Skip to main content
Erschienen in: BMC Neurology 1/2022

Open Access 01.12.2022 | Case report

Secondary autoimmune hypothalamitis with severe memory impairment 7 years after the onset of diabetes insipidus due to lymphocytic hypophysitis: a case report

verfasst von: Takahiro Asada, Shintaro Takenoshita, Mayuko Senda, Koichiro Yamamoto, Ryo Sasaki, Fumio Otsuka, Seishi Terada, Norihito Yamada

Erschienen in: BMC Neurology | Ausgabe 1/2022

Abstract

Background

Autoimmune hypothalamitis is a very rare neuroendocrine disorder that causes central diabetes insipidus, headache, visual impairment, and sometimes cognitive impairment. Autoimmune hypothalamitis may occur in association with autoimmune hypophysitis, including lymphocytic hypophysitis, or in isolation. It is not known whether autoimmune hypothalamitis and autoimmune hypophysitis are consecutive diseases.

Case presentation

A 52-year-old woman developed autoimmune hypothalamitis 7 years after developing central diabetes insipidus due to lymphocytic hypophysitis, resulting in severe memory impairment. High-dose intravenous methylprednisolone therapy improved her cognitive function and decreased the size of the lesion.

Conclusion

This case presented a unique clinical course, with a long period of time between the onset of autoimmune hypopituitaritis and the development of autoimmune hypothalamitis.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
AH
Autoimmune hypophysitis
AHT
Autoimmune hypothalamitis
CDI
Central diabetes insipidus
DDAVP
l-deamino-8- D-arginine vasopressin
HDMPT
High-dose methylprednisolone pulse treatment
HS
Hypothalamic syndrome
OSAS
Obstructive sleep apnea syndrome
PPBS
Posterior pituitary bright spot on T1-weighted images
WMS-R
Wechsler Memory Scale-Revised

Background

Lymphocytic hypophysitis is one type of autoimmune hypophysitis (AH), a rare neuroendocrine disorder that causes chronic inflammation of the pituitary gland [1, 2]. AH can cause central diabetes insipidus (CDI) and hypopituitarism. Autoimmune hypothalamitis (AHT) is an inflammation of the hypothalamus anatomically continuous with the pituitary gland, and shows pathological features similar to autoimmune hypophysitis [35]. AHT may result in diabetes insipidus (DI), headache, visual impairment, hypopituitarism, and sometimes cognitive dysfunction. AH and AHT occur as overlapping or isolated cases, and it is not well known whether they are contiguous diseases; their long-term course remains unclear [4, 610]. We report a case of AHT that developed 7 years after developing CDI due to lymphocytic hypophysitis, and resulting in severe memory impairment that was recovered with high-dose intravenous methylprednisolone treatment.

