Skip to main content
Erschienen in: Inflammation 3/2021

06.01.2021 | Review

The Role of α7nAChR-Mediated Cholinergic Anti-inflammatory Pathway in Immune Cells

verfasst von: Yi-jin Wu, Li Wang, Chao-fan Ji, Shao-fei Gu, Qin Yin, Jian Zuo

Erschienen in: Inflammation | Ausgabe 3/2021

Einloggen, um Zugang zu erhalten

Abstract

Alpha 7 nicotinic acetylcholine receptor (α7nAChR) is widely distributed in the nervous and non-cholinergic immune systems. It is necessary for the cholinergic transmitter to participate in the regulation of inflammatory response and is the key element of cholinergic anti-inflammatory pathway (CAP). Because of the profound impact of CAP on the immune system, α7nAChR is considered as a potential therapeutic target for the treatment of inflammatory diseases. Available evidences confirmed that manipulation of CAP by activating α7nAChR with either endogenous acetylcholine (ACh) or cholinergic agonists can substantially alleviate inflammatory responses both in vivo and in vitro. However, the mechanism through which CAP curbs the excessive pro-inflammatory responses and maintains immune homeostasis is not fully understood. Obtained clues suggest that the crosstalk between CAP and classical inflammatory pathways is the key to elucidate the anti-inflammatory mechanism, and the impacts of CAP activation in α7nAChR-expressing immune cells are the foundation of the immunoregulatory property. In this article, we review and update the knowledge concerning the progresses of α7nAChR-based CAP, including α7nAChR properties, signal transductions, interactions with classic immune pathways, and immunoregulatory functions in different immune cells. Certain critical issues to be addressed are also highlighted. By providing a panoramic view of α7nAChR, the summarized evidences will pave the way for the development of novel anti-inflammatory reagents and strategy and inspire further researches.
Literatur
1.
Zurück zum Zitat Czura, C.J., S.G. Friedman, and K.J. Tracey. 2003. Neural inhibition of inflammation: the cholinergic anti-inflammatory pathway. Journal of Endotoxin Research 9 (6): 409–413.PubMedCrossRef Czura, C.J., S.G. Friedman, and K.J. Tracey. 2003. Neural inhibition of inflammation: the cholinergic anti-inflammatory pathway. Journal of Endotoxin Research 9 (6): 409–413.PubMedCrossRef
2.
Zurück zum Zitat Pavlov, V.A., and K.J. Tracey. 2004. Neural regulators of innate immune responses and inflammation. Cellular and Molecular Life Sciences 61 (18): 2322–2331.PubMedCrossRef Pavlov, V.A., and K.J. Tracey. 2004. Neural regulators of innate immune responses and inflammation. Cellular and Molecular Life Sciences 61 (18): 2322–2331.PubMedCrossRef
3.
Zurück zum Zitat Czura, C.J., and K.J. Tracey. 2005. Autonomic neural regulation of immunity. Journal of Internal Medicine 257 (2): 156–166.PubMedCrossRef Czura, C.J., and K.J. Tracey. 2005. Autonomic neural regulation of immunity. Journal of Internal Medicine 257 (2): 156–166.PubMedCrossRef
4.
Zurück zum Zitat Wei, W. 2016. Soft regulation of inflammatory immune response. Chinese Pharmacological Bulletin 32 (3): 297–303. Wei, W. 2016. Soft regulation of inflammatory immune response. Chinese Pharmacological Bulletin 32 (3): 297–303.
6.
Zurück zum Zitat Qian, Y.S., Q.Y. Zhao, S.J. Zhang, Y.J. Zhang, Y.C. Wang, H.Y. Zhao, Z.X. Dai, Y.H. Tang, X. Wang, T. Wang, and C.X. Huang. 2018. Effect of α7nAChR mediated cholinergic anti-inflammatory pathway on inhibition of atrial fibrillation by low-level vagus nerve stimulation. Zhonghua Yi Xue Za Zhi 98 (11): 855–859.PubMed Qian, Y.S., Q.Y. Zhao, S.J. Zhang, Y.J. Zhang, Y.C. Wang, H.Y. Zhao, Z.X. Dai, Y.H. Tang, X. Wang, T. Wang, and C.X. Huang. 2018. Effect of α7nAChR mediated cholinergic anti-inflammatory pathway on inhibition of atrial fibrillation by low-level vagus nerve stimulation. Zhonghua Yi Xue Za Zhi 98 (11): 855–859.PubMed
7.
Zurück zum Zitat Jarczyk, J., B.A. Yard, and S. Hoeger. 2019. The cholinergic anti-inflammatory pathway as a conceptual framework to treat inflammation-mediated renal injury. Kidney & Blood Pressure Research 44 (4): 435–448.CrossRef Jarczyk, J., B.A. Yard, and S. Hoeger. 2019. The cholinergic anti-inflammatory pathway as a conceptual framework to treat inflammation-mediated renal injury. Kidney & Blood Pressure Research 44 (4): 435–448.CrossRef
8.
Zurück zum Zitat Li, Z., H. Hao, Y. Gao, Z. Wang, W. Lu, and J. Liu. 2019. Expression and localization analyses of the cholinergic anti-inflammatory pathway and α7nAchR in different tissues of rats with rheumatoid arthritis. Acta Histochemica 121 (6): 742–749.PubMedCrossRef Li, Z., H. Hao, Y. Gao, Z. Wang, W. Lu, and J. Liu. 2019. Expression and localization analyses of the cholinergic anti-inflammatory pathway and α7nAchR in different tissues of rats with rheumatoid arthritis. Acta Histochemica 121 (6): 742–749.PubMedCrossRef
10.
Zurück zum Zitat Borovikova, L.V., S. Ivanova, M. Zhang, H. Yang, G.I. Botchkina, L.R. Watkins, H. Wang, N. Abumrad, J.W. Eaton, and K.J. Tracey. 2000. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405 (6785): 458–462.PubMedCrossRef Borovikova, L.V., S. Ivanova, M. Zhang, H. Yang, G.I. Botchkina, L.R. Watkins, H. Wang, N. Abumrad, J.W. Eaton, and K.J. Tracey. 2000. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405 (6785): 458–462.PubMedCrossRef
11.
Zurück zum Zitat van Westerloo, D.J., I.A. Giebelen, S. Florquin, J. Daalhuisen, M.J. Bruno, A.F. de Vos, K.J. Tracey, and T. van der Poll. 2005. The cholinergic anti-inflammatory pathway regulates the host response during septic peritonitis. The Journal of Infectious Diseases 191 (12): 2138–2148.PubMedCrossRef van Westerloo, D.J., I.A. Giebelen, S. Florquin, J. Daalhuisen, M.J. Bruno, A.F. de Vos, K.J. Tracey, and T. van der Poll. 2005. The cholinergic anti-inflammatory pathway regulates the host response during septic peritonitis. The Journal of Infectious Diseases 191 (12): 2138–2148.PubMedCrossRef
12.
Zurück zum Zitat Ghia, J.E., P. Blennerhassett, and S.M. Collins. 2008. Impaired parasympathetic function increases susceptibility to inflammatory bowel disease in a mouse model of depression. The Journal of Clinical Investigation 118 (6): 2209–2218.PubMedPubMedCentral Ghia, J.E., P. Blennerhassett, and S.M. Collins. 2008. Impaired parasympathetic function increases susceptibility to inflammatory bowel disease in a mouse model of depression. The Journal of Clinical Investigation 118 (6): 2209–2218.PubMedPubMedCentral
13.
Zurück zum Zitat Yeboah, M.M., X. Xue, B. Duan, M. Ochani, K.J. Tracey, M. Susin, and C.N. Metz. 2008. Cholinergic agonists attenuate renal ischemia-reperfusion injury in rats. Kidney International 74 (1): 62–69.PubMedPubMedCentralCrossRef Yeboah, M.M., X. Xue, B. Duan, M. Ochani, K.J. Tracey, M. Susin, and C.N. Metz. 2008. Cholinergic agonists attenuate renal ischemia-reperfusion injury in rats. Kidney International 74 (1): 62–69.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Rosas-Ballina, M., M. Ochani, W.R. Parrish, K. Ochani, Y.T. Harris, J.M. Huston, S. Chavan, and K.J. Tracey. 2008. Splenic nerve is required for cholinergic antiinflammatory pathway control of TNF in endotoxemia. Proceedings of the National Academy of Sciences of the United States of America 105 (31): 11008–11013.PubMedPubMedCentralCrossRef Rosas-Ballina, M., M. Ochani, W.R. Parrish, K. Ochani, Y.T. Harris, J.M. Huston, S. Chavan, and K.J. Tracey. 2008. Splenic nerve is required for cholinergic antiinflammatory pathway control of TNF in endotoxemia. Proceedings of the National Academy of Sciences of the United States of America 105 (31): 11008–11013.PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Huston, J.M., M. Ochani, M. Rosas-Ballina, H. Liao, K. Ochani, V.A. Pavlov, M. Gallowitsch-Puerta, M. Ashok, C.J. Czura, B. Foxwell, K.J. Tracey, and L. Ulloa. 2006. Splenectomy inactivates the cholinergic antiinflammatory pathway during lethal endotoxemia and polymicrobial sepsis. The Journal of Experimental Medicine 203 (7): 1623–1628.PubMedPubMedCentralCrossRef Huston, J.M., M. Ochani, M. Rosas-Ballina, H. Liao, K. Ochani, V.A. Pavlov, M. Gallowitsch-Puerta, M. Ashok, C.J. Czura, B. Foxwell, K.J. Tracey, and L. Ulloa. 2006. Splenectomy inactivates the cholinergic antiinflammatory pathway during lethal endotoxemia and polymicrobial sepsis. The Journal of Experimental Medicine 203 (7): 1623–1628.PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat Revathikumar, P., J. Estelius, U. Karmakar, E. Le Maître, M. Korotkova, P.J. Jakobsson, and J. Lampa. 2018. Microsomal prostaglandin E synthase-1 gene deletion impairs neuro-immune circuitry of the cholinergic anti-inflammatory pathway in endotoxaemic mouse spleen. PLoS One 13 (2): e0193210.PubMedPubMedCentralCrossRef Revathikumar, P., J. Estelius, U. Karmakar, E. Le Maître, M. Korotkova, P.J. Jakobsson, and J. Lampa. 2018. Microsomal prostaglandin E synthase-1 gene deletion impairs neuro-immune circuitry of the cholinergic anti-inflammatory pathway in endotoxaemic mouse spleen. PLoS One 13 (2): e0193210.PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Bellinger, D.L., S.Y. Felten, D. Lorton, and D.L. Felten. 1989. Origin of noradrenergic innervation of the spleen in rats. Brain, Behavior, and Immunity 3 (4): 291–311.PubMedCrossRef Bellinger, D.L., S.Y. Felten, D. Lorton, and D.L. Felten. 1989. Origin of noradrenergic innervation of the spleen in rats. Brain, Behavior, and Immunity 3 (4): 291–311.PubMedCrossRef
18.
