Skip to main content
Erschienen in: Journal of Robotic Surgery 1/2018

01.12.2017 | Review Article

Prevalence of haptic feedback in robot-mediated surgery: a systematic review of literature

verfasst von: Farshid Amirabdollahian, Salvatore Livatino, Behrad Vahedi, Radhika Gudipati, Patrick Sheen, Shan Gawrie-Mohan, Nikhil Vasdev

Erschienen in: Journal of Robotic Surgery | Ausgabe 1/2018

Einloggen, um Zugang zu erhalten

Abstract

With the successful uptake and inclusion of robotic systems in minimally invasive surgery and with the increasing application of robotic surgery (RS) in numerous surgical specialities worldwide, there is now a need to develop and enhance the technology further. One such improvement is the implementation and amalgamation of haptic feedback technology into RS which will permit the operating surgeon on the console to receive haptic information on the type of tissue being operated on. The main advantage of using this is to allow the operating surgeon to feel and control the amount of force applied to different tissues during surgery thus minimising the risk of tissue damage due to both the direct and indirect effects of excessive tissue force or tension being applied during RS. We performed a two-rater systematic review to identify the latest developments and potential avenues of improving technology in the application and implementation of haptic feedback technology to the operating surgeon on the console during RS. This review provides a summary of technological enhancements in RS, considering different stages of work, from proof of concept to cadaver tissue testing, surgery in animals, and finally real implementation in surgical practice. We identify that at the time of this review, while there is a unanimous agreement regarding need for haptic and tactile feedback, there are no solutions or products available that address this need. There is a scope and need for new developments in haptic augmentation for robot-mediated surgery with the aim of improving patient care and robotic surgical technology further.
Literatur
1.
Zurück zum Zitat Akinbiyi T, Reiley CE, Saha S et al (2006) Dynamic augmented reality for sensory substitution in robot-assisted surgical systems. In: Engineering in Medicine and Biology Society, 2006. EMBS’06. 28th Annual International Conference of the IEEE. IEEE, pp 567–570 Akinbiyi T, Reiley CE, Saha S et al (2006) Dynamic augmented reality for sensory substitution in robot-assisted surgical systems. In: Engineering in Medicine and Biology Society, 2006. EMBS’06. 28th Annual International Conference of the IEEE. IEEE, pp 567–570
2.
Zurück zum Zitat Autorino R, Kaouk JH, Stolzenburg J-U et al (2013) Current status and future directions of robotic single-site surgery: a systematic review. Eur Urol 63:266–280PubMedCrossRef Autorino R, Kaouk JH, Stolzenburg J-U et al (2013) Current status and future directions of robotic single-site surgery: a systematic review. Eur Urol 63:266–280PubMedCrossRef
3.
Zurück zum Zitat Liberati A, Altman DG, Tetzlaff J et al (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med 6(7):e1000100PubMedPubMedCentralCrossRef Liberati A, Altman DG, Tetzlaff J et al (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med 6(7):e1000100PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Maddahi Y, Ghasemloonia A, Zareinia K, Sepehri N, Sutherland GR (2016) Quantifying force and positional frequency bands in neurosurgical tasks. J Robot Surg 10:97–102PubMedCrossRef Maddahi Y, Ghasemloonia A, Zareinia K, Sepehri N, Sutherland GR (2016) Quantifying force and positional frequency bands in neurosurgical tasks. J Robot Surg 10:97–102PubMedCrossRef
5.
Zurück zum Zitat Maddahi Y, Zareinia K, Gan LS, Sutherland C, Lama S, Sutherland GR (2016) Treatment of glioma using neuroArm surgical system. BioMed Res Int 2016:1–8CrossRef Maddahi Y, Zareinia K, Gan LS, Sutherland C, Lama S, Sutherland GR (2016) Treatment of glioma using neuroArm surgical system. BioMed Res Int 2016:1–8CrossRef
6.
Zurück zum Zitat Solodova RF, Galatenko VV, Nakashidze ER et al (2016) Instrumental tactile diagnostics in robot-assisted surgery. Med Devices (Auckland, NZ) 9:377 Solodova RF, Galatenko VV, Nakashidze ER et al (2016) Instrumental tactile diagnostics in robot-assisted surgery. Med Devices (Auckland, NZ) 9:377
7.
Zurück zum Zitat Hadavand M, Mirbagheri A, Behzadipour S, Farahmand F (2014) A novel remote center of motion mechanism for the force-reflective master robot of haptic tele-surgery systems. Int J Med Robot Comput Assist Surg 10:129–139CrossRef Hadavand M, Mirbagheri A, Behzadipour S, Farahmand F (2014) A novel remote center of motion mechanism for the force-reflective master robot of haptic tele-surgery systems. Int J Med Robot Comput Assist Surg 10:129–139CrossRef
8.
Zurück zum Zitat Craig JC (1985) Tactile pattern perception and its perturbations. J Acoust Soc Am 77:238–246PubMedCrossRef Craig JC (1985) Tactile pattern perception and its perturbations. J Acoust Soc Am 77:238–246PubMedCrossRef
9.
Zurück zum Zitat Watanabe T, Fukui S (1995) A method for controlling tactile sensation of surface roughness using ultrasonic vibration. In: 1995 IEEE international conference on robotics and automation, 1995. Proceedings, vol 1. IEEE, pp 1134–1139 Watanabe T, Fukui S (1995) A method for controlling tactile sensation of surface roughness using ultrasonic vibration. In: 1995 IEEE international conference on robotics and automation, 1995. Proceedings, vol 1. IEEE, pp 1134–1139
10.
Zurück zum Zitat Takasaki M, Nara T, Tachi S, Higuchi T (2000) A tactile display using surface acoustic wave. In: 9th IEEE international workshop on robot and human interactive communication, 2000. RO-MAN 2000. Proceedings. IEEE, pp 364–367 Takasaki M, Nara T, Tachi S, Higuchi T (2000) A tactile display using surface acoustic wave. In: 9th IEEE international workshop on robot and human interactive communication, 2000. RO-MAN 2000. Proceedings. IEEE, pp 364–367
11.
Zurück zum Zitat Ikei Y, Wakamatsu K, Fukuda S (1997) Texture presentation by vibratory tactile display-image based presentation of a tactile texture. In: Virtual reality annual international symposium, 1997. IEEE, 199–205 Ikei Y, Wakamatsu K, Fukuda S (1997) Texture presentation by vibratory tactile display-image based presentation of a tactile texture. In: Virtual reality annual international symposium, 1997. IEEE, 199–205
12.
Zurück zum Zitat Benali-Khoudja M, Hafez M, Alexandre J-M, Kheddar A (2004) Tactile interfaces: a state-of-the-art survey. In: Int. symposium on robotics, vol 31. Citeseer, pp 23–26 Benali-Khoudja M, Hafez M, Alexandre J-M, Kheddar A (2004) Tactile interfaces: a state-of-the-art survey. In: Int. symposium on robotics, vol 31. Citeseer, pp 23–26
13.
Zurück zum Zitat Minamizawa K, Fukamachi S, Kajimoto H, Kawakami N, Tachi S (2007) Gravity grabber: wearable haptic display to present virtual mass sensation. In: ACM SIGGRAPH 2007 emerging technologies. ACM, p 8 Minamizawa K, Fukamachi S, Kajimoto H, Kawakami N, Tachi S (2007) Gravity grabber: wearable haptic display to present virtual mass sensation. In: ACM SIGGRAPH 2007 emerging technologies. ACM, p 8
14.
Zurück zum Zitat Tsagarakis NG, Horne T, Caldwell DG (2005) Slip aestheasis: a portable 2d slip/skin stretch display for the fingertip. In: Eurohaptics conference, 2005 and symposium on haptic interfaces for virtual environment and teleoperator systems, 2005. World Haptics 2005. First Joint. IEEE, pp 214–219 Tsagarakis NG, Horne T, Caldwell DG (2005) Slip aestheasis: a portable 2d slip/skin stretch display for the fingertip. In: Eurohaptics conference, 2005 and symposium on haptic interfaces for virtual environment and teleoperator systems, 2005. World Haptics 2005. First Joint. IEEE, pp 214–219
15.
Zurück zum Zitat Solazzi M, Frisoli A, Bergamasco M (2010) Design of a cutaneous fingertip display for improving haptic exploration of virtual objects. In: RO-MAN, 2010 IEEE. IEEE, pp 1–6 Solazzi M, Frisoli A, Bergamasco M (2010) Design of a cutaneous fingertip display for improving haptic exploration of virtual objects. In: RO-MAN, 2010 IEEE. IEEE, pp 1–6
16.
Zurück zum Zitat Bau O, Poupyrev I, Israr A, Harrison C (2010) TeslaTouch: electrovibration for touch surfaces. In: Proceedings of the 23rd annual ACM symposium on user interface software and technology. ACM, pp 283–292 Bau O, Poupyrev I, Israr A, Harrison C (2010) TeslaTouch: electrovibration for touch surfaces. In: Proceedings of the 23rd annual ACM symposium on user interface software and technology. ACM, pp 283–292
17.
Zurück zum Zitat Kuchenbecker K, Gewirtz J, McMahan W et al (2010) VerroTouch: high-frequency acceleration feedback for telerobotic surgery. In: Haptics: generating and perceiving tangible sensations, pp 189–196 Kuchenbecker K, Gewirtz J, McMahan W et al (2010) VerroTouch: high-frequency acceleration feedback for telerobotic surgery. In: Haptics: generating and perceiving tangible sensations, pp 189–196
18.
Zurück zum Zitat Tezuka M, Kitamura N, Miki N (2015) Micro-needle electro-tactile display. In: 37th annual international conference of the engineering in medicine and biology society (EMBC), 2015 IEEE. IEEE, pp 5781–5784 Tezuka M, Kitamura N, Miki N (2015) Micro-needle electro-tactile display. In: 37th annual international conference of the engineering in medicine and biology society (EMBC), 2015 IEEE. IEEE, pp 5781–5784
