Key findings
There are four key findings from this study. First, results from Jilin City where both mainstream and special school data were available revealed a similar prevalence of autism in China to the West, at around 1% [
24‐
27]. Second, in Shenzhen and Jiamusi cities, where only mainstream data were available, prevalence is also in line with Western estimates [
9,
26]. Third, in all three cities, new cases of autism were identified by the study in mainstream schools, reflecting current under-diagnosis. Finally, non-significant variation across different cities is seen indicating the need to explore potential variation of autism across diverse Chinese regions with large sample sizes to achieve a fully robust national picture.
The prevalence estimate in mainstream schools in Jilin was 14.6 per 10,000. In Shenzhen, it was 42.3 per 10,000 and 19.0 per 10,000 in Jiamusi. In Jilin, where prevalence included those children with autism identified from special education and other settings outside mainstream population, the prevalence estimate was 108 per 10,000.
Strengths
The strengths of this first large-scale study of autism in China are several. We used a total population approach covering all services in one city and mainstream schools in the other two. The response rate was high, much higher than has ever been achieved in the West. We used internationally agreed standardised screening and diagnostic instruments in all three cities. This included a Mandarin Chinese version of the CAST that has previously been shown to have acceptable validity in a Chinese population [
21]. The Western-developed diagnostic instruments ADI-R and ADOS were used in combination with clinical diagnosis by Chinese child psychiatrists and were confirmed to be acceptable within a Chinese clinical setting, finding that these produce similar prevalence estimates across both Western and Asian cultures.
After screening (step 1), this study used local child psychiatrists as an additional selection step (step 2) prior to being followed up with research diagnostic assessments (step 3) which is a modification from previous prospective epidemiological studies in other countries, reducing the volume of false positives which otherwise may be experienced in such studies [
3,
4,
6,
26]. The population size covered by the sampling in each of the three cities was large and included both screen-positives, screen-borderline, and screen-negatives in all three score groups for diagnostic assessments. Finally, our analytical methods took this staged study design into account, along with drop out between the stages, in our estimation of confidence intervals.
Limitations
Despite these strengths, there are several limitations. First, according to the recruitment criteria, the sample for the cities was representative for the local region but is not yet nationally representative of China; hence, the hope for the China SCORE project is to map autism prevalence in 10 cities in total. It is important for national policy to report data from these first three cities, and our on-going data collection in the seven other cities will serve to further inform national policy and future research directions. The impact of differences in the three regions is difficult to establish given considerable variation in economic status and demographic characteristics for the three regions.
In Shenzhen and Jiamusi cities, not all of the schools took part in this study. Non-participation is not unusual in any epidemiological studies, particularly those addressing neuropsychiatric disorders. The influence of non-participation in epidemiological studies of autism has been discussed [
28,
29], especially those with low participation rates. As participation has to be voluntary under ethical codes, the participation of each local government relies on an existing collaboration. It is not uncommon that some communities will not wish to take part. In addition, individual and family participation is subject to the usual human research ethical codes and participation is voluntary. The participation rate of the communities in this study is much higher than most of the prevalence studies of autism internationally. Although there will be non-participation effects, these will be much less marked than those experienced by other such studies.
The use of both DSM-IV-TR and DSM-5 may lead to concerns about the differences in prevalence across regions as differences between the DSM-IV-TR and the DSM-5 exist. The DSM-5 has not been fully adopted in most clinical settings in China; therefore, the DSM-IV-TR criteria were also used in this study. The reasons for this were two-fold. First, to ensure there was consistency among child psychiatrists across the regions, and second, to ensure comparability between existing diagnosed children and newly diagnosed children. The Chinese DSM-5 was also provided to each psychiatrist to assist the diagnostic process. Children who were suspected to have autism according to either DSM-IV-TR or DSM-5 criteria were invited for a research assessment using the ADOS and the ADI-R. Thus, the potential impact due to differences between the DSM-IV-TR and the DSM-5 in this study should be minimised.
Missed diagnoses by child psychiatrists during clinical assessments serve to lower prevalence estimates. In the current study, we reduced the likelihood of this happening by developing a diagnostic agreement test that could be used by all psychiatrists in all participating regions. Psychiatrists recommended by CDPF only joined the final clinical assessment team if s/he achieved a diagnostic agreement of 80% or above. Thus, the final prevalence estimate should not be compromised by changes in personnel between the clinical diagnosis and the research diagnosis.
There could be variations in the inclusion of children with autism in mainstream schools that may have influenced prevalence estimates across the three cities. To date, there has been no unified healthcare system and health insurance policy in Mainland China for autism [
9]. The current education inclusion policy only recommends mainstream schools to include children with disabilities, but this is not mandatory [
9,
30]. In three cities, the participation rates of local schools during the screening and diagnostic phases were different. This could be explained by a number of issues. First, recognition and awareness of autism within the mainstream population in the three cities may be different. Data from the non-responders suggested that in Shenzhen, which is a more advanced city where awareness and understanding about autism might be higher, the mothers educated to a higher level were more likely to participate. In contrast, in Jiamusi city where the economic status was relatively lower, awareness about autism might be lower, and therefore parents educated to a higher level and those with higher socioeconomic status were less likely to participate.
Second, involvement and support from the local government for this study was different in each city. Third, participation in the study is voluntary, so the willingness of the parents to participate may be different. The attitude of the parents towards incentives could be different. There have been studies focusing on the potential selection bias in prevalence studies of autism [
28,
29]. Parental denial about autism may also contribute to differences in participation rates. It is possible that when parents realised that their child might have more difficulties than other children, they were less likely to participate. Thus, in both Shenzhen and Jiamusi cities, children who scored in the high score group were less likely to participate than those in the borderline score group. These factors might lead to a higher prevalence of autism in more advanced cities such as Shenzhen city and a lower prevalence in less developed cities such as Jiamusi city.
Another limitation of this study was that there was no information available concerning the prevalence of autism in special education in Shenzhen and Jiamusi cities. The goal of the study was to report the prevalence of autism in a previously neglected population, i.e., the mainstream school population. In China, most of the previously identified cases of autism are children with severe autism, including those with intellectual disability. To date, nearly all of the prevalence studies of autism in China have been carried out in special education settings but not in mainstream settings [
8,
9]. In contrast to developed countries, most children with moderate to severe autism in China do not attend mainstream schools. They would not be admitted during the application process for kindergartens and primary schools [
9,
30].
Children with autism who do not have intellectual disability are more likely be identified and given a diagnosis of autism in developed countries than in China [
30,
31]. This is one of the reasons why previous prevalence estimates were much lower than those from the developed countries. In 2015, we reported our pilot study in two mainstream schools in Beijing which showed there were children with autism in mainstream schools. The prevalence in those two schools was 119 per 10,000 [
14]. The current study was carried out in a large mainstream population in those three cities.