Zurück zum Zitat Bellinger, D.L., S.Y. Felten, T.J. Collier, and D.L. Felten. 1987. Noradrenergic sympathetic innervation of the spleen: IV. Morphometric analysis in adult and aged F344 rats. Journal of Neuroscience Research 18 (1): 55–63 126–129.PubMedCrossRef Bellinger, D.L., S.Y. Felten, T.J. Collier, and D.L. Felten. 1987. Noradrenergic sympathetic innervation of the spleen: IV. Morphometric analysis in adult and aged F344 rats. Journal of Neuroscience Research 18 (1): 55–63 126–129.PubMedCrossRef
19.
Zurück zum Zitat Martelli, D., M.J. McKinley, and R.M. McAllen. 2014. The cholinergic anti-inflammatory pathway: a critical review. Autonomic Neuroscience 182: 65–69.PubMedCrossRef Martelli, D., M.J. McKinley, and R.M. McAllen. 2014. The cholinergic anti-inflammatory pathway: a critical review. Autonomic Neuroscience 182: 65–69.PubMedCrossRef
20.
Zurück zum Zitat Jensen, A.A., B. Frølund, T. Liljefors, and P. Krogsgaard-Larsen. 2005. Neuronal nicotinic acetylcholine receptors: structural revelations, target identifications, and therapeutic inspirations. Journal of Medicinal Chemistry 48 (15): 4705–4745.PubMedCrossRef Jensen, A.A., B. Frølund, T. Liljefors, and P. Krogsgaard-Larsen. 2005. Neuronal nicotinic acetylcholine receptors: structural revelations, target identifications, and therapeutic inspirations. Journal of Medicinal Chemistry 48 (15): 4705–4745.PubMedCrossRef
21.
Zurück zum Zitat Lukas, R.J., J.P. Changeux, N. Le Novère, E.X. Albuquerque, D.J. Balfour, D.K. Berg, D. Bertrand, V.A. Chiappinelli, P.B. Clarke, A.C. Collins, J.A. Dani, S.R. Grady, K.J. Kellar, J.M. Lindstrom, M.J. Marks, M. Quik, P.W. Taylor, and S. Wonnacott. 1999. International Union of Pharmacology. XX. Current status of the nomenclature for nicotinic acetylcholine receptors and their subunits. Pharmacological Reviews 51 (2): 397–401.PubMed Lukas, R.J., J.P. Changeux, N. Le Novère, E.X. Albuquerque, D.J. Balfour, D.K. Berg, D. Bertrand, V.A. Chiappinelli, P.B. Clarke, A.C. Collins, J.A. Dani, S.R. Grady, K.J. Kellar, J.M. Lindstrom, M.J. Marks, M. Quik, P.W. Taylor, and S. Wonnacott. 1999. International Union of Pharmacology. XX. Current status of the nomenclature for nicotinic acetylcholine receptors and their subunits. Pharmacological Reviews 51 (2): 397–401.PubMed
22.
Zurück zum Zitat Romanelli, M.N., and F. Gualtieri. 2003. Cholinergic nicotinic receptors: competitive ligands, allosteric modulators, and their potential applications. Medicinal Research Reviews 23 (4): 393–426.PubMedCrossRef Romanelli, M.N., and F. Gualtieri. 2003. Cholinergic nicotinic receptors: competitive ligands, allosteric modulators, and their potential applications. Medicinal Research Reviews 23 (4): 393–426.PubMedCrossRef
23.
Zurück zum Zitat Hurst, R., H. Rollema, and D. Bertrand. 2013. Nicotinic acetylcholine receptors: from basic science to therapeutics. Pharmacology & Therapeutics 137 (1): 22–54.CrossRef Hurst, R., H. Rollema, and D. Bertrand. 2013. Nicotinic acetylcholine receptors: from basic science to therapeutics. Pharmacology & Therapeutics 137 (1): 22–54.CrossRef
24.
Zurück zum Zitat Gault, J., M. Robinson, R. Berger, C. Drebing, J. Logel, J. Hopkins, T. Moore, S. Jacobs, J. Meriwether, M.J. Choi, E.J. Kim, K. Walton, K. Buiting, A. Davis, C. Breese, R. Freedman, and S. Leonard. 1998. Genomic organization and partial duplication of the human alpha7 neuronal nicotinic acetylcholine receptor gene (CHRNA7). Genomics 52 (2): 173–185.PubMedCrossRef Gault, J., M. Robinson, R. Berger, C. Drebing, J. Logel, J. Hopkins, T. Moore, S. Jacobs, J. Meriwether, M.J. Choi, E.J. Kim, K. Walton, K. Buiting, A. Davis, C. Breese, R. Freedman, and S. Leonard. 1998. Genomic organization and partial duplication of the human alpha7 neuronal nicotinic acetylcholine receptor gene (CHRNA7). Genomics 52 (2): 173–185.PubMedCrossRef
25.
Zurück zum Zitat Canastar, A., J. Logel, S. Graw, J. Finlay-Schultz, C. Osborne, M. Palionyte, C. Drebing, M. Plehaty, L. Wilson, R. Eyeson, and S. Leonard. 2012. Promoter methylation and tissue-specific transcription of the α7 nicotinic receptor gene, CHRNA7. Journal of Molecular Neuroscience 47 (2): 389–400.PubMedCrossRef Canastar, A., J. Logel, S. Graw, J. Finlay-Schultz, C. Osborne, M. Palionyte, C. Drebing, M. Plehaty, L. Wilson, R. Eyeson, and S. Leonard. 2012. Promoter methylation and tissue-specific transcription of the α7 nicotinic receptor gene, CHRNA7. Journal of Molecular Neuroscience 47 (2): 389–400.PubMedCrossRef
26.
Zurück zum Zitat Kombo, D.C., A.A. Mazurov, J. Chewning, P.S. Hammond, K. Tallapragada, T.A. Hauser, J. Speake, D. Yohannes, and W.S. Caldwell. 2012. Discovery of novel α7 nicotinic acetylcholine receptor ligands via pharmacophoric and docking studies of benzylidene anabaseine analogs. Bioorganic & Medicinal Chemistry Letters 22 (2): 1179–1186.CrossRef Kombo, D.C., A.A. Mazurov, J. Chewning, P.S. Hammond, K. Tallapragada, T.A. Hauser, J. Speake, D. Yohannes, and W.S. Caldwell. 2012. Discovery of novel α7 nicotinic acetylcholine receptor ligands via pharmacophoric and docking studies of benzylidene anabaseine analogs. Bioorganic & Medicinal Chemistry Letters 22 (2): 1179–1186.CrossRef
27.
Zurück zum Zitat Wang, H.Y., D.H. Lee, M.R. D'Andrea, P.A. Peterson, R.P. Shank, and A.B. Reitz. 2000. beta-Amyloid (1-42) binds to alpha7 nicotinic acetylcholine receptor with high affinity. Implications for Alzheimer’s disease pathology. The Journal of Biological Chemistry 275 (8): 5626–5632.PubMedCrossRef Wang, H.Y., D.H. Lee, M.R. D'Andrea, P.A. Peterson, R.P. Shank, and A.B. Reitz. 2000. beta-Amyloid (1-42) binds to alpha7 nicotinic acetylcholine receptor with high affinity. Implications for Alzheimer’s disease pathology. The Journal of Biological Chemistry 275 (8): 5626–5632.PubMedCrossRef
28.
Zurück zum Zitat Burghaus, L., U. Schütz, U. Krempel, J. Lindstrom, and H. Schröder. 2003. Loss of nicotinic acetylcholine receptor subunits alpha4 and alpha7 in the cerebral cortex of Parkinson patients. Parkinsonism & Related Disorders 9 (5): 243–246.CrossRef Burghaus, L., U. Schütz, U. Krempel, J. Lindstrom, and H. Schröder. 2003. Loss of nicotinic acetylcholine receptor subunits alpha4 and alpha7 in the cerebral cortex of Parkinson patients. Parkinsonism & Related Disorders 9 (5): 243–246.CrossRef
29.
Zurück zum Zitat Wang, H., M. Yu, M. Ochani, C.A. Amella, M. Tanovic, S. Susarla, J.H. Li, H. Wang, H. Yang, L. Ulloa, Y. Al-Abed, C.J. Czura, and K.J. Tracey. 2003. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 421 (6921): 384–388.PubMedCrossRef Wang, H., M. Yu, M. Ochani, C.A. Amella, M. Tanovic, S. Susarla, J.H. Li, H. Wang, H. Yang, L. Ulloa, Y. Al-Abed, C.J. Czura, and K.J. Tracey. 2003. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 421 (6921): 384–388.PubMedCrossRef
30.
Zurück zum Zitat Sinkus, M.L., S. Graw, R. Freedman, R.G. Ross, H.A. Lester, and S. Leonard. 2015. The human CHRNA7 and CHRFAM7A genes: a review of the genetics, regulation, and function. Neuropharmacology 96 (Pt B): 274–288.PubMedPubMedCentralCrossRef Sinkus, M.L., S. Graw, R. Freedman, R.G. Ross, H.A. Lester, and S. Leonard. 2015. The human CHRNA7 and CHRFAM7A genes: a review of the genetics, regulation, and function. Neuropharmacology 96 (Pt B): 274–288.PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat John, D., I. Shelukhina, Y. Yanagawa, J. Deuchars, and Z. Henderson. 2015. Functional alpha7 nicotinic receptors are expressed on immature granule cells of the postnatal dentate gyrus. Brain Research 1601: 15–30.PubMedPubMedCentralCrossRef John, D., I. Shelukhina, Y. Yanagawa, J. Deuchars, and Z. Henderson. 2015. Functional alpha7 nicotinic receptors are expressed on immature granule cells of the postnatal dentate gyrus. Brain Research 1601: 15–30.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Moretti, M., M. Zoli, A.A. George, R.J. Lukas, F. Pistillo, U. Maskos, P. Whiteaker, and C. Gotti. 2014. The novel α7β2-nicotinic acetylcholine receptor subtype is expressed in mouse and human basal forebrain: biochemical and pharmacological characterization. Molecular Pharmacology 86 (3): 306–317.PubMedPubMedCentralCrossRef Moretti, M., M. Zoli, A.A. George, R.J. Lukas, F. Pistillo, U. Maskos, P. Whiteaker, and C. Gotti. 2014. The novel α7β2-nicotinic acetylcholine receptor subtype is expressed in mouse and human basal forebrain: biochemical and pharmacological characterization. Molecular Pharmacology 86 (3): 306–317.PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Qi, X.L., and Z.Z. Guan. 2008. Neuroprotective effects of alpha7 neuronal acetylcholine receptor and its roles in the pathogenesis of Alzheimer’s disease. Zhong hua Bing Li Xue Za Zhi 37 (1): 51–55. Qi, X.L., and Z.Z. Guan. 2008. Neuroprotective effects of alpha7 neuronal acetylcholine receptor and its roles in the pathogenesis of Alzheimer’s disease. Zhong hua Bing Li Xue Za Zhi 37 (1): 51–55.