19.
Zurück zum Zitat King C, Higa AT, Culjat MO et al (2006) A pneumatic haptic feedback actuator array for robotic surgery or simulation. Stud Health Technol Inform 125:217 King C, Higa AT, Culjat MO et al (2006) A pneumatic haptic feedback actuator array for robotic surgery or simulation. Stud Health Technol Inform 125:217
20.
Zurück zum Zitat Prattichizzo D, Chinello F, Pacchierotti C, Malvezzi M (2013) Towards wearability in fingertip haptics: a 3-dof wearable device for cutaneous force feedback. IEEE Trans Haptics 6:506–516PubMedCrossRef Prattichizzo D, Chinello F, Pacchierotti C, Malvezzi M (2013) Towards wearability in fingertip haptics: a 3-dof wearable device for cutaneous force feedback. IEEE Trans Haptics 6:506–516PubMedCrossRef
21.
Zurück zum Zitat Pacchierotti C, Chinello F, Malvezzi M, Meli L, Prattichizzo D (2012) Two finger grasping simulation with cutaneous and kinesthetic force feedback. In: International conference on human haptic sensing and touch enabled computer applications. Springer, pp 373–382 Pacchierotti C, Chinello F, Malvezzi M, Meli L, Prattichizzo D (2012) Two finger grasping simulation with cutaneous and kinesthetic force feedback. In: International conference on human haptic sensing and touch enabled computer applications. Springer, pp 373–382
22.
Zurück zum Zitat Pacchierotti C, Tirmizi A, Prattichizzo D (2014) Improving transparency in teleoperation by means of cutaneous tactile force feedback. ACM Trans Appl Percept (TAP) 11:4 Pacchierotti C, Tirmizi A, Prattichizzo D (2014) Improving transparency in teleoperation by means of cutaneous tactile force feedback. ACM Trans Appl Percept (TAP) 11:4
23.
Zurück zum Zitat Pacchierotti C, Chinello F, Prattichizzo D (2012) Cutaneous device for teleoperated needle insertion. In: 4th IEEE RAS and EMBS international conference on biomedical robotics and biomechatronics (BioRob), 2012. IEEE, pp 32–37 Pacchierotti C, Chinello F, Prattichizzo D (2012) Cutaneous device for teleoperated needle insertion. In: 4th IEEE RAS and EMBS international conference on biomedical robotics and biomechatronics (BioRob), 2012. IEEE, pp 32–37
24.
Zurück zum Zitat Fearing RS (1990) Tactile sensing mechanisms. Int J Robot Res 9:3–23CrossRef Fearing RS (1990) Tactile sensing mechanisms. Int J Robot Res 9:3–23CrossRef
25.
Zurück zum Zitat Trejos AL, Jayender J, Perri MT, Naish MD, Patel RV, Malthaner RA (2009) Robot-assisted tactile sensing for minimally invasive tumor localization. Int J Robot Res 28:1118–1133CrossRef Trejos AL, Jayender J, Perri MT, Naish MD, Patel RV, Malthaner RA (2009) Robot-assisted tactile sensing for minimally invasive tumor localization. Int J Robot Res 28:1118–1133CrossRef
26.
Zurück zum Zitat Minamizawa K, Prattichizzo D, Tachi S (2010) Simplified design of haptic display by extending one-point kinesthetic feedback to multipoint tactile feedback. In: Haptics symposium, 2010 IEEE. IEEE, pp 257–260 Minamizawa K, Prattichizzo D, Tachi S (2010) Simplified design of haptic display by extending one-point kinesthetic feedback to multipoint tactile feedback. In: Haptics symposium, 2010 IEEE. IEEE, pp 257–260
27.
Zurück zum Zitat Nikhil Vasdev, Conrad Bishop, Atoine Kass-Iliyya et al (2013) Developing a robotic prostatectomy service and a robotic fellowship programme-defining the learning curve. Curr Urol 7:136–144CrossRef Nikhil Vasdev, Conrad Bishop, Atoine Kass-Iliyya et al (2013) Developing a robotic prostatectomy service and a robotic fellowship programme-defining the learning curve. Curr Urol 7:136–144CrossRef
28.
Zurück zum Zitat Bowes D, Hall T, Beecham S (2012) SLuRp: a tool to help large complex systematic literature reviews deliver valid and rigorous results. In: The 2nd international workshop on evidential assessment of software technologies Bowes D, Hall T, Beecham S (2012) SLuRp: a tool to help large complex systematic literature reviews deliver valid and rigorous results. In: The 2nd international workshop on evidential assessment of software technologies
S1.
Zurück zum Zitat Abolhassani N, Patel RV (2009) Teleoperated master–slave needle insertion. Int J Med Robot 5:398–405PubMedCrossRef Abolhassani N, Patel RV (2009) Teleoperated master–slave needle insertion. Int J Med Robot 5:398–405PubMedCrossRef
S2.
Zurück zum Zitat Advincula AP, Song A (2007) The role of robotic surgery in gynecology. Curr Opin Obstet Gynecol 19:331–336PubMedCrossRef Advincula AP, Song A (2007) The role of robotic surgery in gynecology. Curr Opin Obstet Gynecol 19:331–336PubMedCrossRef
S3.
Zurück zum Zitat Akinbiyi T, Reiley CE, Saha S et al (2006) Dynamic augmented reality for sensory substitution in robot-assisted surgical systems. Conf Proc IEEE Eng Med Biol Soc 1:567–570PubMed Akinbiyi T, Reiley CE, Saha S et al (2006) Dynamic augmented reality for sensory substitution in robot-assisted surgical systems. Conf Proc IEEE Eng Med Biol Soc 1:567–570PubMed
S4.
Zurück zum Zitat Banerjee S, Cherian JJ, Elmallah RK, Jauregui JJ, Pierce TP, Mont MA (2015) Robotic-assisted knee arthroplasty. Expert Rev Med Devices 12:727–735PubMedCrossRef Banerjee S, Cherian JJ, Elmallah RK, Jauregui JJ, Pierce TP, Mont MA (2015) Robotic-assisted knee arthroplasty. Expert Rev Med Devices 12:727–735PubMedCrossRef
S5.
Zurück zum Zitat Banks SA (2009) Haptic robotics enable a systems approach to design of a minimally invasive modular knee arthroplasty. Am J Orthop 38:23–27PubMed Banks SA (2009) Haptic robotics enable a systems approach to design of a minimally invasive modular knee arthroplasty. Am J Orthop 38:23–27PubMed
S6.
S7.
Zurück zum Zitat Beyl T, Nicolai P, Monnich H, Raczkowksy J, Worn H (2012) Haptic feedback in OP: sense-augmented reality in telemanipulated robotic surgery. Stud Health Technol Inform 173:58–63PubMed Beyl T, Nicolai P, Monnich H, Raczkowksy J, Worn H (2012) Haptic feedback in OP: sense-augmented reality in telemanipulated robotic surgery. Stud Health Technol Inform 173:58–63PubMed
S8.
Zurück zum Zitat Bhattacharjee T, Son HI, Lee DY (2008) Haptic control with environment force estimation for telesurgery. Conf Proc IEEE Eng Med Biol Soc 2008:3241–3244PubMed Bhattacharjee T, Son HI, Lee DY (2008) Haptic control with environment force estimation for telesurgery. Conf Proc IEEE Eng Med Biol Soc 2008:3241–3244PubMed
S9.
Zurück zum Zitat Bianchi M, Gwilliam JC, Degirmenci A, Okamura AM (2011) Characterization of an air jet haptic lump display. Conf Proc IEEE Eng Med Biol Soc 2011:3467–3470PubMed Bianchi M, Gwilliam JC, Degirmenci A, Okamura AM (2011) Characterization of an air jet haptic lump display. Conf Proc IEEE Eng Med Biol Soc 2011:3467–3470PubMed
S10.
Zurück zum Zitat Bornhoft JM, Strabala KW, Wortman TD, Lehman AC, Oleynikov D, Farritor SM (2011) Stereoscopic visualization and haptic technology used to create a virtual environment for remote surgery—biomed 2011. Biomed Sci Instrum 47:76–81PubMed Bornhoft JM, Strabala KW, Wortman TD, Lehman AC, Oleynikov D, Farritor SM (2011) Stereoscopic visualization and haptic technology used to create a virtual environment for remote surgery—biomed 2011. Biomed Sci Instrum 47:76–81PubMed
S11.
Zurück zum Zitat Bowyer SA, Rodriguez Y, Baena F (2014) Deformation invariant bounding spheres for dynamic active constraints in surgery. Proc Inst Mech Eng H 228:350–361PubMedCrossRef Bowyer SA, Rodriguez Y, Baena F (2014) Deformation invariant bounding spheres for dynamic active constraints in surgery. Proc Inst Mech Eng H 228:350–361PubMedCrossRef
S12.
Zurück zum Zitat Cabuk B, Ceylan S, Anik I, Tugasaygi M, Kizir S (2015) A haptic guided robotic system for endoscope positioning and holding. Turk Neurosurg 25:601–607PubMed Cabuk B, Ceylan S, Anik I, Tugasaygi M, Kizir S (2015) A haptic guided robotic system for endoscope positioning and holding. Turk Neurosurg 25:601–607PubMed
S13.
Zurück zum Zitat Cannon JW, Howe RD, Dupont PE, Triedman JK, Marx GR, Nido PJ (2003) Application of robotics in congenital cardiac surgery. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu 6:72–83PubMedCrossRef Cannon JW, Howe RD, Dupont PE, Triedman JK, Marx GR, Nido PJ (2003) Application of robotics in congenital cardiac surgery. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu 6:72–83PubMedCrossRef
S14.
Zurück zum Zitat Choi C, Kim J, Han H, Ahn B, Kim J (2009) Graphic and haptic modelling of the oesophagus for VR-based medical simulation. Int J Med Robot 5:257–266PubMedCrossRef Choi C, Kim J, Han H, Ahn B, Kim J (2009) Graphic and haptic modelling of the oesophagus for VR-based medical simulation. Int J Med Robot 5:257–266PubMedCrossRef
S15.
Zurück zum Zitat Chowriappa A, Raza SJ, Fazili A et al (2015) Augmented-reality-based skills training for robot-assisted urethrovesical anastomosis: a multi-institutional randomised controlled trial. BJU Int 115:336–345PubMedCrossRef Chowriappa A, Raza SJ, Fazili A et al (2015) Augmented-reality-based skills training for robot-assisted urethrovesical anastomosis: a multi-institutional randomised controlled trial. BJU Int 115:336–345PubMedCrossRef
S16.
