, K.Y. Deng, et al. 2022. Human amniotic mesenchymal stem cells-derived IGFBP-3, DKK-3, and DKK-1 attenuate liver fibrosis through inhibiting hepatic stellate cell activation by blocking Wnt/β-catenin signaling pathway in mice. Stem Cell Research & Therapy 13 (1): 224.CrossRef
17.
Zurück zum Zitat Miao, C., Y. Yang, X. He, C. Huang, Y. Huang, L. Zhang, X. Lv, Y. Jin, and J. Li. 2013. Wnt signaling in liver fibrosis: Progress, challenges and potential directions. Biochimie 95 (12): 2326–2335.PubMedCrossRef Miao, C., Y. Yang, X. He, C. Huang, Y. Huang, L. Zhang, X. Lv, Y. Jin, and J. Li. 2013. Wnt signaling in liver fibrosis: Progress, challenges and potential directions. Biochimie 95 (12): 2326–2335.PubMedCrossRef
18.
Zurück zum Zitat Nishikawa, K., Y. Osawa, K. Kimura. 2018. Wnt/β-catenin signaling as a potential target for the treatment of liver cirrhosis using antifibrotic drugs. International Journal of Molecular Sciences 19(10) Nishikawa, K., Y. Osawa, K. Kimura. 2018. Wnt/β-catenin signaling as a potential target for the treatment of liver cirrhosis using antifibrotic drugs. International Journal of Molecular Sciences 19(10)
19.
Zurück zum Zitat Wang, J., L. Li, L. Li, Q. Yan, J. Li, and T. Xu. 2018. Emerging role and therapeutic implication of Wnt signaling pathways in liver fibrosis. Gene 674: 57–69.PubMedCrossRef Wang, J., L. Li, L. Li, Q. Yan, J. Li, and T. Xu. 2018. Emerging role and therapeutic implication of Wnt signaling pathways in liver fibrosis. Gene 674: 57–69.PubMedCrossRef
20.
Zurück zum Zitat Seki, E., and D. Brenner. 2015. Recent advancement of molecular mechanisms of liver fibrosis. Journal of hepato-biliary-pancreatic sciences 22 (7): 512–518.PubMedPubMedCentralCrossRef Seki, E., and D. Brenner. 2015. Recent advancement of molecular mechanisms of liver fibrosis. Journal of hepato-biliary-pancreatic sciences 22 (7): 512–518.PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Sun, M., T. Kisseleva. 2015. Reversibility of liver fibrosis. Clinics and Research in Hepatology and Gastroenterology S60–63 Sun, M., T. Kisseleva. 2015. Reversibility of liver fibrosis. Clinics and Research in Hepatology and Gastroenterology S60–63
22.
Zurück zum Zitat Jung, Y., and H. Yim. 2017. Reversal of liver cirrhosis: Current evidence and expectations. The Korean journal of internal medicine 32 (2): 213–228.PubMedPubMedCentralCrossRef Jung, Y., and H. Yim. 2017. Reversal of liver cirrhosis: Current evidence and expectations. The Korean journal of internal medicine 32 (2): 213–228.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Dhar, D., J. Baglieri, T. Kisseleva, and D. Brenner. 2020. Mechanisms of liver fibrosis and its role in liver cancer. Experimental biology and medicine (Maywood, NJ) 245 (2): 96–108.CrossRef Dhar, D., J. Baglieri, T. Kisseleva, and D. Brenner. 2020. Mechanisms of liver fibrosis and its role in liver cancer. Experimental biology and medicine (Maywood, NJ) 245 (2): 96–108.CrossRef
24.
Zurück zum Zitat Campana, L., and J. Iredale. 2017. Regression of liver fibrosis. Seminars in liver disease 37 (1): 1–10.PubMedCrossRef Campana, L., and J. Iredale. 2017. Regression of liver fibrosis. Seminars in liver disease 37 (1): 1–10.PubMedCrossRef
25.
Zurück zum Zitat Yanguas, S., B. Cogliati, J. Willebrords, M. Maes, I. Colle, B. van den Bossche, C. de Oliveira, W. Andraus, V. Alves, I. Leclercq, et al. 2016. Experimental models of liver fibrosis. Archives of toxicology 90 (5): 1025–1048.PubMedCrossRef Yanguas, S., B. Cogliati, J. Willebrords, M. Maes, I. Colle, B. van den Bossche, C. de Oliveira, W. Andraus, V. Alves, I. Leclercq, et al. 2016. Experimental models of liver fibrosis. Archives of toxicology 90 (5): 1025–1048.PubMedCrossRef