34.
Zurück zum Zitat Gotti, C., and F. Clementi. 2004. Neuronal nicotinic receptors: from structure to pathology. Progress in Neurobiology 74 (6): 363–396.PubMedCrossRef Gotti, C., and F. Clementi. 2004. Neuronal nicotinic receptors: from structure to pathology. Progress in Neurobiology 74 (6): 363–396.PubMedCrossRef
35.
Zurück zum Zitat Chen, L.Y., Z.G. Liu, Y.H. Li, Y.Z. Feng, and J.R. Wang. 2008. Expression of neuronal acetylcholine receptor alpha 7 (nAChRalpha7) in peripheral blood CD(4)(+) T lymphocytes from asthmatic children. Zhong hua Jie He He Hu Xi Za Zhi 31 (11): 803–805. Chen, L.Y., Z.G. Liu, Y.H. Li, Y.Z. Feng, and J.R. Wang. 2008. Expression of neuronal acetylcholine receptor alpha 7 (nAChRalpha7) in peripheral blood CD(4)(+) T lymphocytes from asthmatic children. Zhong hua Jie He He Hu Xi Za Zhi 31 (11): 803–805.
36.
Zurück zum Zitat Blanchet, M.R., E. Israël-Assayag, P. Daleau, M.J. Beaulieu, and Y. Cormier. 2006. Dimethyphenylpiperazinium, a nicotinic receptor agonist, downregulates inflammation in monocytes/macrophages through PI3K and PLC chronic activation. American Journal of Physiology. Lung Cellular and Molecular Physiology 291 (4): L757–L763.PubMedCrossRef Blanchet, M.R., E. Israël-Assayag, P. Daleau, M.J. Beaulieu, and Y. Cormier. 2006. Dimethyphenylpiperazinium, a nicotinic receptor agonist, downregulates inflammation in monocytes/macrophages through PI3K and PLC chronic activation. American Journal of Physiology. Lung Cellular and Molecular Physiology 291 (4): L757–L763.PubMedCrossRef
37.
Zurück zum Zitat Villiger, Y., I. Szanto, S. Jaconi, C. Blanchet, B. Buisson, K.H. Krause, D. Bertrand, and J.A. Romand. 2002. Expression of an alpha7 duplicate nicotinic acetylcholine receptor-related protein in human leukocytes. Journal of Neuroimmunology 126 (1–2): 86–98.PubMedCrossRef Villiger, Y., I. Szanto, S. Jaconi, C. Blanchet, B. Buisson, K.H. Krause, D. Bertrand, and J.A. Romand. 2002. Expression of an alpha7 duplicate nicotinic acetylcholine receptor-related protein in human leukocytes. Journal of Neuroimmunology 126 (1–2): 86–98.PubMedCrossRef
38.
Zurück zum Zitat Sugano, N., K. Shimada, K. Ito, and S. Murai. 1998. Nicotine inhibits the production of inflammatory mediators in U937 cells through modulation of nuclear factor-kappaB activation. Biochemical and Biophysical Research Communications 252 (1): 25–28.PubMedCrossRef Sugano, N., K. Shimada, K. Ito, and S. Murai. 1998. Nicotine inhibits the production of inflammatory mediators in U937 cells through modulation of nuclear factor-kappaB activation. Biochemical and Biophysical Research Communications 252 (1): 25–28.PubMedCrossRef
39.
Zurück zum Zitat Rioux, N., and A. Castonguay. 2000. The induction of cyclooxygenase-1 by a tobacco carcinogen in U937 human macrophages is correlated to the activation of NF-kappaB. Carcinogenesis 21 (9): 1745–1751.PubMedCrossRef Rioux, N., and A. Castonguay. 2000. The induction of cyclooxygenase-1 by a tobacco carcinogen in U937 human macrophages is correlated to the activation of NF-kappaB. Carcinogenesis 21 (9): 1745–1751.PubMedCrossRef
40.
Zurück zum Zitat Wang, H., H. Liao, M. Ochani, M. Justiniani, X. Lin, L. Yang, Y. Al-Abed, H. Wang, C. Metz, E.J. Miller, K.J. Tracey, and L. Ulloa. 2004. Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis. Nature Medicine 10 (11): 1216–1221.PubMedCrossRef Wang, H., H. Liao, M. Ochani, M. Justiniani, X. Lin, L. Yang, Y. Al-Abed, H. Wang, C. Metz, E.J. Miller, K.J. Tracey, and L. Ulloa. 2004. Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis. Nature Medicine 10 (11): 1216–1221.PubMedCrossRef
41.
Zurück zum Zitat Saeed, R.W., S. Varma, T. Peng-Nemeroff, B. Sherry, D. Balakhaneh, J. Huston, K.J. Tracey, Y. Al-Abed, and C.N. Metz. 2005. Cholinergic stimulation blocks endothelial cell activation and leukocyte recruitment during inflammation. The Journal of Experimental Medicine 201 (7): 1113–11123.PubMedPubMedCentralCrossRef Saeed, R.W., S. Varma, T. Peng-Nemeroff, B. Sherry, D. Balakhaneh, J. Huston, K.J. Tracey, Y. Al-Abed, and C.N. Metz. 2005. Cholinergic stimulation blocks endothelial cell activation and leukocyte recruitment during inflammation. The Journal of Experimental Medicine 201 (7): 1113–11123.PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Tanaka, M., M.E. Fuentes, K. Yamaguchi, M.H. Durnin, S.A. Dalrymple, K.L. Hardy, and D.V. Goeddel. 1999. Embryonic lethality, liver degeneration, and impaired NF-kappa B activation in IKK-beta-deficient mice. Immunity 10 (4): 421–429.PubMedCrossRef Tanaka, M., M.E. Fuentes, K. Yamaguchi, M.H. Durnin, S.A. Dalrymple, K.L. Hardy, and D.V. Goeddel. 1999. Embryonic lethality, liver degeneration, and impaired NF-kappa B activation in IKK-beta-deficient mice. Immunity 10 (4): 421–429.PubMedCrossRef
43.
Zurück zum Zitat van Maanen, M.A., M.C. Lebre, T. van der Poll, G.J. LaRosa, D. Elbaum, M.J. Vervoordeldonk, and P.P. Tak. 2009. Stimulation of nicotinic acetylcholine receptors attenuates collagen-induced arthritis in mice. Arthritis and Rheumatism 60 (1): 114–122.PubMedCrossRef van Maanen, M.A., M.C. Lebre, T. van der Poll, G.J. LaRosa, D. Elbaum, M.J. Vervoordeldonk, and P.P. Tak. 2009. Stimulation of nicotinic acetylcholine receptors attenuates collagen-induced arthritis in mice. Arthritis and Rheumatism 60 (1): 114–122.PubMedCrossRef
44.
Zurück zum Zitat Navarro, E., I. Buendia, E. Parada, R. Leon, P. Jansen-Duerr, H. Pircher, J. Egea, and M.G. Lopez. 2015. Alpha7 nicotinic receptor activation protects against oxidative stress via heme-oxygenase I induction. Biochemical Pharmacology 97 (4): 473–481.PubMedCrossRef Navarro, E., I. Buendia, E. Parada, R. Leon, P. Jansen-Duerr, H. Pircher, J. Egea, and M.G. Lopez. 2015. Alpha7 nicotinic receptor activation protects against oxidative stress via heme-oxygenase I induction. Biochemical Pharmacology 97 (4): 473–481.PubMedCrossRef
45.
Zurück zum Zitat Patel, H., J. McIntire, S. Ryan, A. Dunah, and R. Loring. 2017. Anti-inflammatory effects of astroglial α7 nicotinic acetylcholine receptors are mediated by inhibition of the NF-κB pathway and activation of the Nrf2 pathway. Journal of Neuroinflammation 14 (1): 192.PubMedPubMedCentralCrossRef Patel, H., J. McIntire, S. Ryan, A. Dunah, and R. Loring. 2017. Anti-inflammatory effects of astroglial α7 nicotinic acetylcholine receptors are mediated by inhibition of the NF-κB pathway and activation of the Nrf2 pathway. Journal of Neuroinflammation 14 (1): 192.PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Rojo, A.I., G. McBean, M. Cindric, J. Egea, M.G. López, P. Rada, N. Zarkovic, and A. Cuadrado. 2014. Redox control of microglial function: molecular mechanisms and functional significance. Antioxidants & Redox Signaling 21 (12): 1766–1801.CrossRef Rojo, A.I., G. McBean, M. Cindric, J. Egea, M.G. López, P. Rada, N. Zarkovic, and A. Cuadrado. 2014. Redox control of microglial function: molecular mechanisms and functional significance. Antioxidants & Redox Signaling 21 (12): 1766–1801.CrossRef
47.
Zurück zum Zitat de Jonge, W.J., E.P. van der Zanden, F.O. The, M.F. Bijlsma, D.J. van Westerloo, R.J. Bennink, H.R. Berthoud, S. Uematsu, S. Akira, R.M. van den Wijngaard, and G.E. Boeckxstaens. 2005. Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2-STAT3 signaling pathway. Nature Immunology 6 (8): 844–851.PubMedCrossRef de Jonge, W.J., E.P. van der Zanden, F.O. The, M.F. Bijlsma, D.J. van Westerloo, R.J. Bennink, H.R. Berthoud, S. Uematsu, S. Akira, R.M. van den Wijngaard, and G.E. Boeckxstaens. 2005. Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2-STAT3 signaling pathway. Nature Immunology 6 (8): 844–851.PubMedCrossRef
48.