Zurück zum Zitat Comparetti MD, Vaccarella A, Dyagilev I, Shoham M, Ferrigno G, De Momi E (2012) Accurate multi-robot targeting for keyhole neurosurgery based on external sensor monitoring. Proc Inst Mech Eng H 226:347–359PubMedCrossRef Comparetti MD, Vaccarella A, Dyagilev I, Shoham M, Ferrigno G, De Momi E (2012) Accurate multi-robot targeting for keyhole neurosurgery based on external sensor monitoring. Proc Inst Mech Eng H 226:347–359PubMedCrossRef
S17.
Zurück zum Zitat Cruces RA, Wahrburg J (2007) Improving robot arm control for safe and robust haptic cooperation in orthopaedic procedures. Int J Med Robot 3:316–322PubMedCrossRef Cruces RA, Wahrburg J (2007) Improving robot arm control for safe and robust haptic cooperation in orthopaedic procedures. Int J Med Robot 3:316–322PubMedCrossRef
S18.
Zurück zum Zitat Culmer P, Barrie J, Hewson R et al (2012) Reviewing the technological challenges associated with the development of a laparoscopic palpation device. Int J Med Robot 8:146–159PubMedCrossRef Culmer P, Barrie J, Hewson R et al (2012) Reviewing the technological challenges associated with the development of a laparoscopic palpation device. Int J Med Robot 8:146–159PubMedCrossRef
S19.
Zurück zum Zitat Cundy TP, Gattas NE, Yang GZ, Darzi A, Najmaldin AS (2014) Experience related factors compensate for haptic loss in robot-assisted laparoscopic surgery. J Endourol 28:532–538PubMedCrossRef Cundy TP, Gattas NE, Yang GZ, Darzi A, Najmaldin AS (2014) Experience related factors compensate for haptic loss in robot-assisted laparoscopic surgery. J Endourol 28:532–538PubMedCrossRef
S20.
Zurück zum Zitat De Lorenzo D, Koseki Y, De Momi E, Chinzei K, Okamura AM (2013) Coaxial needle insertion assistant with enhanced force feedback. IEEE Trans Biomed Eng 60:379–389PubMedCrossRef De Lorenzo D, Koseki Y, De Momi E, Chinzei K, Okamura AM (2013) Coaxial needle insertion assistant with enhanced force feedback. IEEE Trans Biomed Eng 60:379–389PubMedCrossRef
S21.
Zurück zum Zitat De Lorenzo D, De Momi E, Dyagilev I et al (2011) Force feedback in a piezoelectric linear actuator for neurosurgery. Int J Med Robot 7:268–275PubMed De Lorenzo D, De Momi E, Dyagilev I et al (2011) Force feedback in a piezoelectric linear actuator for neurosurgery. Int J Med Robot 7:268–275PubMed
S22.
Zurück zum Zitat De Momi E, Ferrigno G (2010) Robotic and artificial intelligence for keyhole neurosurgery: the ROBOCAST project, a multi-modal autonomous path planner. Proc Inst Mech Eng H 224:715–727PubMedCrossRef De Momi E, Ferrigno G (2010) Robotic and artificial intelligence for keyhole neurosurgery: the ROBOCAST project, a multi-modal autonomous path planner. Proc Inst Mech Eng H 224:715–727PubMedCrossRef
S23.
Zurück zum Zitat Devarajan V, Wang X, Shen Y et al (2006) A novel laparoscopic mesh placement part task trainer. Int J Med Robot 2:312–320PubMedCrossRef Devarajan V, Wang X, Shen Y et al (2006) A novel laparoscopic mesh placement part task trainer. Int J Med Robot 2:312–320PubMedCrossRef
S24.
Zurück zum Zitat Diaz I, Gil JJ, Louredo M (2014) A haptic pedal for surgery assistance. Comput Methods Progr Biomed 116:97–104CrossRef Diaz I, Gil JJ, Louredo M (2014) A haptic pedal for surgery assistance. Comput Methods Progr Biomed 116:97–104CrossRef
S25.
Zurück zum Zitat Val I, Loureiro C, McCulloch P (2015) The IDEAL prospective development study format for reporting surgical innovations. An illustrative case study of robotic oesophagectomy. Int J Surg 19:104–111CrossRef Val I, Loureiro C, McCulloch P (2015) The IDEAL prospective development study format for reporting surgical innovations. An illustrative case study of robotic oesophagectomy. Int J Surg 19:104–111CrossRef
S26.
Zurück zum Zitat Ehrampoosh S, Dave M, Kia MA, Rablau C, Zadeh MH (2013) Providing haptic feedback in robot-assisted minimally invasive surgery: a direct optical force-sensing solution for haptic rendering of deformable bodies. Comput Aided Surg 18:129–141PubMedCrossRef Ehrampoosh S, Dave M, Kia MA, Rablau C, Zadeh MH (2013) Providing haptic feedback in robot-assisted minimally invasive surgery: a direct optical force-sensing solution for haptic rendering of deformable bodies. Comput Aided Surg 18:129–141PubMedCrossRef
S27.
Zurück zum Zitat Falkenback D, Lehane CW, Lord RV (2015) Robot-assisted oesophageal and gastric surgery for benign disease: antireux operations and Heller’s myotomy. ANZ J Surg 85:113–120PubMedCrossRef Falkenback D, Lehane CW, Lord RV (2015) Robot-assisted oesophageal and gastric surgery for benign disease: antireux operations and Heller’s myotomy. ANZ J Surg 85:113–120PubMedCrossRef
S28.
Zurück zum Zitat Fichera L, Pardo D, Illiano P, Ortiz J, Caldwell DG, Mattos LS (2016) Online estimation of laser incision depth for transoral microsurgery: approach and preliminary evaluation. Int J Med Robot 12:53–61PubMedCrossRef Fichera L, Pardo D, Illiano P, Ortiz J, Caldwell DG, Mattos LS (2016) Online estimation of laser incision depth for transoral microsurgery: approach and preliminary evaluation. Int J Med Robot 12:53–61PubMedCrossRef
S29.
Zurück zum Zitat Freschi C, Ferrari V, Melfi F, Ferrari M, Mosca F, Cuschieri A (2013) Technical review of the da Vinci surgical telemanipulator. Int J Med Robot 9:396–406PubMedCrossRef Freschi C, Ferrari V, Melfi F, Ferrari M, Mosca F, Cuschieri A (2013) Technical review of the da Vinci surgical telemanipulator. Int J Med Robot 9:396–406PubMedCrossRef
S30.
Zurück zum Zitat Fujiwara K, Fukuhara T, Niimi K et al (2015) Mechanical evaluation of newly developed mouth-piece using polyethylene terephthalate glycol for transoral robotic surgery. J Robot Surg 9:347–354PubMedPubMedCentralCrossRef Fujiwara K, Fukuhara T, Niimi K et al (2015) Mechanical evaluation of newly developed mouth-piece using polyethylene terephthalate glycol for transoral robotic surgery. J Robot Surg 9:347–354PubMedPubMedCentralCrossRef
S31.
Zurück zum Zitat Fujiwara K, Fukuhara T, Niimi K, Sato T, Kitano H (2015) Load evaluation of the da Vinci surgical system for transoral robotic surgery. J Robot Surg 9:315–319PubMedCrossRef Fujiwara K, Fukuhara T, Niimi K, Sato T, Kitano H (2015) Load evaluation of the da Vinci surgical system for transoral robotic surgery. J Robot Surg 9:315–319PubMedCrossRef
S32.
Zurück zum Zitat Gosling T, Westphal R, Hufner T et al (2005) Robot-assisted fracture reduction: a preliminary study in the femur shaft. Med Biol Eng Comput 43:115–120PubMedCrossRef Gosling T, Westphal R, Hufner T et al (2005) Robot-assisted fracture reduction: a preliminary study in the femur shaft. Med Biol Eng Comput 43:115–120PubMedCrossRef
S33.
Zurück zum Zitat Tholey G, Chanthasopeephan T, Hu T, Desai JP, Lau A (2003) Measuring grasping and cutting forces for reality-based haptic modeling. In: International congress series. fCARSg 2003. Computer assisted radiology and surgery. Proceedings of the 17th international congress and exhibition, vol, 1256, pp 794–800 Tholey G, Chanthasopeephan T, Hu T, Desai JP, Lau A (2003) Measuring grasping and cutting forces for reality-based haptic modeling. In: International congress series. fCARSg 2003. Computer assisted radiology and surgery. Proceedings of the 17th international congress and exhibition, vol, 1256, pp 794–800
S34.
Zurück zum Zitat Hadavand M, Mirbagheri A, Behzadipour S, Farahmand F (2014) A novel remote center of motion mechanism for the force-reflective master robot of haptic tele-surgery systems. Int J Med Robot 10:129–139PubMedCrossRef Hadavand M, Mirbagheri A, Behzadipour S, Farahmand F (2014) A novel remote center of motion mechanism for the force-reflective master robot of haptic tele-surgery systems. Int J Med Robot 10:129–139PubMedCrossRef
S35.
Zurück zum Zitat Hadavand M, Mirbagheri A, Salarieh H, Farahmand F (2011) Design of a force-reflective master robot for haptic telesurgery applications: RoboMaster1. Conf Proc IEEE Eng Med Biol Soc 2011:7037–7040PubMed Hadavand M, Mirbagheri A, Salarieh H, Farahmand F (2011) Design of a force-reflective master robot for haptic telesurgery applications: RoboMaster1. Conf Proc IEEE Eng Med Biol Soc 2011:7037–7040PubMed
S36.
Zurück zum Zitat Hagen ME, Meehan JJ, Inan I, Morel P (2008) Visual clues act as a substitute for haptic feedback in robotic surgery. Surg Endosc 22:1505–1508PubMedCrossRef Hagen ME, Meehan JJ, Inan I, Morel P (2008) Visual clues act as a substitute for haptic feedback in robotic surgery. Surg Endosc 22:1505–1508PubMedCrossRef
S37.
Zurück zum Zitat Halic T, Sankaranarayanan G, De S (2010) GPU-based efficient realistic techniques for bleeding and smoke generation in surgical simulators. Int J Med Robot 6:431–443PubMedPubMedCentralCrossRef Halic T, Sankaranarayanan G, De S (2010) GPU-based efficient realistic techniques for bleeding and smoke generation in surgical simulators. Int J Med Robot 6:431–443PubMedPubMedCentralCrossRef
S38.
Zurück zum Zitat Houston K, Sieber A, Eder C, Tonet O, Menciassi A, Dario P (2007) Novel haptic tool and input device for real time bilateral biomanipulation addressing endoscopic surgery. Conf Proc IEEE Eng Med Biol Soc 2007:198–201PubMed Houston K, Sieber A, Eder C, Tonet O, Menciassi A, Dario P (2007) Novel haptic tool and input device for real time bilateral biomanipulation addressing endoscopic surgery. Conf Proc IEEE Eng Med Biol Soc 2007:198–201PubMed
S39.
Zurück zum Zitat Hu T, Tholey G, Desai JP, Castellanos AE (2004) Evaluation of a laparoscopic grasper with force feedback. Surg Endosc 18:863–867PubMed Hu T, Tholey G, Desai JP, Castellanos AE (2004) Evaluation of a laparoscopic grasper with force feedback. Surg Endosc 18:863–867PubMed
