Skip to main content
Erschienen in: Clinical Reviews in Bone and Mineral Metabolism 1/2019

10.01.2019 | Review Paper

Fourier Transform Infrared Spectroscopy of Bone Tissue: Bone Quality Assessment in Preclinical and Clinical Applications of Osteoporosis and Fragility Fracture

verfasst von: Nikolaos Kourkoumelis, Xianzuo Zhang, Zeming Lin, Jian Wang

Erschienen in: Clinical & Translational Metabolism | Ausgabe 1/2019

Einloggen, um Zugang zu erhalten

Abstract

The pathogenesis of bone fragility is of utmost importance especially to modern societies with aging populations. Increased skeletal fragility due to aging and disease motivates researchers to investigate the contributing biological mechanisms and to find ways to inhibit them. Bone quality is a set of structural and compositional variables that contribute to bone strength and influence its ability to resist fracture. They originate from multiple bone hierarchical levels and include the morphology (mass distribution), the chemical composition, and the biomechanical properties of bone tissue such as stiffness, fatigue strength, and fracture toughness. Qualitative and quantitative measurements of bone material properties reflect the underlying health or disease status. Fourier transform infrared (FTIR) spectroscopy and imaging are able to evaluate spatially inhomogeneous structures like bone in the form of sections or homogenized powder, providing simultaneous quantitative and qualitative information from both organic and inorganic tissue components. These techniques give a snapshot of structural and material properties that essentially depend on bone turnover while they are also sensitive to tissue alterations due to metabolic and nonmetabolic diseases, and external factors like administration of drugs. In this review, we discuss the application of FTIR spectroscopy and imaging to preclinical and clinical studies. The interpretation of results emphasizes the potential of infrared spectroscopic techniques to associate bone heterogeneity with fracture risk, assess the compositional and structural properties of osteoporotic bone, and investigate bisphosphonates’ antiresorptive action and side effects.
Literatur
1.
Zurück zum Zitat Rabar S, Lau R, O’Flynn N, Li L, Barry P. Risk assessment of fragility fractures: summary of NICE guidance. BMJ. 2012;345(aug08 1):e3698.CrossRefPubMed Rabar S, Lau R, O’Flynn N, Li L, Barry P. Risk assessment of fragility fractures: summary of NICE guidance. BMJ. 2012;345(aug08 1):e3698.CrossRefPubMed
2.
Zurück zum Zitat Mccreadie BR, Goldstein SA. Biomechanics of fracture: is bone mineral density sufficient to assess risk? J Bone Miner Res. 2000;15(12):2305–8.CrossRefPubMed Mccreadie BR, Goldstein SA. Biomechanics of fracture: is bone mineral density sufficient to assess risk? J Bone Miner Res. 2000;15(12):2305–8.CrossRefPubMed
3.
Zurück zum Zitat Patel AA, Ramanathan R, Kuban J, Willis MH. Imaging findings and evaluation of metabolic bone disease. Adv Radiol. 2015;2015:812794.CrossRef Patel AA, Ramanathan R, Kuban J, Willis MH. Imaging findings and evaluation of metabolic bone disease. Adv Radiol. 2015;2015:812794.CrossRef
4.
Zurück zum Zitat Talari AC, Martinez MA, Movasaghi Z, Rehman S, Rehman IU. Advances in Fourier transform infrared (FTIR) spectroscopy of biological tissues. Appl Spectrosc Rev. 2017;52(5):456–506.CrossRef Talari AC, Martinez MA, Movasaghi Z, Rehman S, Rehman IU. Advances in Fourier transform infrared (FTIR) spectroscopy of biological tissues. Appl Spectrosc Rev. 2017;52(5):456–506.CrossRef
5.
Zurück zum Zitat Old OJ, Fullwood LM, Scott R, Lloyd GR, Almond LM, Shepherd NA, et al. Vibrational spectroscopy for cancer diagnostics. Anal Methods. 2014;6(12):3901–17.CrossRef Old OJ, Fullwood LM, Scott R, Lloyd GR, Almond LM, Shepherd NA, et al. Vibrational spectroscopy for cancer diagnostics. Anal Methods. 2014;6(12):3901–17.CrossRef
6.
7.
Zurück zum Zitat Liu Y, Luo D, Wang T. Hierarchical structures of bone and bioinspired bone tissue engineering. Small. 2016;12(34):4611–32.CrossRefPubMed Liu Y, Luo D, Wang T. Hierarchical structures of bone and bioinspired bone tissue engineering. Small. 2016;12(34):4611–32.CrossRefPubMed
8.