26.
Zurück zum Zitat Bao, Y., L. Wang, H. Pan, T. Zhang, Y. Chen, S. Xu, X. Mao, and S. Li. 2021. Animal and organoid models of liver fibrosis. Frontiers in physiology 12: 666138.PubMedPubMedCentralCrossRef Bao, Y., L. Wang, H. Pan, T. Zhang, Y. Chen, S. Xu, X. Mao, and S. Li. 2021. Animal and organoid models of liver fibrosis. Frontiers in physiology 12: 666138.PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Scholten, D., J. Trebicka, C. Liedtke, and R. Weiskirchen. 2015. The carbon tetrachloride model in mice. Laboratory animals 49: 4–11.PubMedCrossRef Scholten, D., J. Trebicka, C. Liedtke, and R. Weiskirchen. 2015. The carbon tetrachloride model in mice. Laboratory animals 49: 4–11.PubMedCrossRef
28.
Zurück zum Zitat Chang, M.J., T.M. Hung, B.S. Min, J.C. Kim, M.H. Woo, J.S. Choi, H.K. Lee, K. Bae. 2008. Lignans from the fruits of Forsythia suspensa (Thunb.) Vahl protect high-density lipoprotein during oxidative stress. Bioscience, Biotechnology and Biochemistry 72(10): 2750–2755 Chang, M.J., T.M. Hung, B.S. Min, J.C. Kim, M.H. Woo, J.S. Choi, H.K. Lee, K. Bae. 2008. Lignans from the fruits of Forsythia suspensa (Thunb.) Vahl protect high-density lipoprotein during oxidative stress. Bioscience, Biotechnology and Biochemistry 72(10): 2750–2755
29.
Zurück zum Zitat Li, R.J., C. Qin, G.R. Huang, L.J. Liao, X.Q. Mo, and Y.Q. Huang. 2022. Phillygenin inhibits helicobacter pylori by preventing biofilm formation and inducing ATP Leakage. Frontiers in Microbiology 13: 863624.PubMedPubMedCentralCrossRef Li, R.J., C. Qin, G.R. Huang, L.J. Liao, X.Q. Mo, and Y.Q. Huang. 2022. Phillygenin inhibits helicobacter pylori by preventing biofilm formation and inducing ATP Leakage. Frontiers in Microbiology 13: 863624.PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Feng, H., J. Zhang, K. Zhang, X. Wang, K. Zhang, Z. Guo, S. Han, L. Wang, Z. Qiu, G. Wang, et al. 2022. Phillygenin activates PKR/eIF2α pathway and induces stress granule to exert anti-avian infectious bronchitis virus. International Immunopharmacology 108: 108764.PubMedCrossRef Feng, H., J. Zhang, K. Zhang, X. Wang, K. Zhang, Z. Guo, S. Han, L. Wang, Z. Qiu, G. Wang, et al. 2022. Phillygenin activates PKR/eIF2α pathway and induces stress granule to exert anti-avian infectious bronchitis virus. International Immunopharmacology 108: 108764.PubMedCrossRef
31.
Zurück zum Zitat Song, W., J. Wu, L. Yu, and Z. Peng. 2018. Evaluation of the pharmacokinetics and hepatoprotective effects of phillygenin in mouse. BioMed Research International 2018: 7964318.PubMedPubMedCentralCrossRef Song, W., J. Wu, L. Yu, and Z. Peng. 2018. Evaluation of the pharmacokinetics and hepatoprotective effects of phillygenin in mouse. BioMed Research International 2018: 7964318.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Wang, C., C. Ma, K. Fu, Y. Liu, L. Gong, C. Peng, and Y. Li. 2022. Hepatoprotective effect of phillygenin on carbon tetrachloride-induced liver fibrosis and its effects on short chain fatty acid and bile acid metabolism. Journal of Ethnopharmacology 296: 115478.PubMedCrossRef Wang, C., C. Ma, K. Fu, Y. Liu, L. Gong, C. Peng, and Y. Li. 2022. Hepatoprotective effect of phillygenin on carbon tetrachloride-induced liver fibrosis and its effects on short chain fatty acid and bile acid metabolism. Journal of Ethnopharmacology 296: 115478.PubMedCrossRef
33.