Case presentation

The patient was a 52-year-old female whose chief complaint was memory impairment. She had had two caesarean deliveries, at the ages of 22 and 26 years, with massive hemorrhage during the first delivery and insufficient lactation after the second delivery. She had no family history of neuroendocrine disorders. She was a nursing home employee. At the age of 44 years, she visited the first hospital with a sudden onset of thirst and a chief complaint of polydipsia of more than 6 l per day and polyuria of more than 3 l per day. Her body mass index (BMI) was 23.5. The main laboratory values were plasma osmolality 286 mOsm/kg H2O, urine specific gravity 1.002, serum sodium concentration 141 mEq/dl, and decreased plasma vasopressin level <1.2 pg/ml. She was diagnosed with CDI due to polyuria (urinary volume > 4–5 ml/kg/h), low urine specific gravity, and extremely low vasopressin level (< 1.2 pg/ml) relative to plasma osmolality. Magnetic resonance imaging (MRI) showed hypertrophy with contrast-enhanced effects in the whole pituitary gland and the pituitary stalk after gadolinium administration. Other laboratory values (normal ranges) were adrenocorticotropic hormone (ACTH) 10.1 pg/ml (7.2–63.3), thyroid-stimulating hormone (TSH) 13.85 μIU/ml (0.35–5.0), free thyroxine (FT4) 0.8 ng/dl (0.97–1.69), prolactin (PRL) 29.4 ng/ml (4.91–29.32), growth hormone (GH) 0.25 ng/ml (0.13–9.88), insulin-like growth factor (IGF-1) 112 ng/ml (88–229), luteinizing hormone (LH) 0.10 mIU/ml (1.0-95.6), follicle-stimulating hormone (FSH) 0.89 mIU/ml (1.7–21.5), cortisol 9.5 μg/dl (4.0–18.3), and hemoglobin A1c (HbA1c) 5.5%, and negative for serum autoantibodies such as antinuclear antibodies and pituitary cell antibodies. A pituitary load test showed ACTH, PRL, and TSH hyperresponsiveness and revealed hypothalamic hypofunction. A transsphenoidal biopsy of the pituitary gland showed lymphocytic infiltration (data not shown). On the other hand, immunostaining for immunoglobulin G4 was negative, and there was no evidence of sarcoidosis or neoplastic lesions. She was diagnosed histologically as having lymphocytic hypophysitis. Administration of 10 mg per day hydrocortisone reduced the pituitary swelling, and l-deamino-8-D-arginine vasopressin (DDAVP) by a nasal spray reduced polydipsia and polyuria, and improved abnormalities in the pituitary load test. She continued to receive levothyroxine supplementation, 5 mg per day hydrocortisone, and DDAVP orally.
At the age of 46 years, she developed a highly fatty liver. She underwent arginine and GH-releasing peptide 2 (GHRP2) tests and was diagnosed with GH deficiency; recombinant human GH (rhGH) was started. At the age of 48, rhGH was discontinued because she developed diabetes mellitus. At this point, she had no cognitive impairment and was working without hindrance as a caregiver.
At the age of 51 years and 11 months, she developed symptoms of memory impairment such as saying the same thing over and over and completely forgetting events that had occurred minutes before. Within 3 months, she was no longer able to work as a caregiver. Her memory impairment further progressed, and she became unable to manage her finances. At the age of 52 years and 4 months, she was referred to our hospital on suspicion of young-onset dementia and admitted. On admission, her BMI was 41.7. She was clearly conscious and able to comprehend in the moment but had significant memory impairment. She had thirst, osteoporosis, hyperuricaemia, dyslipidaemia, and amenorrhea. Her mood was not depressed, and she had no cranial nervous system abnormalities such as visual impairment. MRI showed the loss of the posterior pituitary bright spot (PPBS) on T1-weighted images, and contrast-enhanced effects in the pituitary stalk and the mammillary bodies of the hypothalamus (Fig. 1). Laboratory values (normal) were ACTH 25.2 pg/ml (7.2–63.3), TSH 0.29 μIU/ml (0.35–5.0), FT4 0.95 ng/dl (0.97–1.69), PRL 16.7 ng/ml (4.91–29.32), GH 0.07 ng/ml (0.13–9.88), IGF-1 41.80 ng/ml (88–229), LH <0.3 mIU/ml (1.0–95.6),FSH 0.7 mIU/ml (1.7–21.5), cortisol 10.3 μg/dl (4.0–18.3), and HbA1c 6.3%, and negative for serum autoantibodies such as antinuclear antibodies. Electroencephalography was normal, and a spinal fluid examinations (protein, cell count, IgG index, tau protein, phosphorylated tau protein, amyloid beta 42, amyloid beta 40, anti-NMDA receptor antibody, and anti-VGKC receptor antibody) were normal. The Wechsler Memory Scale-Revised (WMS-R) showed a marked decline in memory (Table 1) [11]. Based on the MRI abnormalities, it was assumed that lymphocytic hypophysitis had spread to the hypothalamus, and three courses of high-dose methylprednisolone pulse treatment (HDMPT), methylprednisolone 500 mg/day, for 3 days, were administered. Three months after HDMPT, her MRI showed a reduced lesion (Fig. 1) but no apparent change in WMS-R scores (Table 1). At the age of 52 years and 7 months, she was discharged and continued prednisolone orally. After the HDMPT, her diabetes mellitus did not worsen, but the degree of her memory impairment did not change.
Table 1
Course of memory impairment
 