Zurück zum Zitat Wegst UG, Bai H, Saiz E, Tomsia AP, Ritchie RO. Bioinspired structural materials. Nat Mater. 2015;14(1):23–36.CrossRefPubMed Wegst UG, Bai H, Saiz E, Tomsia AP, Ritchie RO. Bioinspired structural materials. Nat Mater. 2015;14(1):23–36.CrossRefPubMed
9.
Zurück zum Zitat Sabet FA, Najafi AR, Hamed E, Jasiuk I. Modelling of bone fracture and strength at different length scales: a review. Interface Focus. 2016;6(1):20150055.CrossRefPubMedPubMedCentral Sabet FA, Najafi AR, Hamed E, Jasiuk I. Modelling of bone fracture and strength at different length scales: a review. Interface Focus. 2016;6(1):20150055.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Milovanovic P, Potocnik J, Stoiljkovic M, Djonic D, Nikolic S, Neskovic O, et al. Nanostructure and mineral composition of trabecular bone in the lateral femoral neck: implications for bone fragility in elderly women. Acta Biomater. 2011;7(9):3446–51.CrossRefPubMed Milovanovic P, Potocnik J, Stoiljkovic M, Djonic D, Nikolic S, Neskovic O, et al. Nanostructure and mineral composition of trabecular bone in the lateral femoral neck: implications for bone fragility in elderly women. Acta Biomater. 2011;7(9):3446–51.CrossRefPubMed
11.
Zurück zum Zitat van der Harst MR, Brama PA, van de Lest CH, Kiers GH, DeGroot J, van Weeren PR. An integral biochemical analysis of the main constituents of articular cartilage, subchondral and trabecular bone. Osteoarthr Cartil. 2004;12(9):752–61.CrossRef van der Harst MR, Brama PA, van de Lest CH, Kiers GH, DeGroot J, van Weeren PR. An integral biochemical analysis of the main constituents of articular cartilage, subchondral and trabecular bone. Osteoarthr Cartil. 2004;12(9):752–61.CrossRef
12.
Zurück zum Zitat Kourkoumelis N. Osteoporosis and strontium-substituted hydroxyapatites. Ann Transl Med. 2016;4:1.CrossRef Kourkoumelis N. Osteoporosis and strontium-substituted hydroxyapatites. Ann Transl Med. 2016;4:1.CrossRef
13.
Zurück zum Zitat Chai YC, Carlier A, Bolander J, Roberts SJ, Geris L, Schrooten J, et al. Current views on calcium phosphate osteogenicity and the translation into effective bone regeneration strategies. Acta Biomater. 2012;8(11):3876–87.CrossRefPubMed Chai YC, Carlier A, Bolander J, Roberts SJ, Geris L, Schrooten J, et al. Current views on calcium phosphate osteogenicity and the translation into effective bone regeneration strategies. Acta Biomater. 2012;8(11):3876–87.CrossRefPubMed
14.
15.
Zurück zum Zitat Baig AA, Fox JL, Young RA, Wang Z, Hsu J, Higuchi WI, et al. Relationships among carbonated apatite solubility, crystallite size, and microstrain parameters. Calcif Tissue Int. 1999;64(5):437–49.CrossRefPubMed Baig AA, Fox JL, Young RA, Wang Z, Hsu J, Higuchi WI, et al. Relationships among carbonated apatite solubility, crystallite size, and microstrain parameters. Calcif Tissue Int. 1999;64(5):437–49.CrossRefPubMed
16.
Zurück zum Zitat Milovanovic P, Potocnik J, Djonic D, Nikolic S, Zivkovic V, Djuric M, et al. Age-related deterioration in trabecular bone mechanical properties at material level: nanoindentation study of the femoral neck in women by using AFM. Exp Gerontol. 2012;47(2):154–9.CrossRefPubMed Milovanovic P, Potocnik J, Djonic D, Nikolic S, Zivkovic V, Djuric M, et al. Age-related deterioration in trabecular bone mechanical properties at material level: nanoindentation study of the femoral neck in women by using AFM. Exp Gerontol. 2012;47(2):154–9.CrossRefPubMed
17.
