Skip to main content
Erschienen in: Lasers in Medical Science 8/2022

02.07.2022 | Original Article

Visualization of ex vivo rabbit olfactory mucosa and foramina with three-dimensional optical coherence tomography

verfasst von: Tiffany Thienthao Pham, Andrew Emon Heidari, Amir Aaron Hakimi, Yan Li, Cameron Michael Heilbronn, Ellen Minyoung Hong, Ji-Hun Mo, Edward Cheng-Lung Kuan, Zhongping Chen, Brian Jet-Fei Wong

Erschienen in: Lasers in Medical Science | Ausgabe 8/2022

Einloggen, um Zugang zu erhalten

Abstract

There is increasing interest in developing a minimally invasive imaging modality to safely evaluate dynamic microscopic changes of the olfactory mucosa and cribriform foramina. Herein, we utilized three-dimensional (3D) optical coherence tomography (OCT) to characterize the ex vivo stratified substructure of olfactory mucosa in rabbits and create 3D reconstructed images of olfactory foramina. Olfactory mucosa and cribriform plates from four New Zealand White rabbits were dissected and imaged using two swept-source OCT systems: (1) 1.3-µm (μm) center wavelength, 100-nm bandwidth, 200-kHz sweep rate, and (2) 1.7-μm center wavelength, 120-nm bandwidth, 90-kHz sweep rate. Volumetric OCT images were compiled to create a 3D reconstruction of the cribriform plate. The ability of OCT to distinguish the olfactory mucosa substructure and foramina was compared to histology. To estimate imaging penetration depth of each system, the first-order exponential decays of depth-resolved intensity were calculated and compared using a paired t-test. Three-dimensional OCT depicted the stratified layered structures within the olfactory mucosa correlating with histology. The epithelium and lamina propria were measured to be 32 μm and 107 μm in 1.3-μm OCT compared to 30 μm and 105 μm in histology. Olfactory foramina were visualized via 3D reconstruction. The 1.7-μm system provided greater depth penetration compared to the 1.3-μm system, allowing for improved foramina visualization. We have shown that OCT can be used to image non-pathologic olfactory mucosa and foramina. Implications for this work include diagnostic and therapeutic potentials for neurorhinological and neurodegenerative diseases.
Literatur
1.
Zurück zum Zitat Godoy MDCL, Voegels RL, Pinna FDR, Imamura R, Farfel JM (2015) Olfaction in neurologic and neurodegenerative diseases: a literature review. Int Arch Otorhinolaryngol 19:176–179PubMed Godoy MDCL, Voegels RL, Pinna FDR, Imamura R, Farfel JM (2015) Olfaction in neurologic and neurodegenerative diseases: a literature review. Int Arch Otorhinolaryngol 19:176–179PubMed
2.
Zurück zum Zitat Lanza DC, Moran DT, Doty RL, Trojanowski JQ, Lee JH, Rowley JC, Crawford D, Kennedy DW (1993) Endoscopic human olfactory biopsy technique. Laryngoscope 103:815–819PubMedCrossRef Lanza DC, Moran DT, Doty RL, Trojanowski JQ, Lee JH, Rowley JC, Crawford D, Kennedy DW (1993) Endoscopic human olfactory biopsy technique. Laryngoscope 103:815–819PubMedCrossRef
4.
Zurück zum Zitat Joseph T, Auger SD, Peress L, Rack D, Cuzick J, Giovannoni G, Lees A, Schrag AE, Noyce AJ (2019) Screening performance of abbreviated versions of the UPSIT smell test. J Neurol 266:1897–1906PubMedPubMedCentralCrossRef Joseph T, Auger SD, Peress L, Rack D, Cuzick J, Giovannoni G, Lees A, Schrag AE, Noyce AJ (2019) Screening performance of abbreviated versions of the UPSIT smell test. J Neurol 266:1897–1906PubMedPubMedCentralCrossRef
5.
Zurück zum Zitat Doty RL (2012) Olfaction in Parkinson’s disease and related disorders. Neurobiol Dis 46:527–552PubMedCrossRef Doty RL (2012) Olfaction in Parkinson’s disease and related disorders. Neurobiol Dis 46:527–552PubMedCrossRef
6.