52 y 4 m
 
52 y 7 m
 
53 y 3 m
WMS-R
 General Memory
77
HDMPT
500 mg/day
3 day, 3 course
70
HDMPT
1000 mg/day
3 day, 2 course
82
 Verbal Memory
78
72
77
 Visual Memory
85
79
100
 Attention/Concentration
87
88
96
 Delayed Recall
< 50
< 50
78
Abbreviations: HDMPT High-dose methylprednisolone pulse treatment, WMS-R Wechsler Memory Scale-Revised
At the age of 53 years and 1 month, she was hospitalized again, and treated with two courses of an increased dose of HDMPT, methylprednisolone 1000 mg/day, for 3 days. After HDMPT treatment, lesions of the MRI were further reduced and her WMS-R scores showed clear improvement (Fig. 1, Table 1). She was discharged and continued prednisolone orally. In this case, a biopsy of the hypothalamus was not performed because of its invasiveness, but the clinical course in which the lesions of the MRI shrank in response to HDMPT with concomitant improvement in cognitive function led to the diagnosis of AHT.

Discussion and conclusion

We report a case of AHT with memory impairment 7 years after the onset of lymphocytic hypophysitis with CDI as the main symptom, in which treatment with HDMPT resulted in imaging and functional improvement.
CDI is an endocrine disorder resulting in decreased antidiuretic hormone (vasopressin) and polyuria. The prevalence of CDI is estimated at 1 in 25,000 [12]. Approximately 30 to 50% of CDI cases are idiopathic [13, 14]. Further, it has been suggested that most idiopathic CDI develops via autoimmune processes in the hypothalamus and pituitary gland [3, 14, 15].
Lymphocytic hypophysitis, one of the causes of CDI, is a form of AH characterized by pituitary enlargement and pituitary destruction due to lymphocytic infiltration [2]. Lymphocytic hypophysitis is very rare, with an estimated annual incidence of 1 in 9 million people, but it may also be underdiagnosed [1]. MRI shows pituitary enlargement resembling a pituitary adenoma, diffuse and homogeneous contrast enhancement of the anterior pituitary gland, and loss of the PPBS [2, 16, 17]. The cause of lymphocytic hypophysitis is unknown, but it is more common in women, often develops during the last trimester of pregnancy or postpartum. Lymphocytic hypophysitis causes headaches, hypopituitarism, adrenal insufficiency, hypothyroidism, hyperprolactinemia, and excess GH. In the long term, the pituitary gland atrophies. Glucocorticoids and azathioprine have been used for treatment in many cases [2, 18, 19]. Inflammation has been reported to spread to the dura mater and cavernous sinus, but there have been very few reports of inflammation progressing to the hypothalamus over a long period of time [3, 10, 20].
AHT causes focal or diffuse infiltration of lymphocytes into the hypothalamus, histologically resembling lymphocytic hypophysitis [2, 5, 7, 9, 10, 21]. AHT causes headache, visual impairment, CDI, and hypopituitarism. The number of reported cases is very small, and the prevalence is unknown. MRI of AHT produces iso-intense T1-weighted images, hyper-intense in T2-weighted images, and loss of the PPBS in the hypothalamus [6, 10]. Due to the similarity of pathological findings, clinical symptoms, and course of treatment, some have argued that AHT is a subtype of AH [7, 10]. However, it is not clear whether AHT and AH are consecutive diseases or not because isolated AHT without pituitary inflammation has also been reported [49]. There have been no reports of cognitive dysfunction when inflammation is limited to the pituitary gland, but there have been reports of cognitive dysfunction (memory or attention) in some cases of AHT [3, 5, 10, 22]. It is speculated that the cognitive decline in hypothalamic inflammation is related to the fact that the mammillary body of the hypothalamus is a part of the Papez circuit, which is a neural network related to memory [23, 24]. The concept of hypothalamic syndrome (HS) has been proposed for a combination of memory impairment, obesity, and diabetes mellitus resulting from diseases of the hypothalamus [25]. In this case, long-term use of hydrocortisone may have contributed to the development of obesity and diabetes mellitus, in addition to HS. When memory impairment occurs in patients with severe obesity and diabetes mellitus, the possibility of obstructive sleep apnea syndrome (OSAS) should also be considered, but in this case, there were no observable signs of OSAS.
Although case reports of AHT are rare and the pattern of its clinical course has not yet been clarified, two cases like the present study, in which a woman developed AHT and memory impairment about 10 years after developing CDI, have been reported. Dow et al. reported a case that developed lymphocytic hypophysitis with CDI as the main symptom at the age of 26 years, followed 10 years later by AHT with cognitive dysfunction [3]. They reported that the patient gained partial improvement in cognitive function after treatment with HDMPT, methylprednisolone 250 mg/day for 3 days. In addition, Bertulli et al. reported a case that developed CDI at the age of 55 years, followed 12 years later by AHT and cognitive dysfunction [5]. That case was diagnosed as AHT by biopsy. They treated the patient with HDMPT, methylprednisolone 1000 mg/day for 3 days, and azathioprine 50 mg/day, but there was no improvement.
Although there are only a few reports of cognitive dysfunction due to AHT, HDMPT may affect recovery of cognitive function. There have been several reports of AHT occurring about 10 years after the onset of CDI, which may be one pattern of the clinical course of AHT.