Zurück zum Zitat Ma, C., C. Wang, Y. Zhang, Y. Li, K. Fu, L. Gong, H. Zhou, and Y. Li. 2023. Phillygenin inhibited M1 macrophage polarization and reduced hepatic stellate cell activation by inhibiting macrophage exosomal miR-125b-5p. Biomedicine & Pharmacotherapy 159: 114264.CrossRef Ma, C., C. Wang, Y. Zhang, Y. Li, K. Fu, L. Gong, H. Zhou, and Y. Li. 2023. Phillygenin inhibited M1 macrophage polarization and reduced hepatic stellate cell activation by inhibiting macrophage exosomal miR-125b-5p. Biomedicine & Pharmacotherapy 159: 114264.CrossRef
34.
Zurück zum Zitat Li, X., L. Wang, and C. Chen. 2017. Effects of exogenous thymosin β4 on carbon tetrachloride-induced liver injury and fibrosis. Scientific reports 7 (1): 5872.PubMedPubMedCentralCrossRef Li, X., L. Wang, and C. Chen. 2017. Effects of exogenous thymosin β4 on carbon tetrachloride-induced liver injury and fibrosis. Scientific reports 7 (1): 5872.PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Krenkel, O., and F. Tacke. 2017. Liver macrophages in tissue homeostasis and disease. Nature reviews Immunology 17 (5): 306–321.PubMedCrossRef Krenkel, O., and F. Tacke. 2017. Liver macrophages in tissue homeostasis and disease. Nature reviews Immunology 17 (5): 306–321.PubMedCrossRef
37.
Zurück zum Zitat Li, X., Q. Jin, Q. Yao, B. Xu, L. Li, S. Zhang, and C. Tu. 2018. The flavonoid quercetin ameliorates liver inflammation and fibrosis by regulating hepatic macrophages activation and polarization in mice. Frontiers in pharmacology 9: 72.PubMedPubMedCentralCrossRef Li, X., Q. Jin, Q. Yao, B. Xu, L. Li, S. Zhang, and C. Tu. 2018. The flavonoid quercetin ameliorates liver inflammation and fibrosis by regulating hepatic macrophages activation and polarization in mice. Frontiers in pharmacology 9: 72.PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Yan, Z., D. Wang, C. An, H. Xu, Q. Zhao, Y. Shi, N. Song, B. Deng, X. Guo, J. Rao, et al. 2021. viaThe antimicrobial peptide YD attenuates inflammation miR-155 targeting CASP12 during liver fibrosis. Acta pharmaceutica Sinica B 11 (1): 100–111.PubMedCrossRef Yan, Z., D. Wang, C. An, H. Xu, Q. Zhao, Y. Shi, N. Song, B. Deng, X. Guo, J. Rao, et al. 2021. viaThe antimicrobial peptide YD attenuates inflammation miR-155 targeting CASP12 during liver fibrosis. Acta pharmaceutica Sinica B 11 (1): 100–111.PubMedCrossRef
39.
Zurück zum Zitat Nusse, R., and H. Clevers. 2017. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell 169 (6): 985–999.PubMedCrossRef Nusse, R., and H. Clevers. 2017. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell 169 (6): 985–999.PubMedCrossRef
40.
Zurück zum Zitat Tokunaga, Y., Y. Osawa, T. Ohtsuki, Y. Hayashi, K. Yamaji, D. Yamane, M. Hara, K. Munekata, K. Tsukiyama-Kohara, T. Hishima, et al. 2017. Selective inhibitor of Wnt/β-catenin/CBP signaling ameliorates hepatitis C virus-induced liver fibrosis in mouse model. Science and Reports 7 (1): 325.CrossRef Tokunaga, Y., Y. Osawa, T. Ohtsuki, Y. Hayashi, K. Yamaji, D. Yamane, M. Hara, K. Munekata, K. Tsukiyama-Kohara, T. Hishima, et al. 2017. Selective inhibitor of Wnt/β-catenin/CBP signaling ameliorates hepatitis C virus-induced liver fibrosis in mouse model. Science and Reports 7 (1): 325.CrossRef
41.
Zurück zum Zitat Jiang, M.Q., L. Wang, A.L. Cao, J. Zhao, X. Chen, Y.M. Wang, H. Wang, and W. Peng. 2015. HuangQi decoction improves renal tubulointerstitial fibrosis in mice by inhibiting the up-regulation of Wnt/β-catenin signaling pathway. Cellular Physiology and Biochemistry 36 (2): 655–669.PubMedCrossRef Jiang, M.Q., L. Wang, A.L. Cao, J. Zhao, X. Chen, Y.M. Wang, H. Wang, and W. Peng. 2015. HuangQi decoction improves renal tubulointerstitial fibrosis in mice by inhibiting the up-regulation of Wnt/β-catenin signaling pathway. Cellular Physiology and Biochemistry 36 (2): 655–669.PubMedCrossRef