S40.
Zurück zum Zitat Hu Z, Sun W, Zhang B (2013) Characterization of aortic tissue cutting process: experimental investigation using porcine ascending aorta. J Mech Behav Biomed Mater 18:81–89PubMedCrossRef Hu Z, Sun W, Zhang B (2013) Characterization of aortic tissue cutting process: experimental investigation using porcine ascending aorta. J Mech Behav Biomed Mater 18:81–89PubMedCrossRef
S41.
Zurück zum Zitat Huart A, Facca S, Lebailly F, Garcia JC, Liverneaux PA (2012) Are pedicled flaps feasible in robotic surgery? Report of an anatomical study of the kite flap in conventional surgery versus robotic surgery. Surg Innov 19:89–92PubMedCrossRef Huart A, Facca S, Lebailly F, Garcia JC, Liverneaux PA (2012) Are pedicled flaps feasible in robotic surgery? Report of an anatomical study of the kite flap in conventional surgery versus robotic surgery. Surg Innov 19:89–92PubMedCrossRef
S42.
Zurück zum Zitat Hughes-Hallett A, Mayer EK, Marcus HJ et al (2014) Augmented reality partial nephrectomy: examining the current status and future perspectives. Urology 83:266–273PubMedCrossRef Hughes-Hallett A, Mayer EK, Marcus HJ et al (2014) Augmented reality partial nephrectomy: examining the current status and future perspectives. Urology 83:266–273PubMedCrossRef
S43.
S44.
Zurück zum Zitat Johnson PJ, Schmidt DE, Duvvuri U (2014) Output control of da Vinci surgical system’s surgical graspers. J Surg Res 186:56–62PubMedCrossRef Johnson PJ, Schmidt DE, Duvvuri U (2014) Output control of da Vinci surgical system’s surgical graspers. J Surg Res 186:56–62PubMedCrossRef
S45.
Zurück zum Zitat Jung H, Lee DY, Ahn W (2012) Real-time deformation of colon and endoscope for colonoscopy simulation. Int J Med Robot 8:273–281PubMedCrossRef Jung H, Lee DY, Ahn W (2012) Real-time deformation of colon and endoscope for colonoscopy simulation. Int J Med Robot 8:273–281PubMedCrossRef
S46.
Zurück zum Zitat Katz RD, Taylor JA, Rosson GD, Brown PR, Singh NK (2006) Robotics in plastic and reconstructive surgery: use of a telemanipulator slave robot to perform microvascular anastomoses. J Reconstr Microsurg 22:53–57PubMedCrossRef Katz RD, Taylor JA, Rosson GD, Brown PR, Singh NK (2006) Robotics in plastic and reconstructive surgery: use of a telemanipulator slave robot to perform microvascular anastomoses. J Reconstr Microsurg 22:53–57PubMedCrossRef
S47.
Zurück zum Zitat Khan F, Pearle A, Lightcap C, Boland PJ, Healey JH (2013) Haptic robot-assisted surgery improves accuracy of wide resection of bone tumors: a pilot study. Clin Orthop Relat Res 471:851–859PubMedCrossRef Khan F, Pearle A, Lightcap C, Boland PJ, Healey JH (2013) Haptic robot-assisted surgery improves accuracy of wide resection of bone tumors: a pilot study. Clin Orthop Relat Res 471:851–859PubMedCrossRef
S48.
Zurück zum Zitat King CH, Culjat MO, Franco ML, Bisley JW, Dutson E, Grundfest WS (2008) Optimization of a pneumatic balloon tactile display for robot-assisted surgery based on human perception. IEEE Trans Biomed Eng 55:2593–2600PubMedCrossRef King CH, Culjat MO, Franco ML, Bisley JW, Dutson E, Grundfest WS (2008) Optimization of a pneumatic balloon tactile display for robot-assisted surgery based on human perception. IEEE Trans Biomed Eng 55:2593–2600PubMedCrossRef
S49.
Zurück zum Zitat King CH, Higa AT, Culjat MO et al (2007) A pneumatic haptic feedback actuator array for robotic surgery or simulation. Stud Health Technol Inform 125:217–222PubMed King CH, Higa AT, Culjat MO et al (2007) A pneumatic haptic feedback actuator array for robotic surgery or simulation. Stud Health Technol Inform 125:217–222PubMed
S50.
Zurück zum Zitat Kitagawa M, Dokko D, Okamura AM, Yuh DD (2005) Effect of sensory substitution on suture-manipulation forces for robotic surgical systems. J Thorac Cardiovasc Surg 129:151–158PubMedCrossRef Kitagawa M, Dokko D, Okamura AM, Yuh DD (2005) Effect of sensory substitution on suture-manipulation forces for robotic surgical systems. J Thorac Cardiovasc Surg 129:151–158PubMedCrossRef
S51.
Zurück zum Zitat Kitagawa M, Dokko D, Okamura AM, Bethea BT, Yuh DD (2004) Effect of sensory substitution on suture manipulation forces for surgical teleoperation. Stud Health Technol Inform 98:157–163PubMed Kitagawa M, Dokko D, Okamura AM, Bethea BT, Yuh DD (2004) Effect of sensory substitution on suture manipulation forces for surgical teleoperation. Stud Health Technol Inform 98:157–163PubMed
S52.
Zurück zum Zitat Kobayashi Y, Moreira P, Liu C, Poignet P, Zemiti N, Fujie MG (2011) Haptic feedback control in medical robots through fractional viscoelastic tissue model. Conf Proc IEEE Eng Med Biol Soc 2011:6704–6708PubMed Kobayashi Y, Moreira P, Liu C, Poignet P, Zemiti N, Fujie MG (2011) Haptic feedback control in medical robots through fractional viscoelastic tissue model. Conf Proc IEEE Eng Med Biol Soc 2011:6704–6708PubMed
S53.
Zurück zum Zitat Koehn JK, Kuchenbecker KJ (2015) Surgeons and non-surgeons prefer haptic feedback of instrument vibrations during robotic surgery. Surg Endosc 29:2970–2983PubMedCrossRef Koehn JK, Kuchenbecker KJ (2015) Surgeons and non-surgeons prefer haptic feedback of instrument vibrations during robotic surgery. Surg Endosc 29:2970–2983PubMedCrossRef
S54.
Zurück zum Zitat Kuang W, Shin PR, Oder M, Thomas AJ (2005) Robotic-assisted vasovasostomy: a two-layer technique in an animal model. Urology 65:811–814PubMedCrossRef Kuang W, Shin PR, Oder M, Thomas AJ (2005) Robotic-assisted vasovasostomy: a two-layer technique in an animal model. Urology 65:811–814PubMedCrossRef
S55.
Zurück zum Zitat Kuang W, Shin PR, Matin S, Thomas AJ (2004) Initial evaluation of robotic technology for microsurgical vasovasostomy. J Urol 171:300–303PubMedCrossRef Kuang W, Shin PR, Matin S, Thomas AJ (2004) Initial evaluation of robotic technology for microsurgical vasovasostomy. J Urol 171:300–303PubMedCrossRef
S56.
Zurück zum Zitat Kumar R, Yadav R, Kolla SB (2007) Simultaneous bilateral robot-assisted dismembered pyelo-plasties for bilateral ureteropelvic junction obstruction: technique and literature review. J Endourol 21:750–753PubMedCrossRef Kumar R, Yadav R, Kolla SB (2007) Simultaneous bilateral robot-assisted dismembered pyelo-plasties for bilateral ureteropelvic junction obstruction: technique and literature review. J Endourol 21:750–753PubMedCrossRef
S57.
Zurück zum Zitat Kwok KW, Tsoi KH, Vitiello V et al (2013) Dimensionality reduction in controlling articulated snake robot for endoscopy under dynamic active constraints. IEEE Trans Robot 29:15–31PubMedPubMedCentralCrossRef Kwok KW, Tsoi KH, Vitiello V et al (2013) Dimensionality reduction in controlling articulated snake robot for endoscopy under dynamic active constraints. IEEE Trans Robot 29:15–31PubMedPubMedCentralCrossRef
S58.
Zurück zum Zitat Lang JE, Mannava S, Floyd AJ et al (2011) Robotic systems in orthopaedic surgery. J Bone Joint Surg Br 93:1296–1299PubMedCrossRef Lang JE, Mannava S, Floyd AJ et al (2011) Robotic systems in orthopaedic surgery. J Bone Joint Surg Br 93:1296–1299PubMedCrossRef
S59.
Zurück zum Zitat Le Roux PD, Das H, Esquenazi S, Kelly PJ (2001) Robot-assisted microsurgery: a feasibility study in the rat. Neurosurgery 48:584–589PubMedCrossRef Le Roux PD, Das H, Esquenazi S, Kelly PJ (2001) Robot-assisted microsurgery: a feasibility study in the rat. Neurosurgery 48:584–589PubMedCrossRef
S60.
Zurück zum Zitat Lee DH, Choi J, Park JW et al (2009) An implementation of sensor-based force feedback in a compact laparoscopic surgery robot. ASAIO J 55:83–85PubMedCrossRef Lee DH, Choi J, Park JW et al (2009) An implementation of sensor-based force feedback in a compact laparoscopic surgery robot. ASAIO J 55:83–85PubMedCrossRef
S61.
Zurück zum Zitat Lee SL, Lerotic M, Vitiello V et al (2010) From medical images to minimally invasive intervention: Computer assistance for robotic surgery. Comput Med Imaging Graph 34:33–45PubMedCrossRef Lee SL, Lerotic M, Vitiello V et al (2010) From medical images to minimally invasive intervention: Computer assistance for robotic surgery. Comput Med Imaging Graph 34:33–45PubMedCrossRef
S62.
Zurück zum Zitat Li M, Konstantinova J, Secco EL et al (2015) Using visual cues to enhance haptic feedback for palpation on virtual model of soft tissue. Med Biol Eng Comput 53:1177–1186PubMedCrossRef Li M, Konstantinova J, Secco EL et al (2015) Using visual cues to enhance haptic feedback for palpation on virtual model of soft tissue. Med Biol Eng Comput 53:1177–1186PubMedCrossRef
S63.
Zurück zum Zitat Li M, Liu H, Jiang A et al (2014) Intra-operative tumour localisation in robot-assisted minimally invasive surgery: a review. Proc Inst Mech Eng H 228:509–522PubMedCrossRef Li M, Liu H, Jiang A et al (2014) Intra-operative tumour localisation in robot-assisted minimally invasive surgery: a review. Proc Inst Mech Eng H 228:509–522PubMedCrossRef
S64.
Zurück zum Zitat Li X, Gu L, Zhang S et al (2008) Hierarchical spatial hashing-based collision detection and hybrid collision response in a haptic surgery simulator. Int J Med Robot 4:77–86PubMedCrossRef Li X, Gu L, Zhang S et al (2008) Hierarchical spatial hashing-based collision detection and hybrid collision response in a haptic surgery simulator. Int J Med Robot 4:77–86PubMedCrossRef