Acknowledgements

The authors thank the patient for cooperation and permission to publish their data.

Declarations

This case report was approved by the Ethical Committee of the Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences. Written informed consent was obtained from the patient and the son of the patient.
Written informed consent was obtained from the patient and the son of the patient for publication of this Case Report and any accompanying images. A copy of the written consent is available for review by the Editor of this journal.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Buxton N, Robertson I. Lymphocytic and granulocytic hypophysitis: a single Centre experience. Br J Neurosurg. 2001;15(3):242–5 discussion 245-246.CrossRef Buxton N, Robertson I. Lymphocytic and granulocytic hypophysitis: a single Centre experience. Br J Neurosurg. 2001;15(3):242–5 discussion 245-246.CrossRef
2.
Zurück zum Zitat Caturegli P, Newschaffer C, Olivi A, Pomper MG, Burger PC, Rose NR. Autoimmune hypophysitis. Endocr Rev. 2005;26(5):599–614.CrossRef Caturegli P, Newschaffer C, Olivi A, Pomper MG, Burger PC, Rose NR. Autoimmune hypophysitis. Endocr Rev. 2005;26(5):599–614.CrossRef
3.
Zurück zum Zitat Dow A, Russell RV, Bonert V, Carmichael J, Mamelak A, Pressman BD, et al. A protracted and affressive variant of lymphocytic hypophysitis with mammillary body involvement and cognitive dysfunction. Endocr Pract. 2014;20(11):225–9.CrossRef Dow A, Russell RV, Bonert V, Carmichael J, Mamelak A, Pressman BD, et al. A protracted and affressive variant of lymphocytic hypophysitis with mammillary body involvement and cognitive dysfunction. Endocr Pract. 2014;20(11):225–9.CrossRef
4.
Zurück zum Zitat Zhang S, Ye H, Zhang Z, Lu B, Yang Y, He M, et al. Successful diagnosis of hypothalamitis using stereotactic biopsy and treatment: a case report. Medicine. 2015;94(5):e447.CrossRef Zhang S, Ye H, Zhang Z, Lu B, Yang Y, He M, et al. Successful diagnosis of hypothalamitis using stereotactic biopsy and treatment: a case report. Medicine. 2015;94(5):e447.CrossRef
5.
Zurück zum Zitat Bertulli L, Bertani GA, Gianelli U, Mantovani G, Rampini PM, Locatelli M. Long-standing isolated autoimmune hypothalamitis diagnosed with endoscopic transventricular biopsy. World Neurosurg. 2017;105:1036.e1035–9.CrossRef Bertulli L, Bertani GA, Gianelli U, Mantovani G, Rampini PM, Locatelli M. Long-standing isolated autoimmune hypothalamitis diagnosed with endoscopic transventricular biopsy. World Neurosurg. 2017;105:1036.e1035–9.CrossRef
6.
Zurück zum Zitat Zhang H, Wang J, Wu Y, Tang Y, Tao R, Ye H, et al. Magnetic resonance imaging features of solitary hypothalamitis. J Comput Assist Tomogr. 2017;41(2):190–4.CrossRef Zhang H, Wang J, Wu Y, Tang Y, Tao R, Ye H, et al. Magnetic resonance imaging features of solitary hypothalamitis. J Comput Assist Tomogr. 2017;41(2):190–4.CrossRef
7.
Zurück zum Zitat Bianchi A, Mormando M, Doglietto F, Tartaglione L, Piacentini S, Lauriola L, et al. Hypothalamitis: a diagnostic and therapeutic challenge. Pituitary. 2014;17(3):197–202.CrossRef Bianchi A, Mormando M, Doglietto F, Tartaglione L, Piacentini S, Lauriola L, et al. Hypothalamitis: a diagnostic and therapeutic challenge. Pituitary. 2014;17(3):197–202.CrossRef
8.
Zurück zum Zitat Wang XL, Lu JM, Yang LJ, Lü ZH, Dou JT, Mu YM, et al. A case of relapsed autoimmune hypothalamitis successfully treated with methylprednisolone and azathioprine. Neuro Endocrinol Lett. 2008;29(6):874–6.PubMed Wang XL, Lu JM, Yang LJ, Lü ZH, Dou JT, Mu YM, et al. A case of relapsed autoimmune hypothalamitis successfully treated with methylprednisolone and azathioprine. Neuro Endocrinol Lett. 2008;29(6):874–6.PubMed
