Skip to main content
Erschienen in: Inflammation 6/2019

28.08.2019 | ORIGINAL ARTICLE

RETRACTED ARTICLE: Upregulated MiR-9-5p Protects Against Inflammatory Response in Rats with Deep Vein Thrombosis via Inhibition of NF-κB p50

verfasst von: Minghui Ou, Yunfeng Zhang, Shichao Cui, Shibo Zhao, Jie Tu

Erschienen in: Inflammation | Ausgabe 6/2019

Einloggen, um Zugang zu erhalten

Abstract

Recently, microRNAs (miRNAs) have been demonstrated to play important roles in the cardiovascular system, including heart, blood vessels, plasma, and vascular diseases. Deep vein thrombosis (DVT) refers to the formation of blood clot in the deep veins of the human body and is a common peripheral vascular disease. Herein, we explored the mechanism of miR-9-5p in DVT through nuclear factor-κB (NF-κB). The expression of miR-9-5p in DVT rats was measured through the establishment of DVT rat models, followed by the alteration of miR-9-5p and NF-κB p50 in rats through the injection of constructed lentiviral vectors so as to explore the role of miR-9-5p and NF-κB p50 expression in rats. Next, the expression of NF-κB p50 and levels of inflammation-related factors plasminogen activator inhibitor-1 (PAI-1), interleukin-6 (IL-6), tumor necrosis factor α (TNF-α), and interleukin-8 (IL-8) were measured after the injection with lentiviral vectors, followed by the assessment of platelet aggregation and TXB2 content. MiR-9-5p was found to be downregulated in DVT rats. Through dual luciferase reporter gene assay, NF-κB p50 was verified as the target gene of miR-9-5p and miR-9-5p could negatively regulate NF-κB p50. MiR-9-5p over-expression decreased the levels of PAI-1, TNF-α, IL-6, and IL-8 and platelet aggregation as well as TXB2 content, thus inhibiting thrombosis. Meanwhile, over-expressed NF-κB p50 could reverse the anti-inflammatory or anti-thrombotic effect of miR-9-5p. In summary, miR-9-5p over-expression can suppress the NF-κB signaling pathway through p50 downregulation, thus alleviating inflammation and thrombosis in DVT rats. MiR-9-5p could serve as a potential therapeutic target for DVT.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Mackman, N. 2012. New insights into the mechanisms of venous thrombosis. The Journal of Clinical Investigation 122 (7): 2331–2336.CrossRef Mackman, N. 2012. New insights into the mechanisms of venous thrombosis. The Journal of Clinical Investigation 122 (7): 2331–2336.CrossRef
2.
Zurück zum Zitat Olie, V., G. Plu-Bureau, M. Canonico, and P.Y. Scarabin. 2011. Risk assessment for recurrent venous thrombosis. Lancet 377 (9771): 1072 author reply 1073-1074.CrossRef Olie, V., G. Plu-Bureau, M. Canonico, and P.Y. Scarabin. 2011. Risk assessment for recurrent venous thrombosis. Lancet 377 (9771): 1072 author reply 1073-1074.CrossRef
3.
Zurück zum Zitat Raskob, G.E., R. Silverstein, D.W. Bratzler, J.A. Heit, and R.H. White. 2010. Surveillance for deep vein thrombosis and pulmonary embolism: recommendations from a national workshop. American Journal of Preventive Medicine 38 (4 Suppl): S502–S509.CrossRef Raskob, G.E., R. Silverstein, D.W. Bratzler, J.A. Heit, and R.H. White. 2010. Surveillance for deep vein thrombosis and pulmonary embolism: recommendations from a national workshop. American Journal of Preventive Medicine 38 (4 Suppl): S502–S509.CrossRef