S65.
Zurück zum Zitat Lim SC, Lee HK, Park J (2015) Role of combined tactile and kinesthetic feedback in minimally invasive surgery. Int J Med Robot Comput Assist Surg 11(3):360–374 Lim SC, Lee HK, Park J (2015) Role of combined tactile and kinesthetic feedback in minimally invasive surgery. Int J Med Robot Comput Assist Surg 11(3):360–374
S66.
Zurück zum Zitat Liu J, Cramer SC, Reinkensmeyer DJ (2006) Learning to perform a new movement with robotic assistance: comparison of haptic guidance and visual demonstration. J Neuroeng Rehabil 3:20PubMedPubMedCentralCrossRef Liu J, Cramer SC, Reinkensmeyer DJ (2006) Learning to perform a new movement with robotic assistance: comparison of haptic guidance and visual demonstration. J Neuroeng Rehabil 3:20PubMedPubMedCentralCrossRef
S67.
Zurück zum Zitat Liu Y, Wang S, Hu SJ, Qiu W (2009) Mechanical analysis of end-to-end silk-sutured anastomosis for robot-assisted surgery. Int J Med Robot 5:444–451PubMedCrossRef Liu Y, Wang S, Hu SJ, Qiu W (2009) Mechanical analysis of end-to-end silk-sutured anastomosis for robot-assisted surgery. Int J Med Robot 5:444–451PubMedCrossRef
S68.
Zurück zum Zitat Maciel A, Halic T, Lu Z, Nedel LP, De S (2009) Using the PhysX engine for physics-based virtual surgery with force feedback. Int J Med Robot 5:341–353PubMedPubMedCentralCrossRef Maciel A, Halic T, Lu Z, Nedel LP, De S (2009) Using the PhysX engine for physics-based virtual surgery with force feedback. Int J Med Robot 5:341–353PubMedPubMedCentralCrossRef
S69.
Zurück zum Zitat Maciel A, Liu Y, Ahn W, Singh TP, Dunnican W, De S (2008) Development of the VBLaST: a virtual basic laparoscopic skill trainer. Int J Med Robot 4:131–138PubMedPubMedCentralCrossRef Maciel A, Liu Y, Ahn W, Singh TP, Dunnican W, De S (2008) Development of the VBLaST: a virtual basic laparoscopic skill trainer. Int J Med Robot 4:131–138PubMedPubMedCentralCrossRef
S70.
Zurück zum Zitat Maddahi Y, Gan LS, Zareinia K, Lama S, Sepehri N, Sutherland GR (2016) Quantifying workspace and forces of surgical dissection during robot-assisted neurosurgery. Int J Med Robot 12:528–537PubMedCrossRef Maddahi Y, Gan LS, Zareinia K, Lama S, Sepehri N, Sutherland GR (2016) Quantifying workspace and forces of surgical dissection during robot-assisted neurosurgery. Int J Med Robot 12:528–537PubMedCrossRef
S71.
Zurück zum Zitat Marcus HJ, Hughes-Hallett A, Cundy TP, Yang GZ, Darzi A, Nandi D (2015) da Vinci robot-assisted keyhole neurosurgery: a cadaver study on feasibility and safety. Neurosurg Rev 38:367–371PubMedCrossRef Marcus HJ, Hughes-Hallett A, Cundy TP, Yang GZ, Darzi A, Nandi D (2015) da Vinci robot-assisted keyhole neurosurgery: a cadaver study on feasibility and safety. Neurosurg Rev 38:367–371PubMedCrossRef
S72.
Zurück zum Zitat Marecik SJ, Prasad LM, Park JJ, Jan A, Chaudhry V (2008) Evaluation of midlevel and upper-level residents performing their first robotic-sutured intestinal anastomosis. Am J Surg 195:333–337PubMedCrossRef Marecik SJ, Prasad LM, Park JJ, Jan A, Chaudhry V (2008) Evaluation of midlevel and upper-level residents performing their first robotic-sutured intestinal anastomosis. Am J Surg 195:333–337PubMedCrossRef
S73.
Zurück zum Zitat Masjedi M, Tan WL, Jaskaranjit S, Aqil A, Harris S, Cobb J (2013) Use of robotic technology in cam femoroacetabular impingement corrective surgery. Int J Med Robot 9:23–28PubMedCrossRef Masjedi M, Tan WL, Jaskaranjit S, Aqil A, Harris S, Cobb J (2013) Use of robotic technology in cam femoroacetabular impingement corrective surgery. Int J Med Robot 9:23–28PubMedCrossRef
S74.
Zurück zum Zitat McBeth PB, Louw DF, Rizun PR, Sutherland GR (2004) Robotics in neurosurgery. Am J Surg 188:68S–75SPubMedCrossRef McBeth PB, Louw DF, Rizun PR, Sutherland GR (2004) Robotics in neurosurgery. Am J Surg 188:68S–75SPubMedCrossRef
S75.
Zurück zum Zitat Meli L, Pacchierotti C, Prattichizzo D (2014) Sensory subtraction in robot-assisted surgery: fingertip skin deformation feedback to ensure safety and improve transparency in bimanual haptic interaction. IEEE Trans Biomed Eng 61:1318–1327PubMedCrossRef Meli L, Pacchierotti C, Prattichizzo D (2014) Sensory subtraction in robot-assisted surgery: fingertip skin deformation feedback to ensure safety and improve transparency in bimanual haptic interaction. IEEE Trans Biomed Eng 61:1318–1327PubMedCrossRef
S76.
Zurück zum Zitat Moglia A, Turini G, Ferrari V, Ferrari M, Mosca F (2011) Patient specific surgical simulator for the evaluation of the movability of bimanual robotic arms. Stud Health Technol Inform 163:379–385PubMed Moglia A, Turini G, Ferrari V, Ferrari M, Mosca F (2011) Patient specific surgical simulator for the evaluation of the movability of bimanual robotic arms. Stud Health Technol Inform 163:379–385PubMed
S77.
Zurück zum Zitat Mohammadzadeh N, Safdari R (2014) Robotic surgery in cancer care: opportunities and challenges. Asian Pac J Cancer Prev 15:1081–1083PubMedCrossRef Mohammadzadeh N, Safdari R (2014) Robotic surgery in cancer care: opportunities and challenges. Asian Pac J Cancer Prev 15:1081–1083PubMedCrossRef
S78.
Zurück zum Zitat Mojra A, Najarian S, Towliat Kashani SM, Panahi F, Yaghmaei M (2011) A novel haptic robotic viscogram for characterizing the viscoelastic behaviour of breast tissue in clinical examinations. Int J Med Robot 7:282–292PubMed Mojra A, Najarian S, Towliat Kashani SM, Panahi F, Yaghmaei M (2011) A novel haptic robotic viscogram for characterizing the viscoelastic behaviour of breast tissue in clinical examinations. Int J Med Robot 7:282–292PubMed
S79.
Zurück zum Zitat Moscarelli M, Harling L, Ashrafian H, Athanasiou T, Casula R (2015) Challenges facing totally endoscopic robotic coronary artery bypass grafting. Int J Med Robot 11:18–29PubMedCrossRef Moscarelli M, Harling L, Ashrafian H, Athanasiou T, Casula R (2015) Challenges facing totally endoscopic robotic coronary artery bypass grafting. Int J Med Robot 11:18–29PubMedCrossRef
S81.
Zurück zum Zitat Mylonas GP, Kwok KW, James DR et al (2012) Gaze-Contingent Motor Channelling, haptic constraints and associated cognitive demand for robotic. MIS Med Image Anal 16:612–631PubMedCrossRef Mylonas GP, Kwok KW, James DR et al (2012) Gaze-Contingent Motor Channelling, haptic constraints and associated cognitive demand for robotic. MIS Med Image Anal 16:612–631PubMedCrossRef
S82.
Zurück zum Zitat Nawrat Z, Podsedkowski L, Mianowski K et al (2003) Robin Heart 2003—present state of the Polish telemanipulator project for cardiac surgery assistance. Int J Artif Organs 26:1115–1119PubMedCrossRef Nawrat Z, Podsedkowski L, Mianowski K et al (2003) Robin Heart 2003—present state of the Polish telemanipulator project for cardiac surgery assistance. Int J Artif Organs 26:1115–1119PubMedCrossRef
S84.
Zurück zum Zitat Ohnishi K, Shimono T, Natori K (2012) Development of real-world haptic technology. Gan To Kagaku Ryoho 39:1035–1038PubMed Ohnishi K, Shimono T, Natori K (2012) Development of real-world haptic technology. Gan To Kagaku Ryoho 39:1035–1038PubMed
S86.
Zurück zum Zitat Okamura AM (2004) Methods for haptic feedback in teleoperated robot-assisted surgery. Ind Robot 31:499–508CrossRef Okamura AM (2004) Methods for haptic feedback in teleoperated robot-assisted surgery. Ind Robot 31:499–508CrossRef
S87.
Zurück zum Zitat Pacchierotti C, Prattichizzo D, Kuchenbecker KJ (2016) Cutaneous feedback of fingertip deformation and vibration for palpation in robotic surgery. IEEE Trans Biomed Eng 63:278–287PubMedCrossRef Pacchierotti C, Prattichizzo D, Kuchenbecker KJ (2016) Cutaneous feedback of fingertip deformation and vibration for palpation in robotic surgery. IEEE Trans Biomed Eng 63:278–287PubMedCrossRef
S88.
Zurück zum Zitat Pan JJ, Chang J, Yang X et al (2015) Virtual reality training and assessment in laparoscopic rectum surgery. Int J Med Robot 11:194–209PubMedCrossRef Pan JJ, Chang J, Yang X et al (2015) Virtual reality training and assessment in laparoscopic rectum surgery. Int J Med Robot 11:194–209PubMedCrossRef
S89.
Zurück zum Zitat Pan JJ, Chang J, Yang X et al (2011) Graphic and haptic simulation system for virtual laparoscopic rectum surgery. Int J Med Robot 7:304–317PubMed Pan JJ, Chang J, Yang X et al (2011) Graphic and haptic simulation system for virtual laparoscopic rectum surgery. Int J Med Robot 7:304–317PubMed
S90.
Zurück zum Zitat Park JW, Choi J, Park Y, Sun K (2011) Haptic virtual fixture for robotic cardiac catheter navigation. Artif Organs 35:1127–1131PubMedCrossRef Park JW, Choi J, Park Y, Sun K (2011) Haptic virtual fixture for robotic cardiac catheter navigation. Artif Organs 35:1127–1131PubMedCrossRef
S91.
Zurück zum Zitat Park JW, Choi J, Pak HN et al (2010) Development of a force-reflecting robotic platform for cardiac catheter navigation. Artif Organs 34:1034–1039PubMedCrossRef Park JW, Choi J, Pak HN et al (2010) Development of a force-reflecting robotic platform for cardiac catheter navigation. Artif Organs 34:1034–1039PubMedCrossRef
S92.
Zurück zum Zitat Paul L, Cartiaux O, Docquier PL, Banse X (2009) Ergonomic evaluation of 3D plane positioning using a mouse and a haptic device. Int J Med Robot 5:435–443PubMedCrossRef Paul L, Cartiaux O, Docquier PL, Banse X (2009) Ergonomic evaluation of 3D plane positioning using a mouse and a haptic device. Int J Med Robot 5:435–443PubMedCrossRef