Zurück zum Zitat Ross GW, Petrovitch H, Abbott RD, Tanner CM, Popper J, Masaki K, Launer L, White LR (2008) Association of olfactory dysfunction with risk for future Parkinson’s disease. Ann Neurol 63:167–173PubMedCrossRef Ross GW, Petrovitch H, Abbott RD, Tanner CM, Popper J, Masaki K, Launer L, White LR (2008) Association of olfactory dysfunction with risk for future Parkinson’s disease. Ann Neurol 63:167–173PubMedCrossRef
8.
Zurück zum Zitat Lee JH, Goedert M, Hill WD, Lee VM, Trojanowski JQ (1993) Tau proteins are abnormally expressed in olfactory epithelium of Alzheimer patients and developmentally regulated in human fetal spinal cord. Exp Neurol 121:93–105PubMedCrossRef Lee JH, Goedert M, Hill WD, Lee VM, Trojanowski JQ (1993) Tau proteins are abnormally expressed in olfactory epithelium of Alzheimer patients and developmentally regulated in human fetal spinal cord. Exp Neurol 121:93–105PubMedCrossRef
9.
Zurück zum Zitat Trojanowski JQ, Newman PD, Hill WD, Lee VM (1991) Human olfactory epithelium in normal aging, Alzheimer’s disease, and other neurodegenerative disorders. J Comp Neurol 310:365–376PubMedCrossRef Trojanowski JQ, Newman PD, Hill WD, Lee VM (1991) Human olfactory epithelium in normal aging, Alzheimer’s disease, and other neurodegenerative disorders. J Comp Neurol 310:365–376PubMedCrossRef
10.
Zurück zum Zitat Crino PB, Greenberg B, Martin JA, Lee VM, Hill WD, Trojanowski JQ (1995) β-amyloid peptide and amyloid precursor proteins in olfactory mucosa of patients with Alzheimer’s disease, Parkinson’s disease, and Down syndrome. Ann Otol Rhinol Laryngol 104:655–661PubMedCrossRef Crino PB, Greenberg B, Martin JA, Lee VM, Hill WD, Trojanowski JQ (1995) β-amyloid peptide and amyloid precursor proteins in olfactory mucosa of patients with Alzheimer’s disease, Parkinson’s disease, and Down syndrome. Ann Otol Rhinol Laryngol 104:655–661PubMedCrossRef
11.
Zurück zum Zitat Holbrook EH, Leopold DA, Schwob JE (2005) Abnormalities of axon growth in human olfactory mucosa. Laryngoscope 115:2144–2154PubMedCrossRef Holbrook EH, Leopold DA, Schwob JE (2005) Abnormalities of axon growth in human olfactory mucosa. Laryngoscope 115:2144–2154PubMedCrossRef
12.
Zurück zum Zitat Paik SI, Lehman MN, Seiden AM, Duncan HJ, Smith DV (1992) Human olfactory biopsy: the influence of age and receptor distribution. Arch Otolaryngol Neck Surg 118:731–738CrossRef Paik SI, Lehman MN, Seiden AM, Duncan HJ, Smith DV (1992) Human olfactory biopsy: the influence of age and receptor distribution. Arch Otolaryngol Neck Surg 118:731–738CrossRef
13.
Zurück zum Zitat Lane AP, Gomez G, Dankulich T, Wang H, Bolger WE, Rawson NE (2002) The superior turbinate as a source of functional human olfactory receptor neurons. Laryngoscope 112:1183–1189PubMedCrossRef Lane AP, Gomez G, Dankulich T, Wang H, Bolger WE, Rawson NE (2002) The superior turbinate as a source of functional human olfactory receptor neurons. Laryngoscope 112:1183–1189PubMedCrossRef
14.
Zurück zum Zitat Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA, Fujimoto JG (1991) Optical coherence tomography. Science 254:11783–21181CrossRef Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA, Fujimoto JG (1991) Optical coherence tomography. Science 254:11783–21181CrossRef
15.
Zurück zum Zitat Chiu SC, Hung HS, Lin SZ, Chiang E, Liu DD (2009) Therapeutic potential of olfactory ensheathing cells in neurodegenerative diseases. J Mol Med 87:1179–1189PubMedCrossRef Chiu SC, Hung HS, Lin SZ, Chiang E, Liu DD (2009) Therapeutic potential of olfactory ensheathing cells in neurodegenerative diseases. J Mol Med 87:1179–1189PubMedCrossRef
16.