4.
Zurück zum Zitat Diaz, J.A., A.T. Obi, D.D. Myers Jr., S.K. Wrobleski, P.K. Henke, N. Mackman, and T.W. Wakefield. 2012. Critical review of mouse models of venous thrombosis. Arteriosclerosis, Thrombosis, and Vascular Biology 32 (3): 556–562.CrossRef Diaz, J.A., A.T. Obi, D.D. Myers Jr., S.K. Wrobleski, P.K. Henke, N. Mackman, and T.W. Wakefield. 2012. Critical review of mouse models of venous thrombosis. Arteriosclerosis, Thrombosis, and Vascular Biology 32 (3): 556–562.CrossRef
5.
Zurück zum Zitat Roumen-Klappe, E.M., M.C. Janssen, J. Van Rossum, S. Holewijn, M.M. Van Bokhoven, K. Kaasjager, H. Wollersheim, and M. Den Heijer. 2009. Inflammation in deep vein thrombosis and the development of post-thrombotic syndrome: a prospective study. Journal of Thrombosis and Haemostasis 7 (4): 582–587.CrossRef Roumen-Klappe, E.M., M.C. Janssen, J. Van Rossum, S. Holewijn, M.M. Van Bokhoven, K. Kaasjager, H. Wollersheim, and M. Den Heijer. 2009. Inflammation in deep vein thrombosis and the development of post-thrombotic syndrome: a prospective study. Journal of Thrombosis and Haemostasis 7 (4): 582–587.CrossRef
6.
Zurück zum Zitat Jin, Q.Q., J.H. Sun, Q.X. Du, X.J. Lu, X.Y. Zhu, H.L. Fan, C. Holscher, and Y.Y. Wang. 2017. Integrating microRNA and messenger RNA expression profiles in a rat model of deep vein thrombosis. International Journal of Molecular Medicine 40 (4): 1019–1028.CrossRef Jin, Q.Q., J.H. Sun, Q.X. Du, X.J. Lu, X.Y. Zhu, H.L. Fan, C. Holscher, and Y.Y. Wang. 2017. Integrating microRNA and messenger RNA expression profiles in a rat model of deep vein thrombosis. International Journal of Molecular Medicine 40 (4): 1019–1028.CrossRef
7.
Zurück zum Zitat Fuchs, T.A., A. Brill, and D.D. Wagner. 2012. Neutrophil extracellular trap (NET) impact on deep vein thrombosis. Arteriosclerosis, Thrombosis, and Vascular Biology 32 (8): 1777–1783.CrossRef Fuchs, T.A., A. Brill, and D.D. Wagner. 2012. Neutrophil extracellular trap (NET) impact on deep vein thrombosis. Arteriosclerosis, Thrombosis, and Vascular Biology 32 (8): 1777–1783.CrossRef
8.
Zurück zum Zitat Jiang, L., Y. Wang, Y. Rong, L. Xu, Y. Chu, Y. Zhang, and Y. Yao. 2015. miR-1179 promotes cell invasion through SLIT2/ROBO1 axis in esophageal squamous cell carcinoma. International Journal of Clinical and Experimental Pathology 8 (1): 319–327.PubMedPubMedCentral Jiang, L., Y. Wang, Y. Rong, L. Xu, Y. Chu, Y. Zhang, and Y. Yao. 2015. miR-1179 promotes cell invasion through SLIT2/ROBO1 axis in esophageal squamous cell carcinoma. International Journal of Clinical and Experimental Pathology 8 (1): 319–327.PubMedPubMedCentral
9.
Zurück zum Zitat Ten Cate, H. 2016. MicroRNA and venous thrombosis. Thrombosis and Haemostasis 116 (2): 205.PubMed Ten Cate, H. 2016. MicroRNA and venous thrombosis. Thrombosis and Haemostasis 116 (2): 205.PubMed
10.
Zurück zum Zitat Yu, F., B. Chen, X. Fan, G. Li, P. Dong, and J. Zheng. 2017. Epigenetically-regulated microRNA-9-5p suppresses the activation of hepatic stellate cells via TGFBR1 and TGFBR2. Cellular Physiology and Biochemistry 43 (6): 2242–2252.CrossRef Yu, F., B. Chen, X. Fan, G. Li, P. Dong, and J. Zheng. 2017. Epigenetically-regulated microRNA-9-5p suppresses the activation of hepatic stellate cells via TGFBR1 and TGFBR2. Cellular Physiology and Biochemistry 43 (6): 2242–2252.CrossRef