9.
Zurück zum Zitat Niri T, Horie I, Kawahara H, Ando T, Fukuhara N, Nishioka H, et al. A case of isolated hypothalamitis with a literature review and a comparison with autoimmune hypophysitis. Endocr J. 2021;68(1):119–27.CrossRef Niri T, Horie I, Kawahara H, Ando T, Fukuhara N, Nishioka H, et al. A case of isolated hypothalamitis with a literature review and a comparison with autoimmune hypophysitis. Endocr J. 2021;68(1):119–27.CrossRef
10.
Zurück zum Zitat Wei Q, Yang G, Lue Z, Dou J, Zang L, Li Y, et al. Clinical aspects of autoimmune hypothalamitis, a variant of autoimmune hypophysitis: experience from one center. J Int Med Res. 2020;48(3):300060519887832.CrossRef Wei Q, Yang G, Lue Z, Dou J, Zang L, Li Y, et al. Clinical aspects of autoimmune hypothalamitis, a variant of autoimmune hypophysitis: experience from one center. J Int Med Res. 2020;48(3):300060519887832.CrossRef
11.
Zurück zum Zitat Elwood RW. The Wechsler memory scale-revised: psychometric characteristics and clinical application. Neuropsychol Rev. 1991;2(2):179–201.CrossRef Elwood RW. The Wechsler memory scale-revised: psychometric characteristics and clinical application. Neuropsychol Rev. 1991;2(2):179–201.CrossRef
13.
Zurück zum Zitat Pivonello R, De Bellis A, Faggiano A, Di Salle F, Petretta M, Di Somma C, et al. Central diabetes insipidus and autoimmunity: relationship between the occurrence of antibodies to arginine vasopressin-secreting cells and clinical, immunological, and radiological features in a large cohort of patients with central diabetes insipidus of known and unknown etiology. J Clin Endocrinol Metab. 2003;88(4):1629–36.CrossRef Pivonello R, De Bellis A, Faggiano A, Di Salle F, Petretta M, Di Somma C, et al. Central diabetes insipidus and autoimmunity: relationship between the occurrence of antibodies to arginine vasopressin-secreting cells and clinical, immunological, and radiological features in a large cohort of patients with central diabetes insipidus of known and unknown etiology. J Clin Endocrinol Metab. 2003;88(4):1629–36.CrossRef
14.
Zurück zum Zitat De Bellis A, Colao A, Di Salle F, Muccitelli VI, Iorio S, Perrino S, et al. A longitudinal study of vasopressin cell antibodies, posterior pituitary function, and magnetic resonance imaging evaluations in subclinical autoimmune central diabetes insipidus. J Clin Endocrinol Metab. 1999;84(9):3047–51.CrossRef De Bellis A, Colao A, Di Salle F, Muccitelli VI, Iorio S, Perrino S, et al. A longitudinal study of vasopressin cell antibodies, posterior pituitary function, and magnetic resonance imaging evaluations in subclinical autoimmune central diabetes insipidus. J Clin Endocrinol Metab. 1999;84(9):3047–51.CrossRef
15.
Zurück zum Zitat Imura H, Nakao K, Shimatsu A, Ogawa Y, Sando T, Fujisawa I, et al. Lymphocytic infundibuloneurohypophysitis as a cause of central diabetes insipidus. N Engl J Med. 1993;329(10):683–9.CrossRef Imura H, Nakao K, Shimatsu A, Ogawa Y, Sando T, Fujisawa I, et al. Lymphocytic infundibuloneurohypophysitis as a cause of central diabetes insipidus. N Engl J Med. 1993;329(10):683–9.CrossRef
16.
Zurück zum Zitat Powrie JK, Powell Y, Ayers AB, Lowy C, Sönksen PH. Lymphocytic adenohypophysitis: magnetic resonance imaging features of two new cases and a review of the literature. Clin Endocrinol. 1995;42(3):315–22.CrossRef Powrie JK, Powell Y, Ayers AB, Lowy C, Sönksen PH. Lymphocytic adenohypophysitis: magnetic resonance imaging features of two new cases and a review of the literature. Clin Endocrinol. 1995;42(3):315–22.CrossRef
17.