Zurück zum Zitat Maldifassi, M.C., G. Atienza, F. Arnalich, E. López-Collazo, J.L. Cedillo, C. Martín-Sánchez, A. Bordas, J. Renart, and C. Montiel. 2014. A new IRAK-M-mediated mechanism implicated in the anti-inflammatory effect of nicotine via α7 nicotinic receptors in human macrophages. PLoS One 9 (9): e108397.PubMedPubMedCentralCrossRef Maldifassi, M.C., G. Atienza, F. Arnalich, E. López-Collazo, J.L. Cedillo, C. Martín-Sánchez, A. Bordas, J. Renart, and C. Montiel. 2014. A new IRAK-M-mediated mechanism implicated in the anti-inflammatory effect of nicotine via α7 nicotinic receptors in human macrophages. PLoS One 9 (9): e108397.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Park, S.Y., Y.H. Baik, J.H. Cho, S. Kim, K.S. Lee, and J.S. Han. 2008. Inhibition of lipopolysaccharide-induced nitric oxide synthesis by nicotine through S6K1-p42/44 MAPK pathway and STAT3 (Ser 727) phosphorylation in Raw 264.7 cells. Cytokine 44 (1): 126–134.PubMedCrossRef Park, S.Y., Y.H. Baik, J.H. Cho, S. Kim, K.S. Lee, and J.S. Han. 2008. Inhibition of lipopolysaccharide-induced nitric oxide synthesis by nicotine through S6K1-p42/44 MAPK pathway and STAT3 (Ser 727) phosphorylation in Raw 264.7 cells. Cytokine 44 (1): 126–134.PubMedCrossRef
50.
Zurück zum Zitat Sun, Y., Q. Li, H. Gui, D.P. Xu, Y.L. Yang, D.F. Su, and X. Liu. 2013. MicroRNA-124 mediates the cholinergic anti-inflammatory action through inhibiting the production of pro-inflammatory cytokines. Cell Research 23 (11): 1270–1283.PubMedPubMedCentralCrossRef Sun, Y., Q. Li, H. Gui, D.P. Xu, Y.L. Yang, D.F. Su, and X. Liu. 2013. MicroRNA-124 mediates the cholinergic anti-inflammatory action through inhibiting the production of pro-inflammatory cytokines. Cell Research 23 (11): 1270–1283.PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Ulloa, L., J. Doody, and J. Massagué. 1999. Inhibition of transforming growth factor-beta/SMAD signalling by the interferon-gamma/STAT pathway. Nature 397 (6721): 710–713.PubMedCrossRef Ulloa, L., J. Doody, and J. Massagué. 1999. Inhibition of transforming growth factor-beta/SMAD signalling by the interferon-gamma/STAT pathway. Nature 397 (6721): 710–713.PubMedCrossRef
52.
Zurück zum Zitat Jenkins, B.J., D. Grail, T. Nheu, M. Najdovska, B. Wang, P. Waring, M. Inglese, R.M. McLoughlin, S.A. Jones, N. Topley, H. Baumann, L.M. Judd, A.S. Giraud, A. Boussioutas, H.J. Zhu, and M. Ernst. 2005. Hyperactivation of Stat3 in gp130 mutant mice promotes gastric hyperproliferation and desensitizes TGF-beta signaling. Nature Medicine 11 (8): 845–852.PubMedCrossRef Jenkins, B.J., D. Grail, T. Nheu, M. Najdovska, B. Wang, P. Waring, M. Inglese, R.M. McLoughlin, S.A. Jones, N. Topley, H. Baumann, L.M. Judd, A.S. Giraud, A. Boussioutas, H.J. Zhu, and M. Ernst. 2005. Hyperactivation of Stat3 in gp130 mutant mice promotes gastric hyperproliferation and desensitizes TGF-beta signaling. Nature Medicine 11 (8): 845–852.PubMedCrossRef
53.
Zurück zum Zitat Yu, Z., W. Zhang, and B.C. Kone. 2002. Signal transducers and activators of transcription 3 (STAT3) inhibits transcription of the inducible nitric oxide synthase gene by interacting with nuclear factor kappaB. The Biochemical Journal 367 (Pt 1): 97–105.PubMedPubMedCentralCrossRef Yu, Z., W. Zhang, and B.C. Kone. 2002. Signal transducers and activators of transcription 3 (STAT3) inhibits transcription of the inducible nitric oxide synthase gene by interacting with nuclear factor kappaB. The Biochemical Journal 367 (Pt 1): 97–105.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Yu, Z., and B.C. Kone. 2004. The STAT3 DNA-binding domain mediates interaction with NF-kappaB p65 and inducible nitric oxide synthase transrepression in mesangial cells. Journals of the American Society of Nephrology 15 (3): 585–591.CrossRef Yu, Z., and B.C. Kone. 2004. The STAT3 DNA-binding domain mediates interaction with NF-kappaB p65 and inducible nitric oxide synthase transrepression in mesangial cells. Journals of the American Society of Nephrology 15 (3): 585–591.CrossRef
55.
Zurück zum Zitat Hoentjen, F., R.B. Sartor, M. Ozaki, and C. Jobin. 2005. STAT3 regulates NF-kappaB recruitment to the IL-12p40 promoter in dendritic cells. Blood 105 (2): 689–696.PubMedCrossRef Hoentjen, F., R.B. Sartor, M. Ozaki, and C. Jobin. 2005. STAT3 regulates NF-kappaB recruitment to the IL-12p40 promoter in dendritic cells. Blood 105 (2): 689–696.PubMedCrossRef
56.
Zurück zum Zitat Arredondo, J., A.I. Chernyavsky, D.L. Jolkovsky, K.E. Pinkerton, and S.A. Grando. 2006. Receptor-mediated tobacco toxicity: cooperation of the Ras/Raf-1/MEK1/ERK and JAK-2/STAT-3 pathways downstream of alpha7 nicotinic receptor in oral keratinocytes. The FASEB Journal 20 (12): 2093–2101.PubMedCrossRef Arredondo, J., A.I. Chernyavsky, D.L. Jolkovsky, K.E. Pinkerton, and S.A. Grando. 2006. Receptor-mediated tobacco toxicity: cooperation of the Ras/Raf-1/MEK1/ERK and JAK-2/STAT-3 pathways downstream of alpha7 nicotinic receptor in oral keratinocytes. The FASEB Journal 20 (12): 2093–2101.PubMedCrossRef
57.
Zurück zum Zitat Hamano, R., H.K. Takahashi, H. Iwagaki, T. Yoshino, M. Nishibori, and N. Tanaka. 2006. Stimulation of alpha7 nicotinic acetylcholine receptor inhibits CD14 and the toll-like receptor 4 expression in human monocytes. Shock 26 (4): 358–364.PubMedCrossRef Hamano, R., H.K. Takahashi, H. Iwagaki, T. Yoshino, M. Nishibori, and N. Tanaka. 2006. Stimulation of alpha7 nicotinic acetylcholine receptor inhibits CD14 and the toll-like receptor 4 expression in human monocytes. Shock 26 (4): 358–364.PubMedCrossRef
58.
Zurück zum Zitat Heeschen, C., J.J. Jang, M. Weis, A. Pathak, S. Kaji, R.S. Hu, P.S. Tsao, F.L. Johnson, and J.P. Cooke. 2001. Nicotine stimulates angiogenesis and promotes tumor growth and atherosclerosis. Nature Medicine 7 (7): 833–839.PubMedCrossRef Heeschen, C., J.J. Jang, M. Weis, A. Pathak, S. Kaji, R.S. Hu, P.S. Tsao, F.L. Johnson, and J.P. Cooke. 2001. Nicotine stimulates angiogenesis and promotes tumor growth and atherosclerosis. Nature Medicine 7 (7): 833–839.PubMedCrossRef
59.
Zurück zum Zitat Takahashi, H.K., H. Iwagaki, R. Hamano, T. Yoshino, N. Tanaka, and M. Nishibori. 2006. alpha7 Nicotinic acetylcholine receptor stimulation inhibits lipopolysaccharide-induced interleukin-18 and -12 production in monocytes. Journal of Pharmacological Sciences 102 (1): 143–146.PubMedCrossRef Takahashi, H.K., H. Iwagaki, R. Hamano, T. Yoshino, N. Tanaka, and M. Nishibori. 2006. alpha7 Nicotinic acetylcholine receptor stimulation inhibits lipopolysaccharide-induced interleukin-18 and -12 production in monocytes. Journal of Pharmacological Sciences 102 (1): 143–146.PubMedCrossRef
60.
Zurück zum Zitat Zabrodskiĭ, P.F. 1987. Effect of armin on nonspecific resistance factors of the body and on the primary humoral immune response. Farmakologiia i Toksikologiia 50 (1): 57–60.PubMed Zabrodskiĭ, P.F. 1987. Effect of armin on nonspecific resistance factors of the body and on the primary humoral immune response. Farmakologiia i Toksikologiia 50 (1): 57–60.PubMed
61.
Zurück zum Zitat Cope, A.P., H. Schulze-Koops, and M. Aringer. 2007. The central role of T cells in rheumatoid arthritis. Clinical and Experimental Rheumatology 25 (5 Suppl 46): S4–S11.PubMed Cope, A.P., H. Schulze-Koops, and M. Aringer. 2007. The central role of T cells in rheumatoid arthritis. Clinical and Experimental Rheumatology 25 (5 Suppl 46): S4–S11.PubMed
62.
Zurück zum Zitat Mellado, M., L. Martínez-Muñoz, G. Cascio, P. Lucas, J.L. Pablos, and J.M. Rodríguez-Frade. 2015. T Cell Migration in Rheumatoid Arthritis. Frontiers in Immunology 6: 384.PubMedPubMedCentralCrossRef Mellado, M., L. Martínez-Muñoz, G. Cascio, P. Lucas, J.L. Pablos, and J.M. Rodríguez-Frade. 2015. T Cell Migration in Rheumatoid Arthritis. Frontiers in Immunology 6: 384.PubMedPubMedCentralCrossRef
63.
Zurück zum Zitat Schwaneck, E.C., R. Renner, L. Junker, H.P. Tony, S. Kleinert, M. Gernert, M. Schmalzing, and O. Gadeholt. 2020. T cells, natural killer cells, and γδT cells in a large patient cohort with rheumatoid arthritis: influence of age and anti-rheumatic therapy. Scandinavian Journal of Rheumatology 49 (1): 8–12.PubMedCrossRef Schwaneck, E.C., R. Renner, L. Junker, H.P. Tony, S. Kleinert, M. Gernert, M. Schmalzing, and O. Gadeholt. 2020. T cells, natural killer cells, and γδT cells in a large patient cohort with rheumatoid arthritis: influence of age and anti-rheumatic therapy. Scandinavian Journal of Rheumatology 49 (1): 8–12.PubMedCrossRef
64.