Zurück zum Zitat Mackay-Sim A, Féron F, Cochrane J, Bassingthwaighte L, Bayliss C, Davies W, Fronek P, Gray C, Kerr G, Licina P, Nowitzke A, Perry C, Silburn PAS, Urquhart S, Geraghty T (2008) Autologous olfactory ensheathing cell transplantation in human paraplegia: A 3-year clinical trial. Brain 131:2376–2386PubMedPubMedCentralCrossRef Mackay-Sim A, Féron F, Cochrane J, Bassingthwaighte L, Bayliss C, Davies W, Fronek P, Gray C, Kerr G, Licina P, Nowitzke A, Perry C, Silburn PAS, Urquhart S, Geraghty T (2008) Autologous olfactory ensheathing cell transplantation in human paraplegia: A 3-year clinical trial. Brain 131:2376–2386PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Lima C, Pratas-Vital J, Escada P, Hasse-Ferreira A, Capucho C, Peduzzi JD (2006) Olfactory mucosa autografts in human spinal cord injury: a pilot clinical study. J Spinal Cord Med 29:191–203PubMedPubMedCentralCrossRef Lima C, Pratas-Vital J, Escada P, Hasse-Ferreira A, Capucho C, Peduzzi JD (2006) Olfactory mucosa autografts in human spinal cord injury: a pilot clinical study. J Spinal Cord Med 29:191–203PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Murrell W, Wetzig A, Donnellan M, Féron F, Burne T, Meedeniya A, Kesby J, Bianco J, Perry C, Silburn P, Mackay-Sim A (2008) Olfactory mucosa is a potential source for autologous stem cell therapy for Parkinson’s disease. Stem Cells 26:2183–2192PubMedCrossRef Murrell W, Wetzig A, Donnellan M, Féron F, Burne T, Meedeniya A, Kesby J, Bianco J, Perry C, Silburn P, Mackay-Sim A (2008) Olfactory mucosa is a potential source for autologous stem cell therapy for Parkinson’s disease. Stem Cells 26:2183–2192PubMedCrossRef
19.
Zurück zum Zitat Pereira ME, Macri NP, Creasy DM (2011) Evaluation of the rabbit nasal cavity in inhalation studies and a comparison with other common laboratory species and man. Toxicol Pathol 39:893–900PubMedCrossRef Pereira ME, Macri NP, Creasy DM (2011) Evaluation of the rabbit nasal cavity in inhalation studies and a comparison with other common laboratory species and man. Toxicol Pathol 39:893–900PubMedCrossRef
20.
Zurück zum Zitat Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682PubMedCrossRef Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682PubMedCrossRef
21.
Zurück zum Zitat Rolls G (2011) Difficult blocks and reprocessing. Leica Microsyst 9:1–108 Rolls G (2011) Difficult blocks and reprocessing. Leica Microsyst 9:1–108
22.
Zurück zum Zitat Camacho S, Ostos-Garrido MV, Domezain A, Carmona R (2010) Study of the olfactory epithelium in the developing sturgeon. Characterization of the crypt cells. Chem Senses 35:147–156PubMedCrossRef Camacho S, Ostos-Garrido MV, Domezain A, Carmona R (2010) Study of the olfactory epithelium in the developing sturgeon. Characterization of the crypt cells. Chem Senses 35:147–156PubMedCrossRef
23.
Zurück zum Zitat De Rezende PF, Ctenas B, Weber R, Saldiva PH, Voegels RL (2013) Olfactory neuroepithelium in the superior and middle turbinates: which is the optimal biopsy site? Int Arch Otorhinolaryngol 17:131–138 De Rezende PF, Ctenas B, Weber R, Saldiva PH, Voegels RL (2013) Olfactory neuroepithelium in the superior and middle turbinates: which is the optimal biopsy site? Int Arch Otorhinolaryngol 17:131–138
24.
Zurück zum Zitat Graziadei PP, Graziadei GA (1979) Neurogenesis and neuron regeneration in the olfactory system of mammals. I. Morphological aspects of differentiation and structural organization of the olfactory sensory neurons. J Neurocytol 8:1–18PubMedCrossRef Graziadei PP, Graziadei GA (1979) Neurogenesis and neuron regeneration in the olfactory system of mammals. I. Morphological aspects of differentiation and structural organization of the olfactory sensory neurons. J Neurocytol 8:1–18PubMedCrossRef
25.
Zurück zum Zitat Boesveldt S, Postma EM, Boak D, Welge-Luessen A, Schöpf V, Mainland JD, Martens J, Ngai J, Duffy VB (2017) Anosmia-A clinical review. Chem Senses 42:513–523PubMedPubMedCentralCrossRef Boesveldt S, Postma EM, Boak D, Welge-Luessen A, Schöpf V, Mainland JD, Martens J, Ngai J, Duffy VB (2017) Anosmia-A clinical review. Chem Senses 42:513–523PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Drexler W, Fujimoto JG (2015) Optical coherence tomography: technology and applications, 2nd edn. Switzerland Drexler W, Fujimoto JG (2015) Optical coherence tomography: technology and applications, 2nd edn. Switzerland