11.
Zurück zum Zitat Kontaraki, J.E., M.E. Marketou, E.A. Zacharis, F.I. Parthenakis, and P.E. Vardas. 2014. MicroRNA-9 and microRNA-126 expression levels in patients with essential hypertension: potential markers of target-organ damage. Journal of the American Society of Hypertension 8 (6): 368–375.CrossRef Kontaraki, J.E., M.E. Marketou, E.A. Zacharis, F.I. Parthenakis, and P.E. Vardas. 2014. MicroRNA-9 and microRNA-126 expression levels in patients with essential hypertension: potential markers of target-organ damage. Journal of the American Society of Hypertension 8 (6): 368–375.CrossRef
12.
Zurück zum Zitat Weaver, J.L., P.J. Matheson, R.T. Hurt, C.D. Downard, C.J. McClain, R.N. Garrison, and J.W. Smith. 2016. Direct peritoneal resuscitation alters hepatic miRNA expression after hemorrhagic shock. Journal of the American College of Surgeons 223 (1): 68–75.CrossRef Weaver, J.L., P.J. Matheson, R.T. Hurt, C.D. Downard, C.J. McClain, R.N. Garrison, and J.W. Smith. 2016. Direct peritoneal resuscitation alters hepatic miRNA expression after hemorrhagic shock. Journal of the American College of Surgeons 223 (1): 68–75.CrossRef
13.
Zurück zum Zitat Zhang, K., F. Song, X. Lu, W. Chen, C. Huang, L. Li, D. Liang, S. Cao, and H. Dai. 2017. MicroRNA-322 inhibits inflammatory cytokine expression and promotes cell proliferation in LPS-stimulated murine macrophages by targeting NF-kappaB1 (p50). Bioscience Reports 37 (1). Zhang, K., F. Song, X. Lu, W. Chen, C. Huang, L. Li, D. Liang, S. Cao, and H. Dai. 2017. MicroRNA-322 inhibits inflammatory cytokine expression and promotes cell proliferation in LPS-stimulated murine macrophages by targeting NF-kappaB1 (p50). Bioscience Reports 37 (1).
14.
Zurück zum Zitat Sun, X., S. He, A.K.M. Wara, B. Icli, E. Shvartz, Y. Tesmenitsky, N. Belkin, D. Li, T.S. Blackwell, G.K. Sukhova, K. Croce, and M.W. Feinberg. 2014. Systemic delivery of microRNA-181b inhibits nuclear factor-kappaB activation, vascular inflammation, and atherosclerosis in apolipoprotein E-deficient mice. Circulation Research 114 (1): 32–40.CrossRef Sun, X., S. He, A.K.M. Wara, B. Icli, E. Shvartz, Y. Tesmenitsky, N. Belkin, D. Li, T.S. Blackwell, G.K. Sukhova, K. Croce, and M.W. Feinberg. 2014. Systemic delivery of microRNA-181b inhibits nuclear factor-kappaB activation, vascular inflammation, and atherosclerosis in apolipoprotein E-deficient mice. Circulation Research 114 (1): 32–40.CrossRef
15.
Zurück zum Zitat Li, Y.D., B.Q. Ye, S.X. Zheng, J.T. Wang, J.G. Wang, M. Chen, J.G. Liu, X.H. Pei, L.J. Wang, Z.X. Lin, K. Gupta, N. Mackman, A. Slungaard, N.S. Key, and J.G. Geng. 2009. NF-kappaB transcription factor p50 critically regulates tissue factor in deep vein thrombosis. The Journal of Biological Chemistry 284 (7): 4473–4483.CrossRef Li, Y.D., B.Q. Ye, S.X. Zheng, J.T. Wang, J.G. Wang, M. Chen, J.G. Liu, X.H. Pei, L.J. Wang, Z.X. Lin, K. Gupta, N. Mackman, A. Slungaard, N.S. Key, and J.G. Geng. 2009. NF-kappaB transcription factor p50 critically regulates tissue factor in deep vein thrombosis. The Journal of Biological Chemistry 284 (7): 4473–4483.CrossRef
16.