Zurück zum Zitat Nizri, E., Y. Hamra-Amitay, C. Sicsic, I. Lavon, and T. Brenner. 2006. Anti-inflammatory properties of cholinergic up-regulation: a new role for acetylcholinesterase inhibitors. Neuropharmacology 50 (5): 540–547.PubMedCrossRef Nizri, E., Y. Hamra-Amitay, C. Sicsic, I. Lavon, and T. Brenner. 2006. Anti-inflammatory properties of cholinergic up-regulation: a new role for acetylcholinesterase inhibitors. Neuropharmacology 50 (5): 540–547.PubMedCrossRef
65.
Zurück zum Zitat Nizri, E., M. Irony-Tur-Sinai, N. Faranesh, I. Lavon, E. Lavi, M. Weinstock, and T. Brenner. 2008. Suppression of neuroinflammation and immunomodulation by the acetylcholinesterase inhibitor rivastigmine. Journal of Neuroimmunology 203 (1): 12–22.PubMedCrossRef Nizri, E., M. Irony-Tur-Sinai, N. Faranesh, I. Lavon, E. Lavi, M. Weinstock, and T. Brenner. 2008. Suppression of neuroinflammation and immunomodulation by the acetylcholinesterase inhibitor rivastigmine. Journal of Neuroimmunology 203 (1): 12–22.PubMedCrossRef
66.
Zurück zum Zitat Nizri, E., M. Irony-Tur-Sinai, O. Lory, A. Orr-Urtreger, E. Lavi, and T. Brenner. 2009. Activation of the cholinergic anti-inflammatory system by nicotine attenuates neuroinflammation via suppression of Th1 and Th17 responses. Journal of Immunology 183 (10): 6681–6688.CrossRef Nizri, E., M. Irony-Tur-Sinai, O. Lory, A. Orr-Urtreger, E. Lavi, and T. Brenner. 2009. Activation of the cholinergic anti-inflammatory system by nicotine attenuates neuroinflammation via suppression of Th1 and Th17 responses. Journal of Immunology 183 (10): 6681–6688.CrossRef
67.
Zurück zum Zitat Nizri, E., M. Irony-Tur-Sinai, I. Lavon, H. Meshulam, G. Amitai, and T. Brenner. 2007. IBU-octyl-cytisine, a novel bifunctional compound eliciting anti-inflammatory and cholinergic activity, ameliorates CNS inflammation by inhibition of T-cell activity. International Immunopharmacology 7 (9): 1129–1139.PubMedCrossRef Nizri, E., M. Irony-Tur-Sinai, I. Lavon, H. Meshulam, G. Amitai, and T. Brenner. 2007. IBU-octyl-cytisine, a novel bifunctional compound eliciting anti-inflammatory and cholinergic activity, ameliorates CNS inflammation by inhibition of T-cell activity. International Immunopharmacology 7 (9): 1129–1139.PubMedCrossRef
68.
Zurück zum Zitat Tjiu, J.W., P.J. Lin, W.H. Wu, Y.P. Cheng, H.C. Chiu, H.Y. Thong, B.L. Chiang, W.S. Yang, and S.H. Jee. 2011. SLURP1 mutation-impaired T-cell activation in a family with mal de Meleda. The British Journal of Dermatology 164 (1): 47–53.PubMedCrossRef Tjiu, J.W., P.J. Lin, W.H. Wu, Y.P. Cheng, H.C. Chiu, H.Y. Thong, B.L. Chiang, W.S. Yang, and S.H. Jee. 2011. SLURP1 mutation-impaired T-cell activation in a family with mal de Meleda. The British Journal of Dermatology 164 (1): 47–53.PubMedCrossRef
69.
Zurück zum Zitat Lina, C., W. Conghua, L. Nan, and Z. Ping. 2011. Combined treatment of etanercept and MTX reverses Th1/Th2, Th17/Treg imbalance in patients with rheumatoid arthritis. Journal of Clinical Immunology 31 (4): 596–605.PubMedCrossRef Lina, C., W. Conghua, L. Nan, and Z. Ping. 2011. Combined treatment of etanercept and MTX reverses Th1/Th2, Th17/Treg imbalance in patients with rheumatoid arthritis. Journal of Clinical Immunology 31 (4): 596–605.PubMedCrossRef
70.
Zurück zum Zitat Talaat, R.M., S.F. Mohamed, I.H. Bassyouni, and A.A. Raouf. 2015. Th1/Th2/Th17/Treg cytokine imbalance in systemic lupus erythematosus (SLE) patients: correlation with disease activity. Cytokine 72 (2): 146–153.PubMedCrossRef Talaat, R.M., S.F. Mohamed, I.H. Bassyouni, and A.A. Raouf. 2015. Th1/Th2/Th17/Treg cytokine imbalance in systemic lupus erythematosus (SLE) patients: correlation with disease activity. Cytokine 72 (2): 146–153.PubMedCrossRef
71.
Zurück zum Zitat Astry, B., S.H. Venkatesha, and K.D. Moudgil. 2015. Involvement of the IL-23/IL-17 axis and the Th17/Treg balance in the pathogenesis and control of autoimmune arthritis. Cytokine 74 (1): 54–61.PubMedPubMedCentralCrossRef Astry, B., S.H. Venkatesha, and K.D. Moudgil. 2015. Involvement of the IL-23/IL-17 axis and the Th17/Treg balance in the pathogenesis and control of autoimmune arthritis. Cytokine 74 (1): 54–61.PubMedPubMedCentralCrossRef
72.
Zurück zum Zitat Galitovskiy, V., J. Qian, A.I. Chernyavsky, S. Marchenko, V. Gindi, R.A. Edwards, and S.A. Grando. 2011. Cytokine-induced alterations of α7 nicotinic receptor in colonic CD4 T cells mediate dichotomous response to nicotine in murine models of Th1/Th17- versus Th2-mediated colitis. Journal of Immunology 187 (5): 2677–2687.CrossRef Galitovskiy, V., J. Qian, A.I. Chernyavsky, S. Marchenko, V. Gindi, R.A. Edwards, and S.A. Grando. 2011. Cytokine-induced alterations of α7 nicotinic receptor in colonic CD4 T cells mediate dichotomous response to nicotine in murine models of Th1/Th17- versus Th2-mediated colitis. Journal of Immunology 187 (5): 2677–2687.CrossRef
73.
Zurück zum Zitat Gowayed, M.A., K. Rothe, M. Rossol, A.S. Attia, U. Wagner, C. Baerwald, H.S. El-Abhar, and R. Refaat. 2019. The role of α7nAChR in controlling the anti-inflammatory/anti-arthritic action of galantamine. Biochemical Pharmacology 170: 113665.PubMedCrossRef Gowayed, M.A., K. Rothe, M. Rossol, A.S. Attia, U. Wagner, C. Baerwald, H.S. El-Abhar, and R. Refaat. 2019. The role of α7nAChR in controlling the anti-inflammatory/anti-arthritic action of galantamine. Biochemical Pharmacology 170: 113665.PubMedCrossRef
74.
Zurück zum Zitat Munyaka, P., M.F. Rabbi, V.A. Pavlov, K.J. Tracey, E. Khafipour, and J.E. Ghia. 2014. Central muscarinic cholinergic activation alters interaction between splenic dendritic cell and CD4+CD25- T cells in experimental colitis. PLoS One 9 (10): e109272.PubMedPubMedCentralCrossRef Munyaka, P., M.F. Rabbi, V.A. Pavlov, K.J. Tracey, E. Khafipour, and J.E. Ghia. 2014. Central muscarinic cholinergic activation alters interaction between splenic dendritic cell and CD4+CD25- T cells in experimental colitis. PLoS One 9 (10): e109272.PubMedPubMedCentralCrossRef
75.
Zurück zum Zitat Ren, C., X.H. Li, S.B. Wang, L.X. Wang, N. Dong, Y. Wu, and Y.M. Yao. 2018. Activation of central alpha 7 nicotinic acetylcholine receptor reverses suppressed immune function of T lymphocytes and protects against sepsis lethality. International Journal of Biological Sciences 14 (7): 748–759.PubMedPubMedCentralCrossRef Ren, C., X.H. Li, S.B. Wang, L.X. Wang, N. Dong, Y. Wu, and Y.M. Yao. 2018. Activation of central alpha 7 nicotinic acetylcholine receptor reverses suppressed immune function of T lymphocytes and protects against sepsis lethality. International Journal of Biological Sciences 14 (7): 748–759.PubMedPubMedCentralCrossRef
76.
Zurück zum Zitat Wu, S., H. Zhao, H. Luo, X. Xiao, H. Zhang, T. Li, and X. Zuo. 2014. GTS-21, an α7-nicotinic acetylcholine receptor agonist, modulates Th1 differentiation in CD4(+) T cells from patients with rheumatoid arthritis. Experimental and Therapeutic Medicine 8 (2): 557–562.PubMedPubMedCentralCrossRef Wu, S., H. Zhao, H. Luo, X. Xiao, H. Zhang, T. Li, and X. Zuo. 2014. GTS-21, an α7-nicotinic acetylcholine receptor agonist, modulates Th1 differentiation in CD4(+) T cells from patients with rheumatoid arthritis. Experimental and Therapeutic Medicine 8 (2): 557–562.PubMedPubMedCentralCrossRef
77.
78.
Zurück zum Zitat Kambayashi, T., and T.M. Laufer. 2014. Atypical MHC class II-expressing antigen-presenting cells: can anything replace a dendritic cell? Nature Reviews. Immunology 14 (11): 719–730.PubMedCrossRef Kambayashi, T., and T.M. Laufer. 2014. Atypical MHC class II-expressing antigen-presenting cells: can anything replace a dendritic cell? Nature Reviews. Immunology 14 (11): 719–730.PubMedCrossRef
79.
Zurück zum Zitat Fields, M.L., and J. Erikson. 2003. The regulation of lupus-associated autoantibodies: immunoglobulin transgenic models. Current Opinion in Immunology 15 (6): 709–717.PubMedCrossRef Fields, M.L., and J. Erikson. 2003. The regulation of lupus-associated autoantibodies: immunoglobulin transgenic models. Current Opinion in Immunology 15 (6): 709–717.PubMedCrossRef
80.