Zurück zum Zitat Sato N, Sze G, Endo K. Hypophysitis: endocrinologic and dynamic MR findings. Am J Neuroradiol. 1998;19(3):439–44.PubMedPubMedCentral Sato N, Sze G, Endo K. Hypophysitis: endocrinologic and dynamic MR findings. Am J Neuroradiol. 1998;19(3):439–44.PubMedPubMedCentral
18.
Zurück zum Zitat Kristof RA, Van Roost D, Klingmüller D, Springer W, Schramm J. Lymphocytic hypophysitis: non-invasive diagnosis and treatment by high dose methylprednisolone pulse therapy? J Neurol Neurosurg Psychiatry. 1999;67(3):398–402.CrossRef Kristof RA, Van Roost D, Klingmüller D, Springer W, Schramm J. Lymphocytic hypophysitis: non-invasive diagnosis and treatment by high dose methylprednisolone pulse therapy? J Neurol Neurosurg Psychiatry. 1999;67(3):398–402.CrossRef
19.
Zurück zum Zitat Chico A, Puig-Domingo M, Martul P, De Juan M, Prats JM, Mauricio D, et al. Reversible endocrine dysfunction and pituitary stalk enlargement. J Endocrinol Investig. 1998;21(2):122–7.CrossRef Chico A, Puig-Domingo M, Martul P, De Juan M, Prats JM, Mauricio D, et al. Reversible endocrine dysfunction and pituitary stalk enlargement. J Endocrinol Investig. 1998;21(2):122–7.CrossRef
20.
Zurück zum Zitat Kanoke A, Ogawa Y, Watanabe M, Kumabe T, Tominaga T. Autoimmune hypophysitis presenting with intracranial multi-organ involvement: three case reports and review of the literature. BMC Research Notes. 2013;6(1):560.CrossRef Kanoke A, Ogawa Y, Watanabe M, Kumabe T, Tominaga T. Autoimmune hypophysitis presenting with intracranial multi-organ involvement: three case reports and review of the literature. BMC Research Notes. 2013;6(1):560.CrossRef
21.
Zurück zum Zitat Scherbaum WA. Autoimmune hypothalamic diabetes insipidus (“autoimmune hypothalamitis”). Prog Brain Res. 1992;93:283–92 discussion 292-283.CrossRef Scherbaum WA. Autoimmune hypothalamic diabetes insipidus (“autoimmune hypothalamitis”). Prog Brain Res. 1992;93:283–92 discussion 292-283.CrossRef
22.
Zurück zum Zitat Tshuma N, Glynn N, Evanson J, Powles T, Drake WM. Hypothalamitis and severe hypothalamic dysfunction associated with anti-programmed cell death ligand 1 antibody treatment. Eur J Cancer. 2018;104:247–9.CrossRef Tshuma N, Glynn N, Evanson J, Powles T, Drake WM. Hypothalamitis and severe hypothalamic dysfunction associated with anti-programmed cell death ligand 1 antibody treatment. Eur J Cancer. 2018;104:247–9.CrossRef
23.
Zurück zum Zitat Papez JW. A proposed mechanism of emotion. Arch Neurol Psychiatr. 1937;38(4):725–43.CrossRef Papez JW. A proposed mechanism of emotion. Arch Neurol Psychiatr. 1937;38(4):725–43.CrossRef
24.
Zurück zum Zitat Vann SD. Re-evaluating the role of the mammillary bodies in memory. Neuropsychologia. 2010;48(8):2316–27.CrossRef Vann SD. Re-evaluating the role of the mammillary bodies in memory. Neuropsychologia. 2010;48(8):2316–27.CrossRef
25.
Zurück zum Zitat Müller HL, Tauber M, Lawson EA, Özyurt J, Bison B, Martinez-Barbera JP, et al. Hypothalamic syndrome. Nat Rev Dis Primers. 2022;8(1):24.CrossRef Müller HL, Tauber M, Lawson EA, Özyurt J, Bison B, Martinez-Barbera JP, et al. Hypothalamic syndrome. Nat Rev Dis Primers. 2022;8(1):24.CrossRef
Metadaten
Titel
Secondary autoimmune hypothalamitis with severe memory impairment 7 years after the onset of diabetes insipidus due to lymphocytic hypophysitis: a case report
verfasst von
Takahiro Asada
Shintaro Takenoshita
Mayuko Senda
Koichiro Yamamoto
Ryo Sasaki
Fumio Otsuka
Seishi Terada
Norihito Yamada
Publikationsdatum
01.12.2022
Verlag
BioMed Central
Erschienen in
BMC Neurology / Ausgabe 1/2022
Elektronische ISSN: 1471-2377
DOI
https://doi.org/10.1186/s12883-022-02891-z