Zurück zum Zitat Yang, T.Q., X.J. Lu, T.F. Wu, D.D. Ding, Z.H. Zhao, G.L. Chen, X.S. Xie, B. Li, Y.X. Wei, L.C. Guo, Y. Zhang, Y.L. Huang, Y.X. Zhou, and Z.W. du. 2014. MicroRNA-16 inhibits glioma cell growth and invasion through suppression of BCL2 and the nuclear factor-kappaB1/MMP9 signaling pathway. Cancer Science 105 (3): 265–271.CrossRef Yang, T.Q., X.J. Lu, T.F. Wu, D.D. Ding, Z.H. Zhao, G.L. Chen, X.S. Xie, B. Li, Y.X. Wei, L.C. Guo, Y. Zhang, Y.L. Huang, Y.X. Zhou, and Z.W. du. 2014. MicroRNA-16 inhibits glioma cell growth and invasion through suppression of BCL2 and the nuclear factor-kappaB1/MMP9 signaling pathway. Cancer Science 105 (3): 265–271.CrossRef
17.
Zurück zum Zitat Liu, N., Q. Sun, J. Chen, J. Li, Y. Zeng, S. Zhai, P. Li, B. Wang, and X. Wang. 2012. MicroRNA-9 suppresses uveal melanoma cell migration and invasion through the NF-kappaB1 pathway. Oncology Reports 28 (3): 961–968.PubMed Liu, N., Q. Sun, J. Chen, J. Li, Y. Zeng, S. Zhai, P. Li, B. Wang, and X. Wang. 2012. MicroRNA-9 suppresses uveal melanoma cell migration and invasion through the NF-kappaB1 pathway. Oncology Reports 28 (3): 961–968.PubMed
18.
Zurück zum Zitat Dull, T., R. Zufferey, M. Kelly, R.J. Mandel, M. Nguyen, D. Trono, and L. Naldini. 1998. A third-generation lentivirus vector with a conditional packaging system. Journal of Virology 72 (11): 8463–8471.CrossRef Dull, T., R. Zufferey, M. Kelly, R.J. Mandel, M. Nguyen, D. Trono, and L. Naldini. 1998. A third-generation lentivirus vector with a conditional packaging system. Journal of Virology 72 (11): 8463–8471.CrossRef
19.
Zurück zum Zitat Kong, L., N. Hu, X. Du, W. Wang, H. Chen, W. Li, S. Wei, H. Zhuang, X. Li, and C. Li. 2016. Upregulation of miR-483-3p contributes to endothelial progenitor cells dysfunction in deep vein thrombosis patients via SRF. Journal of Translational Medicine 14: 23.CrossRef Kong, L., N. Hu, X. Du, W. Wang, H. Chen, W. Li, S. Wei, H. Zhuang, X. Li, and C. Li. 2016. Upregulation of miR-483-3p contributes to endothelial progenitor cells dysfunction in deep vein thrombosis patients via SRF. Journal of Translational Medicine 14: 23.CrossRef
20.
Zurück zum Zitat Meng, Q., W. Wang, X. Yu, W. Li, L. Kong, A. Qian, C. Li, and X. Li. 2015. Upregulation of microRNA-126 contributes to endothelial progenitor cell function in deep vein thrombosis via its target PIK3R2. Journal of Cellular Biochemistry 116 (8): 1613–1623.CrossRef Meng, Q., W. Wang, X. Yu, W. Li, L. Kong, A. Qian, C. Li, and X. Li. 2015. Upregulation of microRNA-126 contributes to endothelial progenitor cell function in deep vein thrombosis via its target PIK3R2. Journal of Cellular Biochemistry 116 (8): 1613–1623.CrossRef
21.
Zurück zum Zitat Mo, J., D. Zhang, and R. Yang. 2016. MicroRNA-195 regulates proliferation, migration, angiogenesis and autophagy of endothelial progenitor cells by targeting GABARAPL1. Bioscience Reports 36 (5): e00396.CrossRef Mo, J., D. Zhang, and R. Yang. 2016. MicroRNA-195 regulates proliferation, migration, angiogenesis and autophagy of endothelial progenitor cells by targeting GABARAPL1. Bioscience Reports 36 (5): e00396.CrossRef
22.
Zurück zum Zitat Tay, J., J. Tiao, Q. Hughes, J. Jorritsma, G. Gilmore, and R. Baker. 2018. Circulating MicroRNA as thrombosis sentinels: caveats and considerations. Seminars in Thrombosis and Hemostasis 44 (3): 206–215.CrossRef Tay, J., J. Tiao, Q. Hughes, J. Jorritsma, G. Gilmore, and R. Baker. 2018. Circulating MicroRNA as thrombosis sentinels: caveats and considerations. Seminars in Thrombosis and Hemostasis 44 (3): 206–215.CrossRef