Zurück zum Zitat Hasan, M., G. Lopez-Herrera, K.E. Blomberg, J.M. Lindvall, A. Berglöf, C.I. Smith, and L. Vargas. 2008. Defective Toll-like receptor 9-mediated cytokine production in B cells from Bruton’s tyrosine kinase-deficient mice. Immunology 123 (2): 239–249.PubMedPubMedCentral Hasan, M., G. Lopez-Herrera, K.E. Blomberg, J.M. Lindvall, A. Berglöf, C.I. Smith, and L. Vargas. 2008. Defective Toll-like receptor 9-mediated cytokine production in B cells from Bruton’s tyrosine kinase-deficient mice. Immunology 123 (2): 239–249.PubMedPubMedCentral
81.
Zurück zum Zitat Kawashima, K., and T. Fujii. 2004. Expression of non-neuronal acetylcholine in lymphocytes and its contribution to the regulation of immune function. Frontiers in Bioscience 9: 2063–2085.PubMedCrossRef Kawashima, K., and T. Fujii. 2004. Expression of non-neuronal acetylcholine in lymphocytes and its contribution to the regulation of immune function. Frontiers in Bioscience 9: 2063–2085.PubMedCrossRef
82.
Zurück zum Zitat Kimura, R., N. Ushiyama, T. Fujii, and K. Kawashima. 2003. Nicotine-induced Ca2+ signaling and down-regulation of nicotinic acetylcholine receptor subunit expression in the CEM human leukemic T-cell line. Life Sciences 72 (18–19): 2155–2158.PubMedCrossRef Kimura, R., N. Ushiyama, T. Fujii, and K. Kawashima. 2003. Nicotine-induced Ca2+ signaling and down-regulation of nicotinic acetylcholine receptor subunit expression in the CEM human leukemic T-cell line. Life Sciences 72 (18–19): 2155–2158.PubMedCrossRef
83.
Zurück zum Zitat Skok, M., R. Grailhe, F. Agenes, and J.P. Changeux. 2006. The role of nicotinic acetylcholine receptors in lymphocyte development. Journal of Neuroimmunology 171 (1–2): 86–98.PubMedCrossRef Skok, M., R. Grailhe, F. Agenes, and J.P. Changeux. 2006. The role of nicotinic acetylcholine receptors in lymphocyte development. Journal of Neuroimmunology 171 (1–2): 86–98.PubMedCrossRef
84.
Zurück zum Zitat Nizri, E., and T. Brenner. 2013. Modulation of inflammatory pathways by the immune cholinergic system. Amino Acids 45 (1): 73–85.PubMedCrossRef Nizri, E., and T. Brenner. 2013. Modulation of inflammatory pathways by the immune cholinergic system. Amino Acids 45 (1): 73–85.PubMedCrossRef
85.
Zurück zum Zitat Skok, M.V., E.N. Kalashnik, L.N. Koval, V.I. Tsetlin, Y.N. Utkin, J.P. Changeux, and R. Grailhe. 2003. Functional nicotinic acetylcholine receptors are expressed in B lymphocyte-derived cell lines. Molecular Pharmacology 64 (4): 885–889.PubMedCrossRef Skok, M.V., E.N. Kalashnik, L.N. Koval, V.I. Tsetlin, Y.N. Utkin, J.P. Changeux, and R. Grailhe. 2003. Functional nicotinic acetylcholine receptors are expressed in B lymphocyte-derived cell lines. Molecular Pharmacology 64 (4): 885–889.PubMedCrossRef
86.
Zurück zum Zitat Koval, L.M., O. Yu Lykhmus, D.M. Omelchenko, S.V. Komisarenko, and M.V. Skok. 2009. The role of alpha7 nicotinic acetylcholine receptors in B lymphocyte activation. Ukr Biokhim Zh (1999) 81 (4): 5–11. Koval, L.M., O. Yu Lykhmus, D.M. Omelchenko, S.V. Komisarenko, and M.V. Skok. 2009. The role of alpha7 nicotinic acetylcholine receptors in B lymphocyte activation. Ukr Biokhim Zh (1999) 81 (4): 5–11.
87.
Zurück zum Zitat Quezada, S.A., L.Z. Jarvinen, E.F. Lind, and R.J. Noelle. 2004. CD40/CD154 interactions at the interface of tolerance and immunity. Annual Review of Immunology 22: 307–328.PubMedCrossRef Quezada, S.A., L.Z. Jarvinen, E.F. Lind, and R.J. Noelle. 2004. CD40/CD154 interactions at the interface of tolerance and immunity. Annual Review of Immunology 22: 307–328.PubMedCrossRef
88.
Zurück zum Zitat Hecker, A., Z. Mikulski, K.S. Lips, U. Pfeil, A. Zakrzewicz, S. Wilker, P. Hartmann, W. Padberg, I. Wessler, W. Kummer, and V. Grau. 2009. Pivotal Advance: Up-regulation of acetylcholine synthesis and paracrine cholinergic signaling in intravascular transplant leukocytes during rejection of rat renal allografts. Journal of Leukocyte Biology 86 (1): 13–22.PubMedCrossRef Hecker, A., Z. Mikulski, K.S. Lips, U. Pfeil, A. Zakrzewicz, S. Wilker, P. Hartmann, W. Padberg, I. Wessler, W. Kummer, and V. Grau. 2009. Pivotal Advance: Up-regulation of acetylcholine synthesis and paracrine cholinergic signaling in intravascular transplant leukocytes during rejection of rat renal allografts. Journal of Leukocyte Biology 86 (1): 13–22.PubMedCrossRef
89.
Zurück zum Zitat Skok, M., R. Grailhe, and J.P. Changeux. 2005. Nicotinic receptors regulate B lymphocyte activation and immune response. European Journal of Pharmacology 517 (3): 246–251.PubMedCrossRef Skok, M., R. Grailhe, and J.P. Changeux. 2005. Nicotinic receptors regulate B lymphocyte activation and immune response. European Journal of Pharmacology 517 (3): 246–251.PubMedCrossRef
90.
Zurück zum Zitat Fujii, Y.X., H. Fujigaya, Y. Moriwaki, H. Misawa, T. Kasahara, S.A. Grando, and K. Kawashima. 2007. Enhanced serum antigen-specific IgG1 and proinflammatory cytokine production in nicotinic acetylcholine receptor alpha7 subunit gene knockout mice. Journal of Neuroimmunology 189 (1–2): 69–74.PubMedCrossRef Fujii, Y.X., H. Fujigaya, Y. Moriwaki, H. Misawa, T. Kasahara, S.A. Grando, and K. Kawashima. 2007. Enhanced serum antigen-specific IgG1 and proinflammatory cytokine production in nicotinic acetylcholine receptor alpha7 subunit gene knockout mice. Journal of Neuroimmunology 189 (1–2): 69–74.PubMedCrossRef
91.
Zurück zum Zitat Gordon, S., and P.R. Taylor. 2005. Monocyte and macrophage heterogeneity. Nature Reviews Immunology 5 (12): 953–964.PubMedCrossRef Gordon, S., and P.R. Taylor. 2005. Monocyte and macrophage heterogeneity. Nature Reviews Immunology 5 (12): 953–964.PubMedCrossRef
92.
Zurück zum Zitat Ouchi, N., S. Kihara, T. Funahashi, Y. Matsuzawa, and K. Walsh. 2003. Obesity, adiponectin and vascular inflammatory disease. Current Opinion in Lipidology 14 (6): 561–566.PubMedCrossRef Ouchi, N., S. Kihara, T. Funahashi, Y. Matsuzawa, and K. Walsh. 2003. Obesity, adiponectin and vascular inflammatory disease. Current Opinion in Lipidology 14 (6): 561–566.PubMedCrossRef
93.
Zurück zum Zitat Tobias, P., and L.K. Curtiss. 2005. Thematic review series: the immune system and atherogenesis. Paying the price for pathogen protection: toll receptors in atherogenesis. Journal of Lipid Research 46 (3): 404–411.PubMedCrossRef Tobias, P., and L.K. Curtiss. 2005. Thematic review series: the immune system and atherogenesis. Paying the price for pathogen protection: toll receptors in atherogenesis. Journal of Lipid Research 46 (3): 404–411.PubMedCrossRef
94.
Zurück zum Zitat Zhang, L., and C.C. Wang. 2014. Inflammatory response of macrophages in infection. Hepatobiliary & Pancreatic Diseases International 13 (2): 138–152.CrossRef Zhang, L., and C.C. Wang. 2014. Inflammatory response of macrophages in infection. Hepatobiliary & Pancreatic Diseases International 13 (2): 138–152.CrossRef
95.
Zurück zum Zitat Kong, X., and J. Gao. 2017. Macrophage polarization: a key event in the secondary phase of acute spinal cord injury. Journal of Cellular and Molecular Medicine 21 (5): 941–954.PubMedCrossRef Kong, X., and J. Gao. 2017. Macrophage polarization: a key event in the secondary phase of acute spinal cord injury. Journal of Cellular and Molecular Medicine 21 (5): 941–954.PubMedCrossRef
96.
Zurück zum Zitat Ambarus, C.A., T. Noordenbos, M.J. de Hair, P.P. Tak, and D.L. Baeten. 2012. Intimal lining layer macrophages but not synovial sublining macrophages display an IL-10 polarized-like phenotype in chronic synovitis. Arthritis Research and Therapy 14 (2): R74.PubMedCrossRef Ambarus, C.A., T. Noordenbos, M.J. de Hair, P.P. Tak, and D.L. Baeten. 2012. Intimal lining layer macrophages but not synovial sublining macrophages display an IL-10 polarized-like phenotype in chronic synovitis. Arthritis Research and Therapy 14 (2): R74.PubMedCrossRef
97.
Zurück zum Zitat Lv, Y., S. Hu, J. Lu, N. Dong, Q. Liu, M. Du, and H. Zhang. 2014. Upregulating nonneuronal cholinergic activity decreases TNF release from lipopolysaccharide-stimulated RAW264.7 cells. Mediators of Inflammation 2014: 873728.PubMedPubMedCentralCrossRef Lv, Y., S. Hu, J. Lu, N. Dong, Q. Liu, M. Du, and H. Zhang. 2014. Upregulating nonneuronal cholinergic activity decreases TNF release from lipopolysaccharide-stimulated RAW264.7 cells. Mediators of Inflammation 2014: 873728.PubMedPubMedCentralCrossRef
98.
Zurück zum Zitat Chernyavsky, A.I., J. Arredondo, M. Skok, and S.A. Grando. 2010. Auto/paracrine control of inflammatory cytokines by acetylcholine in macrophage-like U937 cells through nicotinic receptors. International Immunopharmacology 10 (3): 308–315.PubMedCrossRef Chernyavsky, A.I., J. Arredondo, M. Skok, and S.A. Grando. 2010. Auto/paracrine control of inflammatory cytokines by acetylcholine in macrophage-like U937 cells through nicotinic receptors. International Immunopharmacology 10 (3): 308–315.PubMedCrossRef
99.