S93.
Zurück zum Zitat Pearle AD, O’Loughlin PF, Kendoff DO (2010) Robot-assisted unicompartmental knee arthroplasty. J Arthroplasty 25:230–237PubMedCrossRef Pearle AD, O’Loughlin PF, Kendoff DO (2010) Robot-assisted unicompartmental knee arthroplasty. J Arthroplasty 25:230–237PubMedCrossRef
S94.
Zurück zum Zitat Perri MT, Trejos AL, Naish MD, Patel RV, Malthaner RA (2010) New tactile sensing system for minimally invasive surgical tumour localization. Int J Med Robot 6:211–220PubMed Perri MT, Trejos AL, Naish MD, Patel RV, Malthaner RA (2010) New tactile sensing system for minimally invasive surgical tumour localization. Int J Med Robot 6:211–220PubMed
S95.
Zurück zum Zitat Perrier ND, Randolph GW, Inabnet WB, Marple BF, VanHeerden J, Kupper-smith RB (2010) Robotic thyroidectomy: a framework for new technology assessment and safe implementation. Thyroid 20:1327–1332PubMedCrossRef Perrier ND, Randolph GW, Inabnet WB, Marple BF, VanHeerden J, Kupper-smith RB (2010) Robotic thyroidectomy: a framework for new technology assessment and safe implementation. Thyroid 20:1327–1332PubMedCrossRef
S96.
Zurück zum Zitat Pisla D, Gherman B, Plitea N et al (2011) PARASURG hybrid parallel robot for minimally invasive surgery. Chirurgia (Bucur) 106:619–625 Pisla D, Gherman B, Plitea N et al (2011) PARASURG hybrid parallel robot for minimally invasive surgery. Chirurgia (Bucur) 106:619–625
S97.
Zurück zum Zitat Pisla D, Plitea N, Vaida C et al (2010) PARAMIS parallel robot for laparoscopic surgery. Chirurgia (Bucur) 105:677–683 Pisla D, Plitea N, Vaida C et al (2010) PARAMIS parallel robot for laparoscopic surgery. Chirurgia (Bucur) 105:677–683
S98.
Zurück zum Zitat Pow-Sang J (2008) Pure and robotic-assisted laparoscopic radical prostatectomy: technology and techniques merge to improve outcomes. Expert Rev Anticancer Ther 8:15–19PubMedCrossRef Pow-Sang J (2008) Pure and robotic-assisted laparoscopic radical prostatectomy: technology and techniques merge to improve outcomes. Expert Rev Anticancer Ther 8:15–19PubMedCrossRef
S99.
Zurück zum Zitat Punak S, Kurenov S (2012) A simple master–slave control mapping setup to learn robot-assisted surgery manipulation. Stud Health Technol Inform 173:356–358PubMed Punak S, Kurenov S (2012) A simple master–slave control mapping setup to learn robot-assisted surgery manipulation. Stud Health Technol Inform 173:356–358PubMed
S100.
Zurück zum Zitat Rassweiler J, Safi KC, Subotic S, Teber D, Frede T (2005) Robotics and telesurgery—an update on their position in laparoscopic radical prostatectomy. Minim Invasive Ther Allied Technol 14:109–122PubMedCrossRef Rassweiler J, Safi KC, Subotic S, Teber D, Frede T (2005) Robotics and telesurgery—an update on their position in laparoscopic radical prostatectomy. Minim Invasive Ther Allied Technol 14:109–122PubMedCrossRef
S101.
Zurück zum Zitat Reiley CE, Akinbiyi T, Burschka D, Chang DC, Okamura AM, Yuh DD (2008) Effects of visual force feedback on robot-assisted surgical task performance. J Thorac Cardiovasc Surg 135:196–202PubMedPubMedCentralCrossRef Reiley CE, Akinbiyi T, Burschka D, Chang DC, Okamura AM, Yuh DD (2008) Effects of visual force feedback on robot-assisted surgical task performance. J Thorac Cardiovasc Surg 135:196–202PubMedPubMedCentralCrossRef
S102.
Zurück zum Zitat Reilink R, Kappers AM, Stramigioli S, Misra S (2013) Evaluation of robotically controlled advanced endoscopic instruments. Int J Med Robot 9:240–246PubMedCrossRef Reilink R, Kappers AM, Stramigioli S, Misra S (2013) Evaluation of robotically controlled advanced endoscopic instruments. Int J Med Robot 9:240–246PubMedCrossRef
S103.
Zurück zum Zitat Reilink R, Stramigioli S, Kappers AM, Misra S (2011) Evaluation of flexible endoscope steering using haptic guidance. Int J Med Robot 7:178–186PubMedCrossRef Reilink R, Stramigioli S, Kappers AM, Misra S (2011) Evaluation of flexible endoscope steering using haptic guidance. Int J Med Robot 7:178–186PubMedCrossRef
S104.
Zurück zum Zitat Ricchiuti D, Cerone J, Shie S, Jetley A, Noe D, Kovacik M (2010) Diminished suture strength after robotic needle driver manipulation. J Endourol 24:1509–1513PubMedCrossRef Ricchiuti D, Cerone J, Shie S, Jetley A, Noe D, Kovacik M (2010) Diminished suture strength after robotic needle driver manipulation. J Endourol 24:1509–1513PubMedCrossRef
S105.
Zurück zum Zitat Rizun P, Gunn D, Cox B, Sutherland G (2006) Mechatronic design of haptic forceps for robotic surgery. Int J Med Robot 2:341–349PubMedCrossRef Rizun P, Gunn D, Cox B, Sutherland G (2006) Mechatronic design of haptic forceps for robotic surgery. Int J Med Robot 2:341–349PubMedCrossRef
S106.
Zurück zum Zitat Rossi A, Trevisani A, Zanotto V (2005) A telerobotic haptic system for minimally invasive stereotactic neurosurgery. Int J Med Robot 1:64–75PubMedCrossRef Rossi A, Trevisani A, Zanotto V (2005) A telerobotic haptic system for minimally invasive stereotactic neurosurgery. Int J Med Robot 1:64–75PubMedCrossRef
S107.
Zurück zum Zitat Sangpradit K, Liu H, Dasgupta P, Althoefer K, Seneviratne LD (2011) Finite-element modeling of soft tissue rolling indentation. IEEE Trans Biomed Eng 58:3319–3327PubMedCrossRef Sangpradit K, Liu H, Dasgupta P, Althoefer K, Seneviratne LD (2011) Finite-element modeling of soft tissue rolling indentation. IEEE Trans Biomed Eng 58:3319–3327PubMedCrossRef
S108.
Zurück zum Zitat Schneider C, Baghani A, Rohling R, Salcudean S (2012) Remote ultrasound palpation for robotic interventions using absolute elastography. Med Image Comput Comput Assist Interv 15:42–49PubMed Schneider C, Baghani A, Rohling R, Salcudean S (2012) Remote ultrasound palpation for robotic interventions using absolute elastography. Med Image Comput Comput Assist Interv 15:42–49PubMed
S109.
Zurück zum Zitat Seifabadi R, Iordachita I, Fichtinger G (2012) Design of a teleoperated needle steering system for MRI-guided prostate interventions. Proc IEEE RAS EMBS Int Conf Biomed Robot Biomechatron 2012:793–798PubMedPubMedCentral Seifabadi R, Iordachita I, Fichtinger G (2012) Design of a teleoperated needle steering system for MRI-guided prostate interventions. Proc IEEE RAS EMBS Int Conf Biomed Robot Biomechatron 2012:793–798PubMedPubMedCentral
S110.
Zurück zum Zitat Sengul A, Elk M, Rognini G, Aspell JE, Bleuler H, Blanke O (2012) Extending the body to virtual tools using a robotic surgical interface: evidence from the crossmodal congruency task. PLoS ONE. 7:e49473PubMedPubMedCentralCrossRef Sengul A, Elk M, Rognini G, Aspell JE, Bleuler H, Blanke O (2012) Extending the body to virtual tools using a robotic surgical interface: evidence from the crossmodal congruency task. PLoS ONE. 7:e49473PubMedPubMedCentralCrossRef
S111.
Zurück zum Zitat Shapiro Y, Wolf A (2010) Introducing haptic capabilities to a bone-mounted robot for intra-operative surface scanning. Int J Med Robot 6:444–453PubMedCrossRef Shapiro Y, Wolf A (2010) Introducing haptic capabilities to a bone-mounted robot for intra-operative surface scanning. Int J Med Robot 6:444–453PubMedCrossRef
S112.
Zurück zum Zitat Shimachi S, Hirunyanitiwatna S, Fujiwara Y, Hashimoto A, Hakozaki Y (2008) Adapter for contact force sensing of the da Vinci robot. Int J Med Robot 4:121–130PubMedCrossRef Shimachi S, Hirunyanitiwatna S, Fujiwara Y, Hashimoto A, Hakozaki Y (2008) Adapter for contact force sensing of the da Vinci robot. Int J Med Robot 4:121–130PubMedCrossRef
S113.
Zurück zum Zitat Simorov A, Otte RS, Kopietz CM, Oleynikov D (2012) Review of surgical robotics user interface: what is the best way to control robotic surgery? Surg Endosc 26:2117–2125PubMedCrossRef Simorov A, Otte RS, Kopietz CM, Oleynikov D (2012) Review of surgical robotics user interface: what is the best way to control robotic surgery? Surg Endosc 26:2117–2125PubMedCrossRef
S114.
Zurück zum Zitat Son HI, Bhattacharjee T, Lee DY (2010) Estimation of environmental force for the haptic interface of robotic surgery. Int J Med Robot 6:221–230PubMed Son HI, Bhattacharjee T, Lee DY (2010) Estimation of environmental force for the haptic interface of robotic surgery. Int J Med Robot 6:221–230PubMed
S115.
Zurück zum Zitat Sun Z, Ang RY, Lim EW, Wang Z, Ho KY, Phee SJ (2011) Enhancement of a master–slave robotic system for natural orifice transluminal endoscopic surgery. Ann Acad Med Singap 40:223–230PubMed Sun Z, Ang RY, Lim EW, Wang Z, Ho KY, Phee SJ (2011) Enhancement of a master–slave robotic system for natural orifice transluminal endoscopic surgery. Ann Acad Med Singap 40:223–230PubMed
S116.
Zurück zum Zitat Sutherland GR, Maddahi Y, Gan LS, Lama S, Zareinia K (2015) Robotics in the neurosurgical treatment of glioma. Surg Neurol Int 6:1–8CrossRef Sutherland GR, Maddahi Y, Gan LS, Lama S, Zareinia K (2015) Robotics in the neurosurgical treatment of glioma. Surg Neurol Int 6:1–8CrossRef
S117.
Zurück zum Zitat Suzuki N, Hattori A, Ieiri S, Tomikawa M, Kenmotsu H, Hashizume M (2013) Formulation of wire control mechanism for surgical robot to create virtual reality environment aimed at conducting surgery inside the body. Stud Health Technol Inform 184:424–430PubMed Suzuki N, Hattori A, Ieiri S, Tomikawa M, Kenmotsu H, Hashizume M (2013) Formulation of wire control mechanism for surgical robot to create virtual reality environment aimed at conducting surgery inside the body. Stud Health Technol Inform 184:424–430PubMed
S118.
Zurück zum Zitat Tan N, Margolis DJ, McClure TD et al (2012) Radical prostatectomy: value of prostate MRI in surgical planning. Abdom Imaging 37:664–674PubMedCrossRef Tan N, Margolis DJ, McClure TD et al (2012) Radical prostatectomy: value of prostate MRI in surgical planning. Abdom Imaging 37:664–674PubMedCrossRef
S119.
Zurück zum Zitat Tavakoli M, Aziminejad A, Patel RV, Moallem M (2006) Multi-sensory force/deformation cues for stiffness characterization in soft-tissue palpation. Conf Proc IEEE Eng Med Biol Soc 1:837–840PubMed Tavakoli M, Aziminejad A, Patel RV, Moallem M (2006) Multi-sensory force/deformation cues for stiffness characterization in soft-tissue palpation. Conf Proc IEEE Eng Med Biol Soc 1:837–840PubMed
S120.
Zurück zum Zitat Tavakoli M, Aziminejad A, Patel RV, Moallem M (2006) Tool/tissue interaction feed-back modalities in robot-assisted lump localization. Conf Proc IEEE Eng Med Biol Soc 1:3854–3857PubMed Tavakoli M, Aziminejad A, Patel RV, Moallem M (2006) Tool/tissue interaction feed-back modalities in robot-assisted lump localization. Conf Proc IEEE Eng Med Biol Soc 1:3854–3857PubMed
S121.
Zurück zum Zitat Tavakoli M, Patel RV, Moallem M (2005) Haptic interaction in robot-assisted endoscopic surgery: a sensorized end-effector. Int J Med Robot 1:53–63PubMedCrossRef Tavakoli M, Patel RV, Moallem M (2005) Haptic interaction in robot-assisted endoscopic surgery: a sensorized end-effector. Int J Med Robot 1:53–63PubMedCrossRef
S122.
Zurück zum Zitat Tsai TY, Dimitriou D, Li JS, Kwon YM (2016) Does haptic robot-assisted total hip arthro-plasty better restore native acetabular and femoral anatomy? Int J Med Robot 12:288–295PubMedCrossRef Tsai TY, Dimitriou D, Li JS, Kwon YM (2016) Does haptic robot-assisted total hip arthro-plasty better restore native acetabular and femoral anatomy? Int J Med Robot 12:288–295PubMedCrossRef
S123.
Zurück zum Zitat Meijden OA, Schijven MP (2009) The value of haptic feedback in conventional and robot-assisted minimal invasive surgery and virtual reality training: a current review. Surg Endosc 23:1180–1190PubMedPubMedCentralCrossRef Meijden OA, Schijven MP (2009) The value of haptic feedback in conventional and robot-assisted minimal invasive surgery and virtual reality training: a current review. Surg Endosc 23:1180–1190PubMedPubMedCentralCrossRef
S124.
Zurück zum Zitat Vanmulken DA, Spooren AI, Bongers HM, Seelen HA (2015) Robot-assisted task-oriented upper extremity skill training in cervical spinal cord injury: a feasibility study. Spinal Cord 53:547–551PubMedCrossRef Vanmulken DA, Spooren AI, Bongers HM, Seelen HA (2015) Robot-assisted task-oriented upper extremity skill training in cervical spinal cord injury: a feasibility study. Spinal Cord 53:547–551PubMedCrossRef
S125.
Zurück zum Zitat Veras EJ, De Laurentis KJ, Dubey R (2008) Design and implementation of visual-haptic assistive control system for virtual rehabilitation exercise and teleoperation manipulation. Conf Proc IEEE Eng Med Biol Soc 2008:4290–4293PubMed Veras EJ, De Laurentis KJ, Dubey R (2008) Design and implementation of visual-haptic assistive control system for virtual rehabilitation exercise and teleoperation manipulation. Conf Proc IEEE Eng Med Biol Soc 2008:4290–4293PubMed
S126.
Zurück zum Zitat Wang Z, Sun Z, Phee SJ (2013) Haptic feedback and control of a flexible surgical endoscopic robot. Comput Methods Programs Biomed 112:260–271PubMedCrossRef Wang Z, Sun Z, Phee SJ (2013) Haptic feedback and control of a flexible surgical endoscopic robot. Comput Methods Programs Biomed 112:260–271PubMedCrossRef
S127.
Zurück zum Zitat Watanabe T, Abbasi AZ, Conditt MA et al (2014) In vivo kinematics of a robot-assisted uni- and multi-compartmental knee arthroplasty. J Orthop Sci 19:552–557PubMedCrossRef Watanabe T, Abbasi AZ, Conditt MA et al (2014) In vivo kinematics of a robot-assisted uni- and multi-compartmental knee arthroplasty. J Orthop Sci 19:552–557PubMedCrossRef
S128.
Zurück zum Zitat Wedmid A, Llukani E, Lee DI (2011) Future perspectives in robotic surgery. BJU Int 108:1028–1036PubMedCrossRef Wedmid A, Llukani E, Lee DI (2011) Future perspectives in robotic surgery. BJU Int 108:1028–1036PubMedCrossRef
S129.
Zurück zum Zitat Wexner SD, Bergamaschi R, Lacy A et al (2009) The current status of robotic pelvic surgery: results of a multinational interdisciplinary consensus conference. Surg Endosc 23:438–443PubMedCrossRef Wexner SD, Bergamaschi R, Lacy A et al (2009) The current status of robotic pelvic surgery: results of a multinational interdisciplinary consensus conference. Surg Endosc 23:438–443PubMedCrossRef
S130.
Zurück zum Zitat Wu F, Chen X, Lin Y et al (2014) A virtual training system for maxillofacial surgery using advanced haptic feedback and immersive workbench. Int J Med Robot 10:78–87PubMedCrossRef Wu F, Chen X, Lin Y et al (2014) A virtual training system for maxillofacial surgery using advanced haptic feedback and immersive workbench. Int J Med Robot 10:78–87PubMedCrossRef
S131.
Zurück zum Zitat Xu Z, Song C, Wu W (2012) Haptic tracking control for minimally invasive robotic surgery. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 29:407–410PubMed Xu Z, Song C, Wu W (2012) Haptic tracking control for minimally invasive robotic surgery. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 29:407–410PubMed
S132.
Zurück zum Zitat Yamamoto T, Abolhassani N, Jung S, Okamura AM, Judkins TN (2012) Augmented reality and haptic interfaces for robot-assisted surgery. Int J Med Robot 8:45–56PubMedCrossRef Yamamoto T, Abolhassani N, Jung S, Okamura AM, Judkins TN (2012) Augmented reality and haptic interfaces for robot-assisted surgery. Int J Med Robot 8:45–56PubMedCrossRef
S133.
Zurück zum Zitat Ye D, Mozaffari-Naeini H, Busart C, Thakor NV (2005) MEMSurgery: an integrated test-bed for vascular surgery. Int J Med Robot 1:21–30PubMedCrossRef Ye D, Mozaffari-Naeini H, Busart C, Thakor NV (2005) MEMSurgery: an integrated test-bed for vascular surgery. Int J Med Robot 1:21–30PubMedCrossRef
S134.
Zurück zum Zitat Zareinia K, Maddahi Y, Ng C, Sepehri N, Sutherland GR (2015) Performance evaluation of haptic hand-controllers in a robot-assisted surgical system. Int J Med Robot 11:486–501PubMedCrossRef Zareinia K, Maddahi Y, Ng C, Sepehri N, Sutherland GR (2015) Performance evaluation of haptic hand-controllers in a robot-assisted surgical system. Int J Med Robot 11:486–501PubMedCrossRef
S135.
Zurück zum Zitat Zhang D, Zhu Q, Xiong J, Wang L (2014) Dynamic virtual fixture on the Euclidean group for admittance-type manipulator in deforming environments. Biomed Eng Online 13:51PubMedPubMedCentralCrossRef Zhang D, Zhu Q, Xiong J, Wang L (2014) Dynamic virtual fixture on the Euclidean group for admittance-type manipulator in deforming environments. Biomed Eng Online 13:51PubMedPubMedCentralCrossRef
S136.
Zurück zum Zitat Zhang J, Wei W, Ding J, Roland JT, Manolidis S, Simaan N (2010) Inroads toward robot-assisted cochlear implant surgery using steerable electrode arrays. Otol Neurotol 31:1199–1206PubMedCrossRef Zhang J, Wei W, Ding J, Roland JT, Manolidis S, Simaan N (2010) Inroads toward robot-assisted cochlear implant surgery using steerable electrode arrays. Otol Neurotol 31:1199–1206PubMedCrossRef
S137.
Zurück zum Zitat Zhao LC, Meeks JJ, Nadler RB (2009) Robotics in urologic surgery. Minerva Urol Nefrol 61:331–339PubMed Zhao LC, Meeks JJ, Nadler RB (2009) Robotics in urologic surgery. Minerva Urol Nefrol 61:331–339PubMed
S138.
Zurück zum Zitat Zhou C, Xie L, Shen X, Luo M, Wu Z, Gu L (2014) Cardiovascular-interventional-surgery virtual training platform and its preliminary evaluation. Int J Med Robot Zhou C, Xie L, Shen X, Luo M, Wu Z, Gu L (2014) Cardiovascular-interventional-surgery virtual training platform and its preliminary evaluation. Int J Med Robot
S139.
Zurück zum Zitat Zorn KC (2008) Robotic radical prostatectomy: assurance of water-tight vesicourethral anastomotic closure with the Lapra-Ty clip. J. Endourol 22:863–865PubMedCrossRef Zorn KC (2008) Robotic radical prostatectomy: assurance of water-tight vesicourethral anastomotic closure with the Lapra-Ty clip. J. Endourol 22:863–865PubMedCrossRef
S140.
Zurück zum Zitat Barthel A, Trematerra D, Nasseri MA et al (2015) Haptic interface for robot-assisted ophthalmic surgery. Conf Proc IEEE Eng Med Biol Soc 2015:4906–4909PubMed Barthel A, Trematerra D, Nasseri MA et al (2015) Haptic interface for robot-assisted ophthalmic surgery. Conf Proc IEEE Eng Med Biol Soc 2015:4906–4909PubMed
S141.
Zurück zum Zitat Tezuka M, Kitamura N, Miki N (2015) Micro-needle electro-tactile display. Conf Proc IEEE Eng Med Biol Soc 2015:5781–5784PubMed Tezuka M, Kitamura N, Miki N (2015) Micro-needle electro-tactile display. Conf Proc IEEE Eng Med Biol Soc 2015:5781–5784PubMed
Metadaten
Titel
Prevalence of haptic feedback in robot-mediated surgery: a systematic review of literature
verfasst von
Farshid Amirabdollahian
Salvatore Livatino
Behrad Vahedi
Radhika Gudipati
Patrick Sheen
Shan Gawrie-Mohan
Nikhil Vasdev
Publikationsdatum
01.12.2017
Verlag
Springer London
Erschienen in
Journal of Robotic Surgery / Ausgabe 1/2018
Print ISSN: 1863-2483
Elektronische ISSN: 1863-2491
DOI
https://doi.org/10.1007/s11701-017-0763-4