23.
Zurück zum Zitat Xie, X., C. Liu, W. Lin, B. Zhan, C. Dong, Z. Song, S. Wang, Y. Qi, J. Wang, and Z. Gu. 2016. Deep vein thrombosis is accurately predicted by comprehensive analysis of the levels of microRNA-96 and plasma D-dimer. Experimental and Therapeutic Medicine 12 (3): 1896–1900.CrossRef Xie, X., C. Liu, W. Lin, B. Zhan, C. Dong, Z. Song, S. Wang, Y. Qi, J. Wang, and Z. Gu. 2016. Deep vein thrombosis is accurately predicted by comprehensive analysis of the levels of microRNA-96 and plasma D-dimer. Experimental and Therapeutic Medicine 12 (3): 1896–1900.CrossRef
24.
Zurück zum Zitat Wang, L., L. Ma, H. Fan, Z. Yang, L. Li, and H. Wang. 2016. MicroRNA-9 regulates cardiac fibrosis by targeting PDGFR-beta in rats. Journal of Physiology and Biochemistry 72 (2): 213–223.CrossRef Wang, L., L. Ma, H. Fan, Z. Yang, L. Li, and H. Wang. 2016. MicroRNA-9 regulates cardiac fibrosis by targeting PDGFR-beta in rats. Journal of Physiology and Biochemistry 72 (2): 213–223.CrossRef
25.
Zurück zum Zitat Wang, X., K. Sundquist, J.L. Elf, K. Strandberg, P.J. Svensson, A. Hedelius, K. Palmer, A.A. Memon, J. Sundquist, and B. Zoller. 2016. Diagnostic potential of plasma microRNA signatures in patients with deep-vein thrombosis. Thrombosis & Haemostasis 116 (2): 328–336. Wang, X., K. Sundquist, J.L. Elf, K. Strandberg, P.J. Svensson, A. Hedelius, K. Palmer, A.A. Memon, J. Sundquist, and B. Zoller. 2016. Diagnostic potential of plasma microRNA signatures in patients with deep-vein thrombosis. Thrombosis & Haemostasis 116 (2): 328–336.
26.
Zurück zum Zitat Fliegauf, M., V.L. Bryant, N. Frede, C. Slade, S.T. Woon, K. Lehnert, S. Winzer, et al. 2015. Haploinsufficiency of the NF-kappaB1 subunit p50 in common variable immunodeficiency. American Journal of Human Genetics 97 (3): 389–403.CrossRef Fliegauf, M., V.L. Bryant, N. Frede, C. Slade, S.T. Woon, K. Lehnert, S. Winzer, et al. 2015. Haploinsufficiency of the NF-kappaB1 subunit p50 in common variable immunodeficiency. American Journal of Human Genetics 97 (3): 389–403.CrossRef
27.
Zurück zum Zitat Wan, H.Y., L.M. Guo, T. Liu, M. Liu, X. Li, and H. Tang. 2010. Regulation of the transcription factor NF-kappaB1 by microRNA-9 in human gastric adenocarcinoma. Molecular Cancer 9: 16.CrossRef Wan, H.Y., L.M. Guo, T. Liu, M. Liu, X. Li, and H. Tang. 2010. Regulation of the transcription factor NF-kappaB1 by microRNA-9 in human gastric adenocarcinoma. Molecular Cancer 9: 16.CrossRef
28.
Zurück zum Zitat Liu, S., S.M. Kumar, H. Lu, A. Liu, R. Yang, A. Pushparajan, W. Guo, and X. Xu. 2012. MicroRNA-9 up-regulates E-cadherin through inhibition of NF-kappaB1-Snail1 pathway in melanoma. The Journal of Pathology 226 (1): 61–72.CrossRef Liu, S., S.M. Kumar, H. Lu, A. Liu, R. Yang, A. Pushparajan, W. Guo, and X. Xu. 2012. MicroRNA-9 up-regulates E-cadherin through inhibition of NF-kappaB1-Snail1 pathway in melanoma. The Journal of Pathology 226 (1): 61–72.CrossRef
29.