28.
29.
Zurück zum Zitat Welzel J (2001) Optical coherence tomography in dermatology: a review. Ski Res Technol 7:1–9CrossRef Welzel J (2001) Optical coherence tomography in dermatology: a review. Ski Res Technol 7:1–9CrossRef
30.
Zurück zum Zitat Mahmood U, Ridgway J, Jackson R, Guo S, Su J, Armstrong W, Shibuya T, Crumley R, Chen Z, Wong B (2006) In vivo optical coherence tomography of the nasal mucosa. Am J Rhinol 20:155–159PubMedCrossRef Mahmood U, Ridgway J, Jackson R, Guo S, Su J, Armstrong W, Shibuya T, Crumley R, Chen Z, Wong B (2006) In vivo optical coherence tomography of the nasal mucosa. Am J Rhinol 20:155–159PubMedCrossRef
31.
Zurück zum Zitat Ueda T, Sakamoto T, Kobayashi M, Kuwata F, Ishikawa M, Omori K, Nakagawa T (2019) Optical coherence tomography for observation of the olfactory epithelium in mice. Auris Nasus Larynx 46:230–237PubMedCrossRef Ueda T, Sakamoto T, Kobayashi M, Kuwata F, Ishikawa M, Omori K, Nakagawa T (2019) Optical coherence tomography for observation of the olfactory epithelium in mice. Auris Nasus Larynx 46:230–237PubMedCrossRef
32.
Zurück zum Zitat Girerd C, Lihoreau T, Rabenorosoa K, Tamadazte B, Benassarou M, Tavernier L, Pazart L, Haffen E, Andreff N, Renaud P (2018) In vivo inspection of the olfactory epithelium: feasibility of robotized optical biopsy. Ann Biomed Eng 46:1951–1961PubMedCrossRef Girerd C, Lihoreau T, Rabenorosoa K, Tamadazte B, Benassarou M, Tavernier L, Pazart L, Haffen E, Andreff N, Renaud P (2018) In vivo inspection of the olfactory epithelium: feasibility of robotized optical biopsy. Ann Biomed Eng 46:1951–1961PubMedCrossRef
33.
Zurück zum Zitat Farneti P, Riboldi A, Sciarretta V, Piccin O, Tarchini P, Pasquini E (2017) Usefulness of three-dimensional computed tomographic anatomy in endoscopic frontal recess surgery. Surg Radiol Anat 39:161–168PubMedCrossRef Farneti P, Riboldi A, Sciarretta V, Piccin O, Tarchini P, Pasquini E (2017) Usefulness of three-dimensional computed tomographic anatomy in endoscopic frontal recess surgery. Surg Radiol Anat 39:161–168PubMedCrossRef
34.
Zurück zum Zitat Bird DJ, Amirkhanian A, Pang B, Van Valkenburgh B (2014) Quantifying the cribriform plate: influences of allometry, function, and phylogeny in carnivora. Anat Rec 297:2080–2092CrossRef Bird DJ, Amirkhanian A, Pang B, Van Valkenburgh B (2014) Quantifying the cribriform plate: influences of allometry, function, and phylogeny in carnivora. Anat Rec 297:2080–2092CrossRef
35.
Zurück zum Zitat Miyake MM, Bleier BS (2015) Bypassing the blood–brian barrier using established skull base reconstruction techniques. World J Otorhinolaryngol Neck Surg 1:11–16CrossRef Miyake MM, Bleier BS (2015) Bypassing the blood–brian barrier using established skull base reconstruction techniques. World J Otorhinolaryngol Neck Surg 1:11–16CrossRef
36.
Zurück zum Zitat Dhuria SV, Hanson LR, Frey WH (2010) Intranasal delivery to the central nervous system: mechanisms and experimental considerations. J Pharm Sci 99:1654–1673PubMedCrossRef Dhuria SV, Hanson LR, Frey WH (2010) Intranasal delivery to the central nervous system: mechanisms and experimental considerations. J Pharm Sci 99:1654–1673PubMedCrossRef
37.
Zurück zum Zitat Li Y, Jing J, Heidari E, Zhu J, Qu Y, Chen Z (2017) Intravascular optical coherence tomography for characterization of atherosclerosis with a 1.7 micron swept-source laser. Sci Rep 7:14525 Li Y, Jing J, Heidari E, Zhu J, Qu Y, Chen Z (2017) Intravascular optical coherence tomography for characterization of atherosclerosis with a 1.7 micron swept-source laser. Sci Rep 7:14525
38.