Zurück zum Zitat Miller LM, Little W, Schirmer A, Sheik F, Busa B, Judex S. Accretion of bone quantity and quality in the developing mouse skeleton. J Bone Miner Res. 2007;22(7):1037–45.CrossRefPubMed Miller LM, Little W, Schirmer A, Sheik F, Busa B, Judex S. Accretion of bone quantity and quality in the developing mouse skeleton. J Bone Miner Res. 2007;22(7):1037–45.CrossRefPubMed
18.
Zurück zum Zitat Belbachir K, Noreen R, Gouspillou G, Petibois C. Collagen types analysis and differentiation by FTIR spectroscopy. Anal Bioanal Chem. 2009;395(3):829–37.CrossRefPubMed Belbachir K, Noreen R, Gouspillou G, Petibois C. Collagen types analysis and differentiation by FTIR spectroscopy. Anal Bioanal Chem. 2009;395(3):829–37.CrossRefPubMed
19.
Zurück zum Zitat Yamauchi M. Collagen: the major matrix molecule in mineralized tissues. In: Anderson JJB, Garner SC, editors. Calcium and phosphorus in health and disease. NY: CRC Press; 1996. Yamauchi M. Collagen: the major matrix molecule in mineralized tissues. In: Anderson JJB, Garner SC, editors. Calcium and phosphorus in health and disease. NY: CRC Press; 1996.
20.
Zurück zum Zitat Chappard D, Baslé MF, Legrand E, Audran M. New laboratory tools in the assessment of bone quality. Osteoporos Int. 2011;22(8):2225–40.CrossRefPubMed Chappard D, Baslé MF, Legrand E, Audran M. New laboratory tools in the assessment of bone quality. Osteoporos Int. 2011;22(8):2225–40.CrossRefPubMed
21.
Zurück zum Zitat Landis WJ, Silver FH. Mineral deposition in the extracellular matrices of vertebrate tissues: identification of possible apatite nucleation sites on type I collagen. Cells Tissues Organs. 2009;189(1–4):20–4.CrossRefPubMed Landis WJ, Silver FH. Mineral deposition in the extracellular matrices of vertebrate tissues: identification of possible apatite nucleation sites on type I collagen. Cells Tissues Organs. 2009;189(1–4):20–4.CrossRefPubMed
22.
Zurück zum Zitat Boskey AL. Matrix proteins and mineralization: an overview. Connect Tissue Res. 1996;35(1–4):357–63.CrossRefPubMed Boskey AL. Matrix proteins and mineralization: an overview. Connect Tissue Res. 1996;35(1–4):357–63.CrossRefPubMed
23.
Zurück zum Zitat Young MF. Bone matrix proteins: their function, regulation, and relationship to osteoporosis. Osteoporos Int. 2003;14(3):35–42.CrossRef Young MF. Bone matrix proteins: their function, regulation, and relationship to osteoporosis. Osteoporos Int. 2003;14(3):35–42.CrossRef
24.
Zurück zum Zitat Kourkoumelis N, Tzaphlidou M. Spectroscopic assessment of normal cortical bone: differences in relation to bone site and sex. Sci World J. 2010;10:402–12.CrossRef Kourkoumelis N, Tzaphlidou M. Spectroscopic assessment of normal cortical bone: differences in relation to bone site and sex. Sci World J. 2010;10:402–12.CrossRef
25.
Zurück zum Zitat Hunt HB, Donnelly E. Bone quality assessment techniques: geometric, compositional, and mechanical characterization from macroscale to nanoscale. Clin Rev Bone Miner Metab. 2016;14(3):133–49.CrossRefPubMedPubMedCentral Hunt HB, Donnelly E. Bone quality assessment techniques: geometric, compositional, and mechanical characterization from macroscale to nanoscale. Clin Rev Bone Miner Metab. 2016;14(3):133–49.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Small RE. Uses and limitations of bone mineral density measurements in the management of osteoporosis. Medscape Gen Med. 2005;7(2):3. Small RE. Uses and limitations of bone mineral density measurements in the management of osteoporosis. Medscape Gen Med. 2005;7(2):3.
27.
Zurück zum Zitat Kanis JA. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. Osteoporos Int. 1994;4(6):368–81.CrossRefPubMed Kanis JA. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. Osteoporos Int. 1994;4(6):368–81.CrossRefPubMed
28.
Zurück zum Zitat Schuit SC, Van der Klift M, Weel AE, De Laet CE, Burger H, Seeman E, et al. Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam study. Bone. 2004;34(1):195–202.CrossRefPubMed Schuit SC, Van der Klift M, Weel AE, De Laet CE, Burger H, Seeman E, et al. Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam study. Bone. 2004;34(1):195–202.CrossRefPubMed
29.