Zurück zum Zitat Volpin, G., M. Cohen, M. Assaf, T. Meir, R. Katz, and S. Pollack. 2014. Cytokine levels (IL-4, IL-6, IL-8 and TGFbeta) as potential biomarkers of systemic inflammatory response in trauma patients. International Orthopaedics 38 (6): 1303–1309.CrossRef Volpin, G., M. Cohen, M. Assaf, T. Meir, R. Katz, and S. Pollack. 2014. Cytokine levels (IL-4, IL-6, IL-8 and TGFbeta) as potential biomarkers of systemic inflammatory response in trauma patients. International Orthopaedics 38 (6): 1303–1309.CrossRef
30.
Zurück zum Zitat Huang, L., Y. Tang, J. Qin, Y. Peng, Q. Yuan, F. Zhang, and L. Tao. 2012. Vasoactive intestinal peptide enhances TNF-alpha-induced IL-6 and IL-8 synthesis in human proximal renal tubular epithelial cells by NF-kappaB-dependent mechanism. Inflammation 35 (3): 1154–1160.CrossRef Huang, L., Y. Tang, J. Qin, Y. Peng, Q. Yuan, F. Zhang, and L. Tao. 2012. Vasoactive intestinal peptide enhances TNF-alpha-induced IL-6 and IL-8 synthesis in human proximal renal tubular epithelial cells by NF-kappaB-dependent mechanism. Inflammation 35 (3): 1154–1160.CrossRef
31.
Zurück zum Zitat Wang, H., T. Yang, D. Li, Y. Wu, X. Zhang, C. Pang, J. Zhang, B. Ying, T. Wang, and F. Wen. 2016. Elevated circulating PAI-1 levels are related to lung function decline, systemic inflammation, and small airway obstruction in chronic obstructive pulmonary disease. International Journal of Chronic Obstructive Pulmonary Disease 11: 2369–2376.CrossRef Wang, H., T. Yang, D. Li, Y. Wu, X. Zhang, C. Pang, J. Zhang, B. Ying, T. Wang, and F. Wen. 2016. Elevated circulating PAI-1 levels are related to lung function decline, systemic inflammation, and small airway obstruction in chronic obstructive pulmonary disease. International Journal of Chronic Obstructive Pulmonary Disease 11: 2369–2376.CrossRef
32.
Zurück zum Zitat Lee, J., W. Lee, M.A. Kim, J.S. Hwang, M. Na, and J.S. Bae. 2017. Inhibition of platelet aggregation and thrombosis by indole alkaloids isolated from the edible insect Protaetia brevitarsis seulensis (Kolbe). Journal of Cellular and Molecular Medicine 21 (6): 1217–1227.CrossRef Lee, J., W. Lee, M.A. Kim, J.S. Hwang, M. Na, and J.S. Bae. 2017. Inhibition of platelet aggregation and thrombosis by indole alkaloids isolated from the edible insect Protaetia brevitarsis seulensis (Kolbe). Journal of Cellular and Molecular Medicine 21 (6): 1217–1227.CrossRef
33.
Zurück zum Zitat Osman, A., and K. Falker. 2011. Characterization of human platelet microRNA by quantitative PCR coupled with an annotation network for predicted target genes. Platelets 22 (6): 433–441.CrossRef Osman, A., and K. Falker. 2011. Characterization of human platelet microRNA by quantitative PCR coupled with an annotation network for predicted target genes. Platelets 22 (6): 433–441.CrossRef
34.
Zurück zum Zitat Pan, Y., H. Liang, H. Liu, D. Li, X. Chen, L. Li, C.Y. Zhang, and K. Zen. 2014. Platelet-secreted microRNA-223 promotes endothelial cell apoptosis induced by advanced glycation end products via targeting the insulin-like growth factor 1 receptor. Journal of Immunology 192 (1): 437–446.CrossRef Pan, Y., H. Liang, H. Liu, D. Li, X. Chen, L. Li, C.Y. Zhang, and K. Zen. 2014. Platelet-secreted microRNA-223 promotes endothelial cell apoptosis induced by advanced glycation end products via targeting the insulin-like growth factor 1 receptor. Journal of Immunology 192 (1): 437–446.CrossRef
35.