42.
Zurück zum Zitat Guan, S., and J. Zhou. 2017. Frizzled-7 mediates TGF-β-induced pulmonary fibrosis by transmitting non-canonical Wnt signaling. Experimental Cell Research 359 (1): 226–234.PubMedCrossRef Guan, S., and J. Zhou. 2017. Frizzled-7 mediates TGF-β-induced pulmonary fibrosis by transmitting non-canonical Wnt signaling. Experimental Cell Research 359 (1): 226–234.PubMedCrossRef
43.
Zurück zum Zitat Nishikawa, K., Y. Osawa, K. Kimura. 2018. Wnt/β-catenin signaling as a potential target for the treatment of liver cirrhosis using antifibrotic drugs. International Journal of Molecular Sciences 19(10) Nishikawa, K., Y. Osawa, K. Kimura. 2018. Wnt/β-catenin signaling as a potential target for the treatment of liver cirrhosis using antifibrotic drugs. International Journal of Molecular Sciences 19(10)
44.
Zurück zum Zitat Jiang, F., C.J. Parsons, and B. Stefanovic. 2006. Gene expression profile of quiescent and activated rat hepatic stellate cells implicates Wnt signaling pathway in activation. Journal of Hepatology 45 (3): 401–409.PubMedCrossRef Jiang, F., C.J. Parsons, and B. Stefanovic. 2006. Gene expression profile of quiescent and activated rat hepatic stellate cells implicates Wnt signaling pathway in activation. Journal of Hepatology 45 (3): 401–409.PubMedCrossRef
45.
Zurück zum Zitat Koehler, A., J. Schlupf, M. Schneider, B. Kraft, C. Winter, and J. Kashef. 2013. Loss of Xenopus cadherin-11 leads to increased Wnt/β-catenin signaling and up-regulation of target genes c-myc and cyclin D1 in neural crest. Developmental Biology 383 (1): 132–145.PubMedCrossRef Koehler, A., J. Schlupf, M. Schneider, B. Kraft, C. Winter, and J. Kashef. 2013. Loss of Xenopus cadherin-11 leads to increased Wnt/β-catenin signaling and up-regulation of target genes c-myc and cyclin D1 in neural crest. Developmental Biology 383 (1): 132–145.PubMedCrossRef
46.
Zurück zum Zitat Huang, G.R., S.J. Wei, Y.Q. Huang, W. Xing, L.Y. Wang, and L.L. Liang. 2018. Mechanism of combined use of vitamin D and puerarin in anti-hepatic fibrosis by regulating the Wnt/β-catenin signalling pathway. World Journal of Gastroenterology 24 (36): 4178–4185.PubMedPubMedCentralCrossRef Huang, G.R., S.J. Wei, Y.Q. Huang, W. Xing, L.Y. Wang, and L.L. Liang. 2018. Mechanism of combined use of vitamin D and puerarin in anti-hepatic fibrosis by regulating the Wnt/β-catenin signalling pathway. World Journal of Gastroenterology 24 (36): 4178–4185.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Zhang, C., X.Q. Liu, H.N. Sun, X.M. Meng, Y.W. Bao, H.P. Zhang, F.M. Pan, and C. Zhang. 2018. Octreotide attenuates hepatic fibrosis and hepatic stellate cells proliferation and activation by inhibiting Wnt/β-catenin signaling pathway, c-Myc and cyclin D1. International Immunopharmacology 63: 183–190.PubMedCrossRef Zhang, C., X.Q. Liu, H.N. Sun, X.M. Meng, Y.W. Bao, H.P. Zhang, F.M. Pan, and C. Zhang. 2018. Octreotide attenuates hepatic fibrosis and hepatic stellate cells proliferation and activation by inhibiting Wnt/β-catenin signaling pathway, c-Myc and cyclin D1. International Immunopharmacology 63: 183–190.PubMedCrossRef
Metadaten
Titel
Phillygenin Ameliorates Carbon Tetrachloride-Induced Liver Fibrosis: Suppression of Inflammation and Wnt/β-Catenin Signaling Pathway
verfasst von
Cheng Wang
Yanfang Liu
Lihong Gong
Xinyan Xue
Ke Fu
Cheng Ma
Yunxia Li
Publikationsdatum
23.05.2023
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 4/2023
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-023-01826-1