Zurück zum Zitat Bouxsein ML. Bone quality: where do we go from here? Osteoporos Int. 2003;14(5):118–27.CrossRef Bouxsein ML. Bone quality: where do we go from here? Osteoporos Int. 2003;14(5):118–27.CrossRef
30.
Zurück zum Zitat Bouxsein ML, Seeman E. Quantifying the material and structural determinants of bone strength. Best Pract Res Clin Rheumatol. 2009;23(6):741–53.CrossRefPubMed Bouxsein ML, Seeman E. Quantifying the material and structural determinants of bone strength. Best Pract Res Clin Rheumatol. 2009;23(6):741–53.CrossRefPubMed
31.
Zurück zum Zitat Felsenberg D, Boonen S. The bone quality framework: determinants of bone strength and their interrelationships, and implications for osteoporosis management. Clin Ther. 2005;27(1):1–11.CrossRefPubMed Felsenberg D, Boonen S. The bone quality framework: determinants of bone strength and their interrelationships, and implications for osteoporosis management. Clin Ther. 2005;27(1):1–11.CrossRefPubMed
32.
Zurück zum Zitat Seeman E, Delmas PD. Bone quality—the material and structural basis of bone strength and fragility. N Engl J Med. 2006;354(21):2250–61.CrossRefPubMed Seeman E, Delmas PD. Bone quality—the material and structural basis of bone strength and fragility. N Engl J Med. 2006;354(21):2250–61.CrossRefPubMed
33.
Zurück zum Zitat Kourkoumelis N. Spectroscopy for biosciences. Contemp Phys. 2015;56(4):480–2.CrossRef Kourkoumelis N. Spectroscopy for biosciences. Contemp Phys. 2015;56(4):480–2.CrossRef
34.
Zurück zum Zitat Barth A. Infrared spectroscopy of proteins. Biochim Biophys Acta (BBA)-Bioenergetics. 2007;1767(9):1073–101.CrossRef Barth A. Infrared spectroscopy of proteins. Biochim Biophys Acta (BBA)-Bioenergetics. 2007;1767(9):1073–101.CrossRef
35.
Zurück zum Zitat Steiner G, Koch E. Trends in Fourier transform infrared spectroscopic imaging. Anal Bioanal Chem. 2009;394(3):671–8.CrossRefPubMed Steiner G, Koch E. Trends in Fourier transform infrared spectroscopic imaging. Anal Bioanal Chem. 2009;394(3):671–8.CrossRefPubMed
36.
Zurück zum Zitat Cheng JX, Xie XS. Vibrational spectroscopic imaging of living systems: an emerging platform for biology and medicine. Science. 2015;350(6264):aaa8870.CrossRefPubMed Cheng JX, Xie XS. Vibrational spectroscopic imaging of living systems: an emerging platform for biology and medicine. Science. 2015;350(6264):aaa8870.CrossRefPubMed
37.
Zurück zum Zitat Lopes CD, Limirio PH, Novais VR, Dechichi P. Fourier transform infrared spectroscopy (FTIR) application chemical characterization of enamel, dentin and bone. Appl Spectrosc Rev. 2018;53(9):747–69. Lopes CD, Limirio PH, Novais VR, Dechichi P. Fourier transform infrared spectroscopy (FTIR) application chemical characterization of enamel, dentin and bone. Appl Spectrosc Rev. 2018;53(9):747–69.
38.
Zurück zum Zitat Kazarian SG, Chan KA. ATR-FTIR spectroscopic imaging: recent advances and applications to biological systems. Analyst. 2013;138(7):1940–51.CrossRefPubMed Kazarian SG, Chan KA. ATR-FTIR spectroscopic imaging: recent advances and applications to biological systems. Analyst. 2013;138(7):1940–51.CrossRefPubMed
39.
Zurück zum Zitat Querido W, Ailavajhala R, Padalkar M, Pleshko N. Validated approaches for quantification of bone mineral crystallinity using transmission Fourier transform infrared (FT-IR), attenuated Total reflection (ATR) FT-IR, and Raman spectroscopy. Appl Spectrosc. 2018;72(11):1581–93. Querido W, Ailavajhala R, Padalkar M, Pleshko N. Validated approaches for quantification of bone mineral crystallinity using transmission Fourier transform infrared (FT-IR), attenuated Total reflection (ATR) FT-IR, and Raman spectroscopy. Appl Spectrosc. 2018;72(11):1581–93.