Zurück zum Zitat Marchand, A., C. Proust, P.E. Morange, A.M. Lompre, and D.A. Tregouet. 2012. miR-421 and miR-30c inhibit SERPINE 1 gene expression in human endothelial cells. PLoS One 7 (8): e44532.CrossRef Marchand, A., C. Proust, P.E. Morange, A.M. Lompre, and D.A. Tregouet. 2012. miR-421 and miR-30c inhibit SERPINE 1 gene expression in human endothelial cells. PLoS One 7 (8): e44532.CrossRef
36.
Zurück zum Zitat Bao, C.X., D.X. Zhang, N.N. Wang, X.K. Zhu, Q. Zhao, and X.L. Sun. 2018. MicroRNA-335-5p suppresses lower extremity deep venous thrombosis by targeted inhibition of PAI-1 via the TLR4 signaling pathway. Journal of Cellular Biochemistry 119 (6): 4692–4710.CrossRef Bao, C.X., D.X. Zhang, N.N. Wang, X.K. Zhu, Q. Zhao, and X.L. Sun. 2018. MicroRNA-335-5p suppresses lower extremity deep venous thrombosis by targeted inhibition of PAI-1 via the TLR4 signaling pathway. Journal of Cellular Biochemistry 119 (6): 4692–4710.CrossRef
37.
Zurück zum Zitat Thulin, P., T. Wei, O. Werngren, L. Cheung, R.M. Fisher, D. Grander, M. Corcoran, and E. Ehrenborg. 2013. MicroRNA-9 regulates the expression of peroxisome proliferator-activated receptor delta in human monocytes during the inflammatory response. International Journal of Molecular Medicine 31 (5): 1003–1010.CrossRef Thulin, P., T. Wei, O. Werngren, L. Cheung, R.M. Fisher, D. Grander, M. Corcoran, and E. Ehrenborg. 2013. MicroRNA-9 regulates the expression of peroxisome proliferator-activated receptor delta in human monocytes during the inflammatory response. International Journal of Molecular Medicine 31 (5): 1003–1010.CrossRef
38.
Zurück zum Zitat Xu, G.L., Y.F. Du, J. Cheng, L. Huan, S.C. Chen, S.H. Wei, Z.N. Gong, et al. 2013. Inhibition of inflammatory mediators contributes to the anti-inflammatory activity of KYKZL-1 via MAPK and NF-kappaB pathway. Toxicology and Applied Pharmacology 272 (1): 221–229.CrossRef Xu, G.L., Y.F. Du, J. Cheng, L. Huan, S.C. Chen, S.H. Wei, Z.N. Gong, et al. 2013. Inhibition of inflammatory mediators contributes to the anti-inflammatory activity of KYKZL-1 via MAPK and NF-kappaB pathway. Toxicology and Applied Pharmacology 272 (1): 221–229.CrossRef
39.
Zurück zum Zitat Bazzoni, F., M. Rossato, M. Fabbri, D. Gaudiosi, M. Mirolo, L. Mori, N. Tamassia, A. Mantovani, M.A. Cassatella, and M. Locati. 2009. Induction and regulatory function of miR-9 in human monocytes and neutrophils exposed to proinflammatory signals. Proceedings of the National Academy of Sciences of the United States of America 106 (13): 5282–5287.CrossRef Bazzoni, F., M. Rossato, M. Fabbri, D. Gaudiosi, M. Mirolo, L. Mori, N. Tamassia, A. Mantovani, M.A. Cassatella, and M. Locati. 2009. Induction and regulatory function of miR-9 in human monocytes and neutrophils exposed to proinflammatory signals. Proceedings of the National Academy of Sciences of the United States of America 106 (13): 5282–5287.CrossRef
Metadaten
Titel
RETRACTED ARTICLE: Upregulated MiR-9-5p Protects Against Inflammatory Response in Rats with Deep Vein Thrombosis via Inhibition of NF-κB p50
verfasst von
Minghui Ou
Yunfeng Zhang
Shichao Cui
Shibo Zhao
Jie Tu
Publikationsdatum
28.08.2019
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 6/2019
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-019-01031-z

