Skip to main content
Erschienen in: Journal of Robotic Surgery 4/2022

Open Access 02.09.2021 | Original Article

Robot-assisted pancreatic surgery—optimized operating procedures: set-up, port placement, surgical steps

verfasst von: Matthäus Felsenstein, Karl H. Hillebrandt, Lea Timmermann, Mathilde Feist, Christian Benzing, Moritz Schmelzle, Johann Pratschke, Thomas Malinka

Erschienen in: Journal of Robotic Surgery | Ausgabe 4/2022

Abstract

Even in most complex surgical settings, recent advances in minimal-invasive technologies have made the application of robotic-assisted devices more viable. Due to ever increasing experience and expertise, many large international centers now offer robotic-assisted pancreatic surgery as a preferred alternative. In general however, pancreatic operations are still associated with high morbidity and mortality, while robotic-assisted techniques still require significant learning curves. As a prospective post-marketing trial, we have established optimized operating procedures at our clinic. This manuscript intends to publicize our standardized methodology, including pre-operative preparation, surgical set-up as well as the surgeons’ step-by-step actions when using pancreatic-assisted robotic surgery. This manuscript is based on our institutional experience as a high-volume pancreas operating center. We introduce novel concepts that should standardize, facilitate and economize the surgical steps in all types of robotic-assisted pancreatic surgery. The “One Fits All” principle enables single port placement irrespective of the pancreatic procedure, while the “Reversed 6-to-6 Approach” offers an optimized manual for pancreatic surgeons using the robotic console. Novel and standardized surgical concepts could guide new centers to establish a robust, efficient and safe robotic-assisted pancreatic surgery program.
Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Background

Even in most challenging surgical interventions of the retroperitoneum, minimally invasive techniques are increasingly evaluated for their feasibility and efficacy. Indications for laparoscopic interventions have already demonstrated advantages over open pancreatic surgeries in some instances [1, 2]. Results of robotic-assisted interventions from high-volume centers suggest even broader application [35]. Due to high costs, the application of these technologies is limited to a few large international centers, so that universally applied Standard Operating Procedures have not yet been established. Some studies also indicate that significant center-specific and time-dependent differences prevail, thus any benefits of robotic-assisted pancreatic surgery may develop only after extended learning curves [69]. However, company marketing and the general popularity of such technologies increase daily. To minimize the rate of any serious complications, which may occur during the learning curve, standardization in experienced centers is extremely important. From our high-volume center-specific experiences, we present the following Optimized Operating Procedures, for the setting of robotic-assisted pancreatic surgery. This protocol should enable other centers to establish a robust-, time efficient- and safe robotic-assisted pancreatic surgery program.
Robot-assisted technology is novel, so that it is necessary to explain to the patient both the risks and advantages compared to conventional operating methods. We generally inform patients about current international opinions and studies to provide individual, evidence-based recommendations when considering this surgical technology's pros and cons.
This prospective post-marketing study (CARE study; E/A4/084/17) was conducted with IRB approval, which was necessary to collect data of a unique cohort receiving surgical treatment with the da Vinci Xi (Sunnyvale, USA) Surgical System (DRKS00017229).

Hospitalization

Initial surgical assessment and indication for surgery is obtained at our Charité Pancreatic Outpatient Center. Specialized and experienced pancreatic surgeons inform and consent selected patients for robotic-assisted surgery. Anesthesiologists are consulted to thoroughly examine the patient before scheduling the operation. In the context of a professionalized ERAS (enhanced recovery after surgery) program, patients are surveilled before and after surgery by expertly skilled personnel. Patient admission to the hospital occurs one day prior to the operation for final clinical evaluation.

The positioning of the patient

To avoid positioning and collision injuries, patients are placed on a soft vacuum mattress, and metal protectors are attached for safety and shield the surgical area. The left arm is positioned at the patient's side, while the right arm is stretched out to give anesthesiologists easy access (Fig. 1). The patient's legs are placed in French Position while their body remains in 12° reverse Trendelenburg inclination.

The positioning of the ports

Irrespective of the pancreatic procedure, we set out all the robotic and assistant trocars prior to attachment of the robotic arms. Our center has established a "One Fits All” principle. When performing pancreatoduodenectomies (PD), total pancreatectomies (TP) and Appleby procedures (AP), four robotic trocars (8 mm) and two assistant trocars (15 mm/5 mm) are needed. For Distal Pancreatectomies (DP) however, we introduce a single assistant trocar (15 mm). Figure 2 indicates the exact port placement.
First, we place 8 mm trocar (R3) umbilical. After a pneumoperitoneum has been established, a diagnostic laparoscopy is then performed. If there is a good overview, other robotic trocars (R1, R2, R4) are placed in an imaginary horizontal line using standardized distances to avoid robotic arm collisions (see Fig. 2). During this process, any intra-abdominal adhesions are removed using laparoscopic instruments, before introducing the remaining assistant trocars (A1, A2).

Alignment of the da Vinci patient cart

The da Vinci Xi (Sunnyvale, USA) Patient Cart is aligned with the operating table on the left side (Fig. 1). The camera is now being introduced (R3). After the focal point has been adjusted intra-abdominally, the robotic system and arms are set up fully automatic. On demand, the required instruments are introduced into the patient and connected with the robotic arms (Fig. 3) (Table 1).
Table 1
Robotic ports and instruments: robotic arms are connected with specialized instruments for robotic-assisted surgery
Trocar
Port
Size (mm)
Instrument
Robotic trocar
R1
8
Tip-up Fenestrated Grasper
Robotic trocar
R2
8
Fenestrated Bipolar Forceps
Robotic trocar
R3
8
Endoscope
Robotic trocar
R4
8
Vessel Sealer Extend, Permanent Cautery Hook
Assistant trocar
A1
15
Forceps, Scissor, Covidien EndoGia
Assistant trocar
A2
5
Forceps
Most instruments are used in defined port positions but may be adjusted and customized during each phase of the operation. According to the "One Fits All" principle, we list the distinct trocar/port positions coupled with common robotic instruments used in that position

Steps for structured robotic-assisted pancreatoduodenectomy (PD)

Operating procedures have now been significantly optimized and economized based on our center-specific experience. During the period of 2017–2021, we were able to conduct > 125 robotic-assisted pancreatic surgeries and > 70 PDs. We believe that this process optimization is particularly important in the robotic setting due to its limited spatial overview when compared to the open situs operations. For this reason, our team established a novel concept, named the “Reversed 6-to-6 Approach”:

A: Resection

A1: Entering the bursa omentalis to expose the pancreatic organ

When dissecting the greater omentum at the gastrocolic ligament, which enables the access to the bursa omentalis, the Tip-Up Fenestrated Grasper (R1) is utilized. The stomach is mobilized using the Fenestrated Bipolar Forceps (R2) as well as the Vessel Sealer Extend (R4) for dissection of the ligament. The stomach is then dissected directly at the post-pyloric plane using a Covidien (Dublin, Ireland) EndoGia (A1) with a purple cartridge (60 mm). The result is that the stomach can be mobilized into the upper-left quadrant providing an optimal view early on.

A2: Exposing the pancreas at the resection level

The next step includes dissection of the pancreas at the caudal edge to expose the mesenterico-portal axis. While retracting the liver using the robotic arm 1, Fenestrated Bipolar Forceps (R2) and the Vessel Sealer Extend (R4) instruments are needed for careful dissection. Additional support is provided using instruments via assistant trocars (A1, A2). Subsequently, cranial structures are exposed by conducting complete lymphadenectomy with the dissection of all-important vessel structures within the hepatoduodenal ligament (Common hepatic artery, CHA/Gastroduodenal artery, GDA/Right gastric artery, RGA). Identification of the GDA branching-point enables a safe ligation of the artery via Hem-o-lock clips (A1). The portal vein structure is then fully exposed at the cranial edge. At this point, the pancreatic body can be mobilized along the mesenterico-portal axis.

A3: Cutting the pancreas at the resection level

Following the mobilization from cranial and caudal edges, the pancreas is then carefully dissected along the mesenterico-portal axis using the Permanent Cautery Hook (R4).

A4: Preparation of hilar structures

Along the “Reversed 6-to-6 Approach”, the hilar structures can subsequently be dissected and visualized. Identification of the hepatocholedochus duct enables dissection right behind the main cystic branch using a scissor (A1). Subsequently, we perform anterograde cholecystectomy using the Permanent Cautery Hook (R4).

A5: Kocher Maneuver

The Kocher Maneuver is realized using the Fenestrated Bipolar Forceps (R1) and Vessel Sealer Extend (R4) instrument. These are progressed along the duodenum in a cranio-caudal direction until reaching the ligament of Treitz. The release of these latter segments allows the flection of the jejunal loop into the right upper quadrant. The jejunal loop is subsequently parted using the Covidien (Dublin, Ireland) EndoGia with purple cartridge (45 mm) (A1) to establish the alimentary loop.

A6: Completion at the mesenterico-portal axis

Finally, the dissection of the pancreatic head and the uncinate process is completed along the portal vein and superior mesenteric artery (AMS) using the Fenestrated Bipolar Forceps (R1) and Vessel Sealer Extend (R4). Small branches are clipped (A1), and the resection specimen is removed using a retrieval bag.

B: Reconstruction

B1: Reconstruction of the hepaticojejunostomy

The alimentary loop is commonly opened at counter mesenteric position using the Permanent Cautery Hook (R4), followed by anastomosis of the hepaticojejunostomy in back-to-front direction using a continuous PDS suture (5–0), realized by Large Needle Driver (R4) und Tip-Up Fenestrated Grasper (R2). Prior to closure of the hepaticojejunostomy, a trans-anastomotic stent (2mm × 3cm) is positioned (PDS 5/0) to ensure biliary drainage.

B2: Reconstruction of the pancreato-gastrostomy

A suitable position for anastomosis is marked at the back wall of the stomach using the Permanent Cautery Hook (R4). A Prolene 5/0 suture along the incision line in purse-string technique is applied using the Large Needle Driver (R4) and Tip-Up Fenestrated Grasper (R2). The stomach is now incised using the Permanent Cautery Hook (R4), and when a clear view of the back wall is achieved, a robotic-adjusted pancreatogastrostomy is executed using our recently developed mattress-seam technique (Vicryl 3/0) [10]. The procedure is conducted with the Tip-Up Fenestrated Grasper (R2), and Large Needle Driver (R4) and a trans-anastomotic splint (2mm × 3cm) is positioned into the pancreatic duct. By pulling the mattress-seam sutures, the pancreatic tail is directly drawn into the stomach, fully covered by gastric mucosa. Finally, the outer pancreatogastrostomy is tightly sealed by purse-string sutures.

B3: Reconstruction of the gastroenteric anastomosis

Antecolic gastroenterostomy finalizes the reconstruction using continuous V-Loc 4-0 sutures. Again, the surgeon proceeds in a back-to-front direction using the Tip-Up Fenestrated Grasper (R2) and Large Needle Driver (R4) instruments.

B4: Disconnection of da Vinci robotic system

Before finalizing the procedure, the abdominal situs is inspected for minor bleeding, cauterized and rinsed to remove any remaining intraabdominal debris (R2). The instruments are removed under careful observation, and all robotic arms are disconnected before the entire patient cart is pulled back from the patients’ site. Subsequently, the bag containing the resection specimen is removed through a 5 cm mid-line retrieval incision. We also use this incision to conduct a haptic re-evaluation of all anastomoses, or, in rare circumstances, even to perform the reconstruction of the gastroenteric anastomosis entirely via this incision (hybrid approach). This allows for more flexibility during the initial stages of the learning curve.

B6: Drains and closure

As our institutional standard, we place drains through trocar incisions, which scan the regions around the pancreatogastrostomy and the hepaticojejunostomy (R4 position). The integral planes of mid-line retrieval incision and trocar wounds are closed with sutures.

Steps for structured distal pancreatectomies (DP)

The new standard for non-oncologic distal pancreatectomies is the minimally invasive resection of the pancreatic tail [11]. With this in view, we sought to establish standard, robotic-assisted distal pancreatectomies at our center. With respect to the individual surgical indication (benign versus malign), this procedure can be conducted with spleen preservation (Kimura Maneovre) or via complete oncologic clear-up [12]. As spleen-preserving procedures are rarely performed, we describe the individual steps of an oncologic distal pancreatectomy.

A: Resection

A1: Entering the bursa omentalis to expose the pancreatic organ

When dissecting the greater omentum at the gastrocolic ligament, which enables good access to the bursa omentalis, we use the Tip-Up Fenestrated Grasper (R1) instrument to mobilize the stomach and the Vessel Sealer Extend (R4) for dissection of the ligament. This is performed progressing from the right-medial peri-gastric plane to the left colic flexure using the Fenestrated Bipolar Forceps (R2) und Vessel Sealer Extend (R4) instruments, while the short gastric arteries are regularly dissected. Instruments maneuvering through assistant trocars (A1, A2) may provide additional support and a better overview. After full mobilization of the stomach, we recommend fixing the stomach via a single-armed suture with a straight needle, which we introduce sub-xiphoidal. It is then transfixed at the greater curvature and tied from the outside after the needle is re-released sub-xiphoidally. This enables an excellent overview of the bursa omentalis and the entire pancreatic organ.

A2: Exposing the splenic vessels

For malignant indications, an exact localization and planning of the resection plane is necessary and can be realized intra-abdominally via an ultrasound device (A2). At the resection level, the splenic artery is exposed at the cranial pancreatic edge, using the Fenestrated Bipolar Forceps (R2) and Vessel Sealer Extend (R4) instruments. Next, Hem-o-lock clips are introduced for safe ligation of the artery (A1). The splenic vein is commonly found at the pancreatic body's caudal edge, which is equally ligated via Hem-o-lock clips (A1). The pancreas can now be inflected from the Gerota fascia beneath.

A3: Cutting the pancreas at the resection level

Subsequently, the Covidien (Dublin, Ireland) EndoGia (A1) with a black cartridge (60 mm), reinforced by Seamguard Mesh, is introduced and tunneled at the resection site and dissects the pancreas at the required position.

A4: Retrieval of the resection specimen

The specimen can be released after thorough preparation of the pancreatic tail. It includes lymphadenectomy and mobilization of the spleen, using the Fenestrated Bipolar Forceps (R2) and Vessel Sealer Extend (R4) instruments. The specimen is transferred into a retrieval bag and recovered using an extended incision at position A1.

B6: Drains and closure

As an institutional standard, we place drains through trocar incisions, which scan the regions around the resection margin and the Koller's Pouch (R4 position). Integral planes of retrieval incision and trocar wounds are sutured to close them.

Outcome parameters using optimized operating procedures

In the recent series of robotic-assisted pancreatectomies at our center, we were able to report good outcome parameters, after having implemented novel concepts, such as the “One Fits All” principle and “Reversed 6-to-6 Approach” [4]. Of particular relevance in the evaluation of this novel approach are the parameters, such as mean procedure time, in-hospital stay, complication rates and oncologic outcomes (Table 2). Like other large international centers, we present similar positive outcome parameters, while offering a standardized approach, feasible for majority of patients. There is also a measurable reduction in operating time compared to other centers, likely due to our steep learning curve (Fig. 4). Altogether, this indicates successful process optimization through standardization.
Table 2
Clinical outcome parameters: main outcome parameters after robotic pancreaticoduodenectomy from various international centers were derived from published reports
 
Charité Universitätsmedizin Berlin, Timmermann et al. 2021 [10]
University of Pittsburgh Medical Center, Zureikat et al. 2020 [9]
University of Hongkong, Zhang et al. 2019 [7]
Johns Hopkins University, Van Oosten et al. 2020 [8]
Shanghai Jiaotong University SOM, Shi et al. 2020 [6]
Case number
54
500
100
96
200
Procedure time (min)
325
415
358
474
279
In-hospital stay (days) 15
8
18
8
21.8
 
Morbitdity (%)
63
69
58
62.5
36
POPF (%)
18.6
20.2
24
13.5
7.4
PPH (%)
20.2
NA
22
6.2
10
30d Mortality (%)
5.3
1.8
3
2.1
2.5
R0 Resection (%)
83.9
85
100
NA
95
Lymph node harvest
16.5
28
7
NA
16.3
Not surprisingly, most experienced centers show improved outcomes likely due to advanced learning curves. However, even within our early stage of the learning curve, we were able to cut down operating time, after having implemented optimized operating procedures

Conclusion

The rising popularity in the health care setting as well as intense marketing of robotic-assisted techniques warrants its broader application and distribution, particularly expected in pancreatic surgery. While the implementation of novel techniques is indispensable for innovation in the surgical field, it sometimes involves unforeseeable risks. Important studies from centers that have already established large programs for robotic-assisted pancreatic surgery have indicated that good performance and major benefits are only achieved after a long learning curve [6, 7]. At this point, professional training centers have been implemented to train international surgeons in conducting safe robotic-assisted pancreatic procedures [13]. They facilitate the acquisition of proficient skills at the robotic console, prior to their application on patients. However, they are not able to provide immediate surgical guidance on step-by-step operating procedures, necessary to acquire consistent outcome parameters in complex surgical settings. In this manuscript, we emphasize and were able to show that institutional process optimization and standardization, may shorten such learning curves. For this reason, we strongly propose to broadly implement standard operating procedures, which may facilitate intra- and inter-institutional process optimization as well as providing guidance for novel centers to establish a robust, time efficient- and safe robotic-assisted pancreatic surgical program.
Considering the continuous development of this technology, such recommendations need to be regularly discussed and re-evaluated to establish national and international consensus.

Acknowledgements

We acknowledge the support of Intuitive Surgical Deutschland GmbH for providing a research grant for the equipment to perform robotic-assisted surgery and enable this study. Dr. Felsenstein and Dr. Hillebrandt are participants in the BIH-Charité Junior Clinician Scientist Program funded by the Charité-Universitätsmedizin Berlin and the Berlin Institute of Health. The authors thank Andrea Köpke, Birguel Ertugrul and Sabine Boas-Knoop for the data management.

Declarations

Conflicts of interest

Matthäus Felsenstein, Karl Hillebrandt, Mathilde Feist, Lea Timmermann and Christian Benzing have no conflict of interest or financial ties to disclose; Moritz Schmelzle: Merck Serono GmbH, Bayer AG, ERBE Elektromedizin GmbH, Amgen Inc., Johnson & Johnson Medical GmbH, Takeda Pharmaceutical Limited, Olympus K.K., Medtronic GmbH, Intuitive; Thomas Malinka: Intuitive; Johann Pratschke: Intuitive, Johnson & Johnson Medical GmbH.

Ethics approval

CARE study obtained IRB approval under E/A4/084/17.
Informed consent was obtained from all individual participants included in the study.
The authors affirm that human research participants provided informed consent for publication of the images in Fig. 3.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

Die Chirurgie

Print-Titel

Das Abo mit mehr Tiefe

Mit der Zeitschrift Die Chirurgie erhalten Sie zusätzlich Online-Zugriff auf weitere 43 chirurgische Fachzeitschriften, CME-Fortbildungen, Webinare, Vorbereitungskursen zur Facharztprüfung und die digitale Enzyklopädie e.Medpedia.

Bis 30. April 2024 bestellen und im ersten Jahr nur 199 € zahlen!

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Urologie

Kombi-Abonnement

Mit e.Med Urologie erhalten Sie Zugang zu den urologischen CME-Fortbildungen und Premium-Inhalten der urologischen Fachzeitschriften.

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat van Hilst J et al (2019) Laparoscopic versus open pancreatoduodenectomy for pancreatic or periampullary tumours (LEOPARD-2): a multicentre, patient-blinded, randomised controlled phase 2/3 trial. Lancet Gastroenterol Hepatol 4(3):199–207CrossRef van Hilst J et al (2019) Laparoscopic versus open pancreatoduodenectomy for pancreatic or periampullary tumours (LEOPARD-2): a multicentre, patient-blinded, randomised controlled phase 2/3 trial. Lancet Gastroenterol Hepatol 4(3):199–207CrossRef
2.
Zurück zum Zitat Nickel F et al (2020) Laparoscopic versus open pancreaticoduodenectomy: a systematic review and meta-analysis of randomized controlled trials. Ann Surg 271(1):54–66CrossRef Nickel F et al (2020) Laparoscopic versus open pancreaticoduodenectomy: a systematic review and meta-analysis of randomized controlled trials. Ann Surg 271(1):54–66CrossRef
3.
Zurück zum Zitat Watkins AA et al (2018) Multicenter outcomes of robotic reconstruction during the early learning curve for minimally-invasive pancreaticoduodenectomy. HPB (Oxford) 20(2):155–165CrossRef Watkins AA et al (2018) Multicenter outcomes of robotic reconstruction during the early learning curve for minimally-invasive pancreaticoduodenectomy. HPB (Oxford) 20(2):155–165CrossRef
4.
Zurück zum Zitat Timmermann L et al (2021) Implementation of robotic assistance in pancreatic surgery: experiences from the first 101 consecutive cases. J Clin Med 10(2):229CrossRef Timmermann L et al (2021) Implementation of robotic assistance in pancreatic surgery: experiences from the first 101 consecutive cases. J Clin Med 10(2):229CrossRef
5.
Zurück zum Zitat Zureikat AH et al (2013) 250 robotic pancreatic resections: safety and feasibility. Ann Surg 258(4):554–559 (discussion 559–62)CrossRef Zureikat AH et al (2013) 250 robotic pancreatic resections: safety and feasibility. Ann Surg 258(4):554–559 (discussion 559–62)CrossRef
6.
Zurück zum Zitat Shi Y et al (2020) Short-term outcomes after robot-assisted vs open pancreaticoduodenectomy after the learning curve. JAMA Surg 155(5):389–394CrossRef Shi Y et al (2020) Short-term outcomes after robot-assisted vs open pancreaticoduodenectomy after the learning curve. JAMA Surg 155(5):389–394CrossRef
7.
Zurück zum Zitat Zhang T et al (2019) The learning curve for a surgeon in robot-assisted laparoscopic pancreaticoduodenectomy: a retrospective study in a high-volume pancreatic center. Surg Endosc 33(9):2927–2933CrossRef Zhang T et al (2019) The learning curve for a surgeon in robot-assisted laparoscopic pancreaticoduodenectomy: a retrospective study in a high-volume pancreatic center. Surg Endosc 33(9):2927–2933CrossRef
8.
Zurück zum Zitat van Oosten AF et al (2020) Perioperative outcomes of robotic pancreaticoduodenectomy: a propensity-matched analysis to open and laparoscopic pancreaticoduodenectomy. J Gastrointest Surg 25:1795–1804CrossRef van Oosten AF et al (2020) Perioperative outcomes of robotic pancreaticoduodenectomy: a propensity-matched analysis to open and laparoscopic pancreaticoduodenectomy. J Gastrointest Surg 25:1795–1804CrossRef
9.
Zurück zum Zitat Zureikat AH et al (2021) 500 minimally invasive robotic pancreatoduodenectomies: one decade of optimizing performance. Ann Surg 273(5):966–972CrossRef Zureikat AH et al (2021) 500 minimally invasive robotic pancreatoduodenectomies: one decade of optimizing performance. Ann Surg 273(5):966–972CrossRef
10.
Zurück zum Zitat Timmermann L et al (2021) Development of a novel dorsal incision only invagination type pancreatogastrostomy (Charite-PG) following open pancreaticoduodenectomy—a single centre experience. J Clin Med 10(12):2573CrossRef Timmermann L et al (2021) Development of a novel dorsal incision only invagination type pancreatogastrostomy (Charite-PG) following open pancreaticoduodenectomy—a single centre experience. J Clin Med 10(12):2573CrossRef
11.
Zurück zum Zitat Asbun HJ et al (2020) The Miami international evidence-based guidelines on minimally invasive pancreas resection. Ann Surg 271(1):1–14CrossRef Asbun HJ et al (2020) The Miami international evidence-based guidelines on minimally invasive pancreas resection. Ann Surg 271(1):1–14CrossRef
12.
Zurück zum Zitat Kimura W et al (1996) Spleen-preserving distal pancreatectomy with conservation of the splenic artery and vein. Surgery 120(5):885–890CrossRef Kimura W et al (1996) Spleen-preserving distal pancreatectomy with conservation of the splenic artery and vein. Surgery 120(5):885–890CrossRef
13.
Zurück zum Zitat Mark Knab L et al (2018) Evolution of a novel robotic training curriculum in a complex general surgical oncology fellowship. Ann Surg Oncol 25(12):3445–3452CrossRef Mark Knab L et al (2018) Evolution of a novel robotic training curriculum in a complex general surgical oncology fellowship. Ann Surg Oncol 25(12):3445–3452CrossRef
Metadaten
Titel
Robot-assisted pancreatic surgery—optimized operating procedures: set-up, port placement, surgical steps
verfasst von
Matthäus Felsenstein
Karl H. Hillebrandt
Lea Timmermann
Mathilde Feist
Christian Benzing
Moritz Schmelzle
Johann Pratschke
Thomas Malinka
Publikationsdatum
02.09.2021
Verlag
Springer London
Erschienen in
Journal of Robotic Surgery / Ausgabe 4/2022
Print ISSN: 1863-2483
Elektronische ISSN: 1863-2491
DOI
https://doi.org/10.1007/s11701-021-01297-2

Weitere Artikel der Ausgabe 4/2022

Journal of Robotic Surgery 4/2022 Zur Ausgabe

Echinokokkose medikamentös behandeln oder operieren?

06.05.2024 DCK 2024 Kongressbericht

Die Therapie von Echinokokkosen sollte immer in spezialisierten Zentren erfolgen. Eine symptomlose Echinokokkose kann – egal ob von Hunde- oder Fuchsbandwurm ausgelöst – konservativ erfolgen. Wenn eine Op. nötig ist, kann es sinnvoll sein, vorher Zysten zu leeren und zu desinfizieren. 

Wie sieht der OP der Zukunft aus?

04.05.2024 DCK 2024 Kongressbericht

Der OP in der Zukunft wird mit weniger Personal auskommen – nicht, weil die Technik das medizinische Fachpersonal verdrängt, sondern weil der Personalmangel es nötig macht.

Umsetzung der POMGAT-Leitlinie läuft

03.05.2024 DCK 2024 Kongressbericht

Seit November 2023 gibt es evidenzbasierte Empfehlungen zum perioperativen Management bei gastrointestinalen Tumoren (POMGAT) auf S3-Niveau. Vieles wird schon entsprechend der Empfehlungen durchgeführt. Wo es im Alltag noch hapert, zeigt eine Umfrage in einem Klinikverbund.

Recycling im OP – möglich, aber teuer

02.05.2024 DCK 2024 Kongressbericht

Auch wenn sich Krankenhäuser nachhaltig und grün geben – sie tragen aktuell erheblich zu den CO2-Emissionen bei und produzieren jede Menge Müll. Ein Pilotprojekt aus Bonn zeigt, dass viele Op.-Abfälle wiederverwertet werden können.

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

S3-Leitlinie „Diagnostik und Therapie des Karpaltunnelsyndroms“

Karpaltunnelsyndrom BDC Leitlinien Webinare
CME: 2 Punkte

Das Karpaltunnelsyndrom ist die häufigste Kompressionsneuropathie peripherer Nerven. Obwohl die Anamnese mit dem nächtlichen Einschlafen der Hand (Brachialgia parästhetica nocturna) sehr typisch ist, ist eine klinisch-neurologische Untersuchung und Elektroneurografie in manchen Fällen auch eine Neurosonografie erforderlich. Im Anfangsstadium sind konservative Maßnahmen (Handgelenksschiene, Ergotherapie) empfehlenswert. Bei nicht Ansprechen der konservativen Therapie oder Auftreten von neurologischen Ausfällen ist eine Dekompression des N. medianus am Karpaltunnel indiziert.

Prof. Dr. med. Gregor Antoniadis
Berufsverband der Deutschen Chirurgie e.V.

S2e-Leitlinie „Distale Radiusfraktur“

Radiusfraktur BDC Leitlinien Webinare
CME: 2 Punkte

Das Webinar beschäftigt sich mit Fragen und Antworten zu Diagnostik und Klassifikation sowie Möglichkeiten des Ausschlusses von Zusatzverletzungen. Die Referenten erläutern, welche Frakturen konservativ behandelt werden können und wie. Das Webinar beantwortet die Frage nach aktuellen operativen Therapiekonzepten: Welcher Zugang, welches Osteosynthesematerial? Auf was muss bei der Nachbehandlung der distalen Radiusfraktur geachtet werden?

PD Dr. med. Oliver Pieske
Dr. med. Benjamin Meyknecht
Berufsverband der Deutschen Chirurgie e.V.

S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“

Appendizitis BDC Leitlinien Webinare
CME: 2 Punkte

Inhalte des Webinars zur S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“ sind die Darstellung des Projektes und des Erstellungswegs zur S1-Leitlinie, die Erläuterung der klinischen Relevanz der Klassifikation EAES 2015, die wissenschaftliche Begründung der wichtigsten Empfehlungen und die Darstellung stadiengerechter Therapieoptionen.

Dr. med. Mihailo Andric
Berufsverband der Deutschen Chirurgie e.V.