Zurück zum Zitat Rosas-Ballina, M., R.S. Goldstein, M. Gallowitsch-Puerta, L. Yang, S.I. Valdés-Ferrer, N.B. Patel, S. Chavan, Y. Al-Abed, H. Yang, and K.J. Tracey. 2009. The selective alpha7 agonist GTS-21 attenuates cytokine production in human whole blood and human monocytes activated by ligands for TLR2, TLR3, TLR4, TLR9, and RAGE. Molecular Medicine 15 (7–8): 195–202.PubMedPubMedCentralCrossRef Rosas-Ballina, M., R.S. Goldstein, M. Gallowitsch-Puerta, L. Yang, S.I. Valdés-Ferrer, N.B. Patel, S. Chavan, Y. Al-Abed, H. Yang, and K.J. Tracey. 2009. The selective alpha7 agonist GTS-21 attenuates cytokine production in human whole blood and human monocytes activated by ligands for TLR2, TLR3, TLR4, TLR9, and RAGE. Molecular Medicine 15 (7–8): 195–202.PubMedPubMedCentralCrossRef
100.
Zurück zum Zitat Lotze, M.T., and K.J. Tracey. 2005. High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nature Reviews Immunology 5 (4): 331–342.PubMedCrossRef Lotze, M.T., and K.J. Tracey. 2005. High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nature Reviews Immunology 5 (4): 331–342.PubMedCrossRef
101.
Zurück zum Zitat Ulleryd, M.A., F. Mjörnstedt, D. Panagaki, L.J. Yang, K. Engevall, S. Gutiérrez, Y. Wang, L.M. Gan, H. Nilsson, E. Michaëlsson, and M.E. Johansson. 2019. Stimulation of alpha 7 nicotinic acetylcholine receptor (α7nAChR) inhibits atherosclerosis via immunomodulatory effects on myeloid cells. Atherosclerosis 287: 122–133.PubMedCrossRef Ulleryd, M.A., F. Mjörnstedt, D. Panagaki, L.J. Yang, K. Engevall, S. Gutiérrez, Y. Wang, L.M. Gan, H. Nilsson, E. Michaëlsson, and M.E. Johansson. 2019. Stimulation of alpha 7 nicotinic acetylcholine receptor (α7nAChR) inhibits atherosclerosis via immunomodulatory effects on myeloid cells. Atherosclerosis 287: 122–133.PubMedCrossRef
102.
Zurück zum Zitat van der Zanden, E.P., S.A. Snoek, S.E. Heinsbroek, O.I. Stanisor, C. Verseijden, G.E. Boeckxstaens, M.P. Peppelenbosch, D.R. Greaves, S. Gordon, and W.J. De Jonge. 2009. Vagus nerve activity augments intestinal macrophage phagocytosis via nicotinic acetylcholine receptor alpha4beta2. Gastroenterology 137 (3): 1029–1039 e10394.PubMedCrossRef van der Zanden, E.P., S.A. Snoek, S.E. Heinsbroek, O.I. Stanisor, C. Verseijden, G.E. Boeckxstaens, M.P. Peppelenbosch, D.R. Greaves, S. Gordon, and W.J. De Jonge. 2009. Vagus nerve activity augments intestinal macrophage phagocytosis via nicotinic acetylcholine receptor alpha4beta2. Gastroenterology 137 (3): 1029–1039 e10394.PubMedCrossRef
103.
Zurück zum Zitat Pinheiro, N.M., F.P. Santana, R.R. Almeida, M. Guerreiro, M.A. Martins, L.C. Caperuto, N.O. Câmara, L.A. Wensing, V.F. Prado, I.F. Tibério, M.A. Prado, and C.M. Prado. 2017. Acute lung injury is reduced by the α7nAChR agonist PNU-282987 through changes in the macrophage profile. The FASEB Journal 31 (1): 320–332.PubMedCrossRef Pinheiro, N.M., F.P. Santana, R.R. Almeida, M. Guerreiro, M.A. Martins, L.C. Caperuto, N.O. Câmara, L.A. Wensing, V.F. Prado, I.F. Tibério, M.A. Prado, and C.M. Prado. 2017. Acute lung injury is reduced by the α7nAChR agonist PNU-282987 through changes in the macrophage profile. The FASEB Journal 31 (1): 320–332.PubMedCrossRef
104.
Zurück zum Zitat Wang, J., R. Li, Z. Peng, W. Zhou, B. Hu, X. Rao, X. Yang, and J. Li. 2019. GTS-21 reduces inflammation in acute lung injury by regulating M1 polarization and function of alveolar macrophages. Shock 51 (3): 389–400.PubMedCrossRef Wang, J., R. Li, Z. Peng, W. Zhou, B. Hu, X. Rao, X. Yang, and J. Li. 2019. GTS-21 reduces inflammation in acute lung injury by regulating M1 polarization and function of alveolar macrophages. Shock 51 (3): 389–400.PubMedCrossRef
105.
Zurück zum Zitat Wilund, K.R., M. Rosenblat, H.R. Chung, N. Volkova, M. Kaplan, J.A. Woods, and M. Aviram. 2009. Macrophages from alpha 7 nicotinic acetylcholine receptor knockout mice demonstrate increased cholesterol accumulation and decreased cellular paraoxonase expression: a possible link between the nervous system and atherosclerosis development. Biochemical and Biophysical Research Communications 390 (1): 148–154.PubMedCrossRef Wilund, K.R., M. Rosenblat, H.R. Chung, N. Volkova, M. Kaplan, J.A. Woods, and M. Aviram. 2009. Macrophages from alpha 7 nicotinic acetylcholine receptor knockout mice demonstrate increased cholesterol accumulation and decreased cellular paraoxonase expression: a possible link between the nervous system and atherosclerosis development. Biochemical and Biophysical Research Communications 390 (1): 148–154.PubMedCrossRef
106.
Zurück zum Zitat Inoue, T., C. Abe, T. Kohro, S. Tanaka, L. Huang, J. Yao, S. Zheng, H. Ye, R. Inagi, R.L. Stornetta, D.L. Rosin, M. Nangaku, Y. Wada, and M.D. Okusa. 2019. Non-canonical cholinergic anti-inflammatory pathway-mediated activation of peritoneal macrophages induces Hes1 and blocks ischemia/reperfusion injury in the kidney. Kidney International 95 (3): 563–576.PubMedPubMedCentralCrossRef Inoue, T., C. Abe, T. Kohro, S. Tanaka, L. Huang, J. Yao, S. Zheng, H. Ye, R. Inagi, R.L. Stornetta, D.L. Rosin, M. Nangaku, Y. Wada, and M.D. Okusa. 2019. Non-canonical cholinergic anti-inflammatory pathway-mediated activation of peritoneal macrophages induces Hes1 and blocks ischemia/reperfusion injury in the kidney. Kidney International 95 (3): 563–576.PubMedPubMedCentralCrossRef
107.
Zurück zum Zitat Lin, W., T. Liu, B. Wang, and H. Bi. 2019. The role of ocular dendritic cells in uveitis. Immunology Letters 209: 4–10.PubMedCrossRef Lin, W., T. Liu, B. Wang, and H. Bi. 2019. The role of ocular dendritic cells in uveitis. Immunology Letters 209: 4–10.PubMedCrossRef
108.
Zurück zum Zitat Chudnovskiy, A., G. Pasqual, and G.D. Victora. 2019. Studying interactions between dendritic cells and T cells in vivo. Current Opinion in Immunology 58: 24–30.PubMedPubMedCentralCrossRef Chudnovskiy, A., G. Pasqual, and G.D. Victora. 2019. Studying interactions between dendritic cells and T cells in vivo. Current Opinion in Immunology 58: 24–30.PubMedPubMedCentralCrossRef
109.
110.
Zurück zum Zitat Aicher, A., C. Heeschen, M. Mohaupt, J.P. Cooke, A.M. Zeiher, and S. Dimmeler. 2003. Nicotine strongly activates dendritic cell-mediated adaptive immunity: potential role for progression of atherosclerotic lesions. Circulation 107 (4): 604–611.PubMedCrossRef Aicher, A., C. Heeschen, M. Mohaupt, J.P. Cooke, A.M. Zeiher, and S. Dimmeler. 2003. Nicotine strongly activates dendritic cell-mediated adaptive immunity: potential role for progression of atherosclerotic lesions. Circulation 107 (4): 604–611.PubMedCrossRef
111.
Zurück zum Zitat Nouri-Shirazi, M., and E. Guinet. 2003. Evidence for the immunosuppressive role of nicotine on human dendritic cell functions. Immunology 109 (3): 365–373.PubMedPubMedCentralCrossRef Nouri-Shirazi, M., and E. Guinet. 2003. Evidence for the immunosuppressive role of nicotine on human dendritic cell functions. Immunology 109 (3): 365–373.PubMedPubMedCentralCrossRef
112.
Zurück zum Zitat Guinet, E., K. Yoshida, and M. Nouri-Shirazi. 2004. Nicotinic environment affects the differentiation and functional maturation of monocytes derived dendritic cells (DCs). Immunology Letters 95 (1): 45–55.PubMedCrossRef Guinet, E., K. Yoshida, and M. Nouri-Shirazi. 2004. Nicotinic environment affects the differentiation and functional maturation of monocytes derived dendritic cells (DCs). Immunology Letters 95 (1): 45–55.PubMedCrossRef
113.
Zurück zum Zitat Yanagita, M., K. Mori, R. Kobayashi, Y. Kojima, M. Kubota, K. Miki, S. Yamada, M. Kitamura, and S. Murakami. 2012. Immunomodulation of dendritic cells differentiated in the presence of nicotine with lipopolysaccharide from Porphyromonas gingivalis. European Journal of Oral Sciences 120 (5): 408–414.PubMedCrossRef Yanagita, M., K. Mori, R. Kobayashi, Y. Kojima, M. Kubota, K. Miki, S. Yamada, M. Kitamura, and S. Murakami. 2012. Immunomodulation of dendritic cells differentiated in the presence of nicotine with lipopolysaccharide from Porphyromonas gingivalis. European Journal of Oral Sciences 120 (5): 408–414.PubMedCrossRef
114.
Zurück zum Zitat Gori, S., M. Vermeulen, F. Remes-Lenicov, C. Jancic, W. Scordo, A. Ceballos, N. Towstyka, Y. Bestach, C. Belli, and F. Sabbione. 2017. Acetylcholine polarizes dendritic cells toward a Th2-promoting profile. Allergy 72 (2): 221–231.PubMedCrossRef Gori, S., M. Vermeulen, F. Remes-Lenicov, C. Jancic, W. Scordo, A. Ceballos, N. Towstyka, Y. Bestach, C. Belli, and F. Sabbione. 2017. Acetylcholine polarizes dendritic cells toward a Th2-promoting profile. Allergy 72 (2): 221–231.PubMedCrossRef
115.
Zurück zum Zitat Seyler, L.E., J. Fertig, O. Pomerleau, D. Hunt, and K. Parker. 1984. The effects of smoking on ACTH and cortisol secretion. Life Sciences 34 (1): 57–65.PubMedCrossRef Seyler, L.E., J. Fertig, O. Pomerleau, D. Hunt, and K. Parker. 1984. The effects of smoking on ACTH and cortisol secretion. Life Sciences 34 (1): 57–65.PubMedCrossRef
116.
Zurück zum Zitat Michell-Robinson, M.A., H. Touil, L.M. Healy, D.R. Owen, B.A. Durafourt, A. Bar-Or, J.P. Antel, and C.S. Moore. 2015. Roles of microglia in brain development, tissue maintenance and repair. Brain 138 (Pt 5): 1138–1159.PubMedPubMedCentralCrossRef Michell-Robinson, M.A., H. Touil, L.M. Healy, D.R. Owen, B.A. Durafourt, A. Bar-Or, J.P. Antel, and C.S. Moore. 2015. Roles of microglia in brain development, tissue maintenance and repair. Brain 138 (Pt 5): 1138–1159.PubMedPubMedCentralCrossRef
117.
Zurück zum Zitat Shytle, R.D., T. Mori, K. Townsend, M. Vendrame, N. Sun, J. Zeng, J. Ehrhart, A.A. Silver, P.R. Sanberg, and J. Tan. 2004. Cholinergic modulation of microglial activation by alpha 7 nicotinic receptors. Journal of Neurochemistry 89 (2): 337–343.PubMedCrossRef Shytle, R.D., T. Mori, K. Townsend, M. Vendrame, N. Sun, J. Zeng, J. Ehrhart, A.A. Silver, P.R. Sanberg, and J. Tan. 2004. Cholinergic modulation of microglial activation by alpha 7 nicotinic receptors. Journal of Neurochemistry 89 (2): 337–343.PubMedCrossRef
118.
Zurück zum Zitat Tsuda, M. 2018. Modulation of pain and itch by spinal glia. Neuroscience Bulletin 34 (1): 178–185.PubMedCrossRef Tsuda, M. 2018. Modulation of pain and itch by spinal glia. Neuroscience Bulletin 34 (1): 178–185.PubMedCrossRef
119.
Zurück zum Zitat Suzuki, T., I. Hide, A. Matsubara, C. Hama, K. Harada, K. Miyano, M. Andrä, H. Matsubayashi, N. Sakai, S. Kohsaka, K. Inoue, and Y. Nakata. 2006. Microglial alpha7 nicotinic acetylcholine receptors drive a phospholipase C/IP3 pathway and modulate the cell activation toward a neuroprotective role. Journal of Neuroscience Research 83 (8): 1461–1470.PubMedCrossRef Suzuki, T., I. Hide, A. Matsubara, C. Hama, K. Harada, K. Miyano, M. Andrä, H. Matsubayashi, N. Sakai, S. Kohsaka, K. Inoue, and Y. Nakata. 2006. Microglial alpha7 nicotinic acetylcholine receptors drive a phospholipase C/IP3 pathway and modulate the cell activation toward a neuroprotective role. Journal of Neuroscience Research 83 (8): 1461–1470.PubMedCrossRef
120.
Zurück zum Zitat Polazzi, E., and B. Monti. 2010. Microglia and neuroprotection: from in vitro studies to therapeutic applications. Progress in Neurobiology 92 (3): 293–315.PubMedCrossRef Polazzi, E., and B. Monti. 2010. Microglia and neuroprotection: from in vitro studies to therapeutic applications. Progress in Neurobiology 92 (3): 293–315.PubMedCrossRef
121.
Zurück zum Zitat Zhang, J., and S. Rivest. 2001. Anti-inflammatory effects of prostaglandin E2 in the central nervous system in response to brain injury and circulating lipopolysaccharide. Journal of Neurochemistry 76 (3): 855–864.PubMedCrossRef Zhang, J., and S. Rivest. 2001. Anti-inflammatory effects of prostaglandin E2 in the central nervous system in response to brain injury and circulating lipopolysaccharide. Journal of Neurochemistry 76 (3): 855–864.PubMedCrossRef
122.
Zurück zum Zitat Egea, J., I. Buendia, E. Parada, E. Navarro, R. León, and M.G. Lopez. 2015. Anti-inflammatory role of microglial alpha7 nAChRs and its role in neuroprotection. Biochemical Pharmacology 97 (4): 463–472.PubMedCrossRef Egea, J., I. Buendia, E. Parada, E. Navarro, R. León, and M.G. Lopez. 2015. Anti-inflammatory role of microglial alpha7 nAChRs and its role in neuroprotection. Biochemical Pharmacology 97 (4): 463–472.PubMedCrossRef
123.
Zurück zum Zitat Noda, M., and A.I. Kobayashi. 2017. Nicotine inhibits activation of microglial proton currents via interactions with α7 acetylcholine receptors. The Journal of Physiological Sciences 67 (1): 235–245.PubMedCrossRef Noda, M., and A.I. Kobayashi. 2017. Nicotine inhibits activation of microglial proton currents via interactions with α7 acetylcholine receptors. The Journal of Physiological Sciences 67 (1): 235–245.PubMedCrossRef
124.
Zurück zum Zitat Morioka, N., S. Harano, M. Tokuhara, Y. Idenoshita, F.F. Zhang, K. Hisaoka-Nakashima, and Y. Nakata. 2015. Stimulation of α7 nicotinic acetylcholine receptor regulates glutamate transporter GLAST via basic fibroblast growth factor production in cultured cortical microglia. Brain Research 1625: 111–120.PubMedCrossRef Morioka, N., S. Harano, M. Tokuhara, Y. Idenoshita, F.F. Zhang, K. Hisaoka-Nakashima, and Y. Nakata. 2015. Stimulation of α7 nicotinic acetylcholine receptor regulates glutamate transporter GLAST via basic fibroblast growth factor production in cultured cortical microglia. Brain Research 1625: 111–120.PubMedCrossRef
125.
Zurück zum Zitat Parada, E., J. Egea, I. Buendia, P. Negredo, A.C. Cunha, S. Cardoso, M.P. Soares, and M.G. López. 2013. The microglial α7-acetylcholine nicotinic receptor is a key element in promoting neuroprotection by inducing heme oxygenase-1 via nuclear factor erythroid-2-related factor 2. Antioxidants and Redox Signaling 19 (11): 1135–1148.PubMedCrossRef Parada, E., J. Egea, I. Buendia, P. Negredo, A.C. Cunha, S. Cardoso, M.P. Soares, and M.G. López. 2013. The microglial α7-acetylcholine nicotinic receptor is a key element in promoting neuroprotection by inducing heme oxygenase-1 via nuclear factor erythroid-2-related factor 2. Antioxidants and Redox Signaling 19 (11): 1135–1148.PubMedCrossRef
126.
Zurück zum Zitat Toyohara, J., and K. Hashimoto. 2010. α7 nicotinic receptor agonists: potential therapeutic drugs for treatment of cognitive impairments in schizophrenia and Alzheimer’s disease. Open Medicinal Chemistry Journal 4: 37–56. Toyohara, J., and K. Hashimoto. 2010. α7 nicotinic receptor agonists: potential therapeutic drugs for treatment of cognitive impairments in schizophrenia and Alzheimer’s disease. Open Medicinal Chemistry Journal 4: 37–56.
127.
Zurück zum Zitat Borovikova, L.V., S. Ivanova, D. Nardi, M. Zhang, H. Yang, M. Ombrellino, and K.J. Tracey. 2000. Role of vagus nerve signaling in CNI-1493-mediated suppression of acute inflammation. Autonomic Neuroscience 85 (1–3): 141–147.PubMedCrossRef Borovikova, L.V., S. Ivanova, D. Nardi, M. Zhang, H. Yang, M. Ombrellino, and K.J. Tracey. 2000. Role of vagus nerve signaling in CNI-1493-mediated suppression of acute inflammation. Autonomic Neuroscience 85 (1–3): 141–147.PubMedCrossRef
128.
Zurück zum Zitat Faghih, R., M. Gopalakrishnan, and C.A. Briggs. 2008. Allosteric modulators of the alpha7 nicotinic acetylcholine receptor. Journal of Medicinal Chemistry 51 (4): 701–712.PubMedCrossRef Faghih, R., M. Gopalakrishnan, and C.A. Briggs. 2008. Allosteric modulators of the alpha7 nicotinic acetylcholine receptor. Journal of Medicinal Chemistry 51 (4): 701–712.PubMedCrossRef
129.
Zurück zum Zitat Bouzat, C., M. Lasala, B.E. Nielsen, J. Corradi, and M.D.C. Esandi. 2018. Molecular function of α7 nicotinic receptors as drug targets. The Journal of Physiology 596 (10): 1847–1861.PubMedCrossRef Bouzat, C., M. Lasala, B.E. Nielsen, J. Corradi, and M.D.C. Esandi. 2018. Molecular function of α7 nicotinic receptors as drug targets. The Journal of Physiology 596 (10): 1847–1861.PubMedCrossRef
Metadaten
Titel
The Role of α7nAChR-Mediated Cholinergic Anti-inflammatory Pathway in Immune Cells
verfasst von
Yi-jin Wu
Li Wang
Chao-fan Ji
Shao-fei Gu
Qin Yin
Jian Zuo
Publikationsdatum
06.01.2021
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 3/2021
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-020-01396-6

Weitere Artikel der Ausgabe 3/2021

Inflammation 3/2021 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Reizdarmsyndrom: Diäten wirksamer als Medikamente

29.04.2024 Reizdarmsyndrom Nachrichten

Bei Reizdarmsyndrom scheinen Diäten, wie etwa die FODMAP-arme oder die kohlenhydratreduzierte Ernährung, effektiver als eine medikamentöse Therapie zu sein. Das hat eine Studie aus Schweden ergeben, die die drei Therapieoptionen im direkten Vergleich analysierte.

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.