Weitere Artikel der Ausgabe 6/2019

Inflammation 6/2019 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Mehr Lebenszeit mit Abemaciclib bei fortgeschrittenem Brustkrebs?

24.05.2024 Mammakarzinom Nachrichten

In der MONARCHE-3-Studie lebten Frauen mit fortgeschrittenem Hormonrezeptor-positivem, HER2-negativem Brustkrebs länger, wenn sie zusätzlich zu einem nicht steroidalen Aromatasehemmer mit Abemaciclib behandelt wurden; allerdings verfehlte der numerische Zugewinn die statistische Signifikanz.

ADT zur Radiatio nach Prostatektomie: Wenn, dann wohl länger

24.05.2024 Prostatakarzinom Nachrichten

Welchen Nutzen es trägt, wenn die Strahlentherapie nach radikaler Prostatektomie um eine Androgendeprivation ergänzt wird, hat die RADICALS-HD-Studie untersucht. Nun liegen die Ergebnisse vor. Sie sprechen für länger dauernden Hormonentzug.

„Überwältigende“ Evidenz für Tripeltherapie beim metastasierten Prostata-Ca.

22.05.2024 Prostatakarzinom Nachrichten

Patienten mit metastasiertem hormonsensitivem Prostatakarzinom sollten nicht mehr mit einer alleinigen Androgendeprivationstherapie (ADT) behandelt werden, mahnt ein US-Team nach Sichtung der aktuellen Datenlage. Mit einer Tripeltherapie haben die Betroffenen offenbar die besten Überlebenschancen.

So sicher sind Tattoos: Neue Daten zur Risikobewertung

22.05.2024 Melanom Nachrichten

Das größte medizinische Problem bei Tattoos bleiben allergische Reaktionen. Melanome werden dadurch offensichtlich nicht gefördert, die Farbpigmente könnten aber andere Tumoren begünstigen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.