Weitere Artikel der Ausgabe 1/2018

Journal of Robotic Surgery 1/2018 Zur Ausgabe

Vorsicht, erhöhte Blutungsgefahr nach PCI!

10.05.2024 Koronare Herzerkrankung Nachrichten

Nach PCI besteht ein erhöhtes Blutungsrisiko, wenn die Behandelten eine verminderte linksventrikuläre Ejektionsfraktion aufweisen. Das Risiko ist umso höher, je stärker die Pumpfunktion eingeschränkt ist.

Darf man die Behandlung eines Neonazis ablehnen?

08.05.2024 Gesellschaft Nachrichten

In einer Leseranfrage in der Zeitschrift Journal of the American Academy of Dermatology möchte ein anonymer Dermatologe bzw. eine anonyme Dermatologin wissen, ob er oder sie einen Patienten behandeln muss, der eine rassistische Tätowierung trägt.

Deutlich weniger Infektionen: Wundprotektoren schützen!

08.05.2024 Postoperative Wundinfektion Nachrichten

Der Einsatz von Wundprotektoren bei offenen Eingriffen am unteren Gastrointestinaltrakt schützt vor Infektionen im Op.-Gebiet – und dient darüber hinaus der besseren Sicht. Das bestätigt mit großer Robustheit eine randomisierte Studie im Fachblatt JAMA Surgery.

Chirurginnen und Chirurgen sind stark suizidgefährdet

07.05.2024 Suizid Nachrichten

Der belastende Arbeitsalltag wirkt sich negativ auf die psychische Gesundheit der Angehörigen ärztlicher Berufsgruppen aus. Chirurginnen und Chirurgen bilden da keine Ausnahme, im Gegenteil.

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

S3-Leitlinie „Diagnostik und Therapie des Karpaltunnelsyndroms“

Karpaltunnelsyndrom BDC Leitlinien Webinare
CME: 2 Punkte

Das Karpaltunnelsyndrom ist die häufigste Kompressionsneuropathie peripherer Nerven. Obwohl die Anamnese mit dem nächtlichen Einschlafen der Hand (Brachialgia parästhetica nocturna) sehr typisch ist, ist eine klinisch-neurologische Untersuchung und Elektroneurografie in manchen Fällen auch eine Neurosonografie erforderlich. Im Anfangsstadium sind konservative Maßnahmen (Handgelenksschiene, Ergotherapie) empfehlenswert. Bei nicht Ansprechen der konservativen Therapie oder Auftreten von neurologischen Ausfällen ist eine Dekompression des N. medianus am Karpaltunnel indiziert.

Prof. Dr. med. Gregor Antoniadis
Berufsverband der Deutschen Chirurgie e.V.

S2e-Leitlinie „Distale Radiusfraktur“

Radiusfraktur BDC Leitlinien Webinare
CME: 2 Punkte

Das Webinar beschäftigt sich mit Fragen und Antworten zu Diagnostik und Klassifikation sowie Möglichkeiten des Ausschlusses von Zusatzverletzungen. Die Referenten erläutern, welche Frakturen konservativ behandelt werden können und wie. Das Webinar beantwortet die Frage nach aktuellen operativen Therapiekonzepten: Welcher Zugang, welches Osteosynthesematerial? Auf was muss bei der Nachbehandlung der distalen Radiusfraktur geachtet werden?

PD Dr. med. Oliver Pieske
Dr. med. Benjamin Meyknecht
Berufsverband der Deutschen Chirurgie e.V.

S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“

Appendizitis BDC Leitlinien Webinare
CME: 2 Punkte

Inhalte des Webinars zur S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“ sind die Darstellung des Projektes und des Erstellungswegs zur S1-Leitlinie, die Erläuterung der klinischen Relevanz der Klassifikation EAES 2015, die wissenschaftliche Begründung der wichtigsten Empfehlungen und die Darstellung stadiengerechter Therapieoptionen.

Dr. med. Mihailo Andric
Berufsverband der Deutschen Chirurgie e.V.