Zurück zum Zitat Pham TT, Chen L, Heidari AE, Chen JJ, Zhukhovitskaya A, Li Y, Patel U, Chen Z, Wong BJF (2019) Computational analysis of six optical coherence tomography systems for vocal fold imaging: a comparison study. Lasers Surg Med. https://doi.org/10.1001/lsm.23060 Pham TT, Chen L, Heidari AE, Chen JJ, Zhukhovitskaya A, Li Y, Patel U, Chen Z, Wong BJF (2019) Computational analysis of six optical coherence tomography systems for vocal fold imaging: a comparison study. Lasers Surg Med. https://​doi.​org/​10.​1001/​lsm.​23060
39.
Zurück zum Zitat Li Y, Sudol NT, Miao Y, Jing JC, Zhu J, Lane F, Chen Z (2019) 1.7 micron optical coherence tomography for vaginal tissue characterization in vivo. Lasers Surg Med 51:120–126PubMedCrossRef Li Y, Sudol NT, Miao Y, Jing JC, Zhu J, Lane F, Chen Z (2019) 1.7 micron optical coherence tomography for vaginal tissue characterization in vivo. Lasers Surg Med 51:120–126PubMedCrossRef
40.
Zurück zum Zitat Lin JL, Yau AY, Boyd J, Hamamoto A, Su E, Tracey L, Heidari AE, Wang AH, Ahuja G, Chen Z, Wong BJ (2013) Real-time subglottic stenosis imaging using optical coherence tomography in the rabbit. JAMA Otolaryngol Head Neck Surg 139:502–509PubMedPubMedCentralCrossRef Lin JL, Yau AY, Boyd J, Hamamoto A, Su E, Tracey L, Heidari AE, Wang AH, Ahuja G, Chen Z, Wong BJ (2013) Real-time subglottic stenosis imaging using optical coherence tomography in the rabbit. JAMA Otolaryngol Head Neck Surg 139:502–509PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Liu G, Rubinstein M, Saidi A, Qi W, Foulad A, Wong B, Chen Z (2011) Imaging vibrating vocal folds with a high speed 1050 nm swept source OCT and ODT. Opt Express 19:11880–11889PubMedPubMedCentralCrossRef Liu G, Rubinstein M, Saidi A, Qi W, Foulad A, Wong B, Chen Z (2011) Imaging vibrating vocal folds with a high speed 1050 nm swept source OCT and ODT. Opt Express 19:11880–11889PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Tang S, Jung W, McCormick D, Xie T, Su J, Ahn Y-C, Tromberg BJ, Chen Z (2009) Design and implementation of fiber-based multiphoton endoscopy with microelectromechanical systems scanning. J Biomed Opt 14:034005PubMedCrossRef Tang S, Jung W, McCormick D, Xie T, Su J, Ahn Y-C, Tromberg BJ, Chen Z (2009) Design and implementation of fiber-based multiphoton endoscopy with microelectromechanical systems scanning. J Biomed Opt 14:034005PubMedCrossRef
43.
Zurück zum Zitat Jung W, Tang S, McCormic DT, Xie T, Ahn Y-C, Su J, Tomov IV, Krasieva TB, Tromberg BJ, Chen Z (2008) Miniaturized probe based on a microelectromechanical system mirror for multiphoton microscopy. Opt Lett 33:1324–1326PubMedPubMedCentralCrossRef Jung W, Tang S, McCormic DT, Xie T, Ahn Y-C, Su J, Tomov IV, Krasieva TB, Tromberg BJ, Chen Z (2008) Miniaturized probe based on a microelectromechanical system mirror for multiphoton microscopy. Opt Lett 33:1324–1326PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Miao Y, Brenner M, Chen Z (2019) Endoscopic optical coherence tomography for assessing inhalation airway injury: a technical review. Otolaryngol (Sunnyvale) 9:366 Miao Y, Brenner M, Chen Z (2019) Endoscopic optical coherence tomography for assessing inhalation airway injury: a technical review. Otolaryngol (Sunnyvale) 9:366
Metadaten
Titel
Visualization of ex vivo rabbit olfactory mucosa and foramina with three-dimensional optical coherence tomography
verfasst von
Tiffany Thienthao Pham
Andrew Emon Heidari
Amir Aaron Hakimi
Yan Li
Cameron Michael Heilbronn
Ellen Minyoung Hong
Ji-Hun Mo
Edward Cheng-Lung Kuan
Zhongping Chen
Brian Jet-Fei Wong
Publikationsdatum
02.07.2022
Verlag
Springer London
Erschienen in
Lasers in Medical Science / Ausgabe 8/2022
Print ISSN: 0268-8921
Elektronische ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-022-03598-w

Weitere Artikel der Ausgabe 8/2022

Lasers in Medical Science 8/2022 Zur Ausgabe