Weitere Artikel der Ausgabe 4/2023

Inflammation 4/2023 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Bei Herzinsuffizienz muss „Eisenmangel“ neu definiert werden!

16.05.2024 Herzinsuffizienz Nachrichten

Bei chronischer Herzinsuffizienz macht es einem internationalen Expertenteam zufolge wenig Sinn, die Diagnose „Eisenmangel“ am Serumferritin festzumachen. Das Team schlägt vor, sich lieber an die Transferrinsättigung zu halten.

Herzinfarkt mit 85 – trotzdem noch intensive Lipidsenkung?

16.05.2024 Hypercholesterinämie Nachrichten

Profitieren nach einem akuten Myokardinfarkt auch Betroffene über 80 Jahre noch von einer intensiven Lipidsenkung zur Sekundärprävention? Um diese Frage zu beantworten, wurden jetzt Registerdaten aus Frankreich ausgewertet.

ADHS-Medikation erhöht das kardiovaskuläre Risiko

16.05.2024 Herzinsuffizienz Nachrichten

Erwachsene, die Medikamente gegen das Aufmerksamkeitsdefizit-Hyperaktivitätssyndrom einnehmen, laufen offenbar erhöhte Gefahr, an Herzschwäche zu erkranken oder einen Schlaganfall zu erleiden. Es scheint eine Dosis-Wirkungs-Beziehung zu bestehen.

Erstmanifestation eines Diabetes-Typ-1 bei Kindern: Ein Notfall!

16.05.2024 DDG-Jahrestagung 2024 Kongressbericht

Manifestiert sich ein Typ-1-Diabetes bei Kindern, ist das ein Notfall – ebenso wie eine diabetische Ketoazidose. Die Grundsäulen der Therapie bestehen aus Rehydratation, Insulin und Kaliumgabe. Insulin ist das Medikament der Wahl zur Behandlung der Ketoazidose.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.