Weitere Artikel der Ausgabe 1/2022

BMC Neurology 1/2022 Zur Ausgabe

Neu in den Fachgebieten Neurologie und Psychiatrie

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

ADHS-Medikation erhöht das kardiovaskuläre Risiko

16.05.2024 Herzinsuffizienz Nachrichten

Erwachsene, die Medikamente gegen das Aufmerksamkeitsdefizit-Hyperaktivitätssyndrom einnehmen, laufen offenbar erhöhte Gefahr, an Herzschwäche zu erkranken oder einen Schlaganfall zu erleiden. Es scheint eine Dosis-Wirkungs-Beziehung zu bestehen.

Delir bei kritisch Kranken – Antipsychotika versus Placebo

16.05.2024 Delir Nachrichten

Um die Langzeitfolgen eines Delirs bei kritisch Kranken zu mildern, wird vielerorts auf eine Akuttherapie mit Antipsychotika gesetzt. Eine US-amerikanische Forschungsgruppe äußert jetzt erhebliche Vorbehalte gegen dieses Vorgehen. Denn es gibt neue Daten zum Langzeiteffekt von Haloperidol bzw. Ziprasidon versus Placebo.

Schwindelursache: Massagepistole lässt Otholiten tanzen

14.05.2024 Benigner Lagerungsschwindel Nachrichten

Wenn jüngere Menschen über ständig rezidivierenden Lagerungsschwindel klagen, könnte eine Massagepistole der Auslöser sein. In JAMA Otolaryngology warnt ein Team vor der Anwendung hochpotenter Geräte im Bereich des Nackens.