40.
Zurück zum Zitat Ellingham ST, Thompson TJ, Islam M. The effect of soft tissue on temperature estimation from burnt bone using Fourier transform infrared spectroscopy. J Forensic Sci. 2016;61(1):153–9.CrossRefPubMed Ellingham ST, Thompson TJ, Islam M. The effect of soft tissue on temperature estimation from burnt bone using Fourier transform infrared spectroscopy. J Forensic Sci. 2016;61(1):153–9.CrossRefPubMed
41.
Zurück zum Zitat Gu C, Katti DR, Katti KS. Photoacoustic FTIR spectroscopic study of undisturbed human cortical bone. Spectrochim Acta A Mol Biomol Spectrosc. 2013;103:25–37.CrossRefPubMed Gu C, Katti DR, Katti KS. Photoacoustic FTIR spectroscopic study of undisturbed human cortical bone. Spectrochim Acta A Mol Biomol Spectrosc. 2013;103:25–37.CrossRefPubMed
42.
Zurück zum Zitat Wang X, Zhai M, Zhao Y, Yin J. A review of articular cartilage and osteoarthritis studies by Fourier transform infrared spectroscopic imaging. Ann Joint. 2018;3:9. Wang X, Zhai M, Zhao Y, Yin J. A review of articular cartilage and osteoarthritis studies by Fourier transform infrared spectroscopic imaging. Ann Joint. 2018;3:9.
43.
Zurück zum Zitat Movasaghi Z, Rehman S, ur Rehman DI. Fourier transform infrared (FTIR) spectroscopy of biological tissues. Appl Spectrosc Rev. 2008;43(2):134–79.CrossRef Movasaghi Z, Rehman S, ur Rehman DI. Fourier transform infrared (FTIR) spectroscopy of biological tissues. Appl Spectrosc Rev. 2008;43(2):134–79.CrossRef
44.
Zurück zum Zitat Petra M, Anastassopoulou J, Theologis T, Theophanides T. Synchrotron micro-FT-IR spectroscopic evaluation of normal paediatric human bone. J Mol Struct. 2005;733(1–3):101–10.CrossRef Petra M, Anastassopoulou J, Theologis T, Theophanides T. Synchrotron micro-FT-IR spectroscopic evaluation of normal paediatric human bone. J Mol Struct. 2005;733(1–3):101–10.CrossRef
45.
Zurück zum Zitat Mkukuma LD, Skakle JM, Gibson IR, Imrie CT, Aspden RM, Hukins DW. Effect of the proportion of organic material in bone on thermal decomposition of bone mineral: an investigation of a variety of bones from different species using thermogravimetric analysis coupled to mass spectrometry, high-temperature X-ray diffraction, and Fourier transform infrared spectroscopy. Calcif Tissue Int. 2004;75(4):321–8.CrossRefPubMed Mkukuma LD, Skakle JM, Gibson IR, Imrie CT, Aspden RM, Hukins DW. Effect of the proportion of organic material in bone on thermal decomposition of bone mineral: an investigation of a variety of bones from different species using thermogravimetric analysis coupled to mass spectrometry, high-temperature X-ray diffraction, and Fourier transform infrared spectroscopy. Calcif Tissue Int. 2004;75(4):321–8.CrossRefPubMed
46.
Zurück zum Zitat Combes C, Cazalbou S, Rey C. Apatite biominerals. Fortschr Mineral. 2016;6(2):34.CrossRef Combes C, Cazalbou S, Rey C. Apatite biominerals. Fortschr Mineral. 2016;6(2):34.CrossRef
47.
Zurück zum Zitat Rey C, Shimizu M, Collins B, Glimcher MJ. Resolution-enhanced Fourier transform infrared spectroscopy study of the environment of phosphate ions in the early deposits of a solid phase of calcium-phosphate in bone and enamel, and their evolution with age. I: investigations in the v 4 PO4 domain. Calcif Tissue Int. 1990;46(6):384–94.CrossRefPubMed Rey C, Shimizu M, Collins B, Glimcher MJ. Resolution-enhanced Fourier transform infrared spectroscopy study of the environment of phosphate ions in the early deposits of a solid phase of calcium-phosphate in bone and enamel, and their evolution with age. I: investigations in the v 4 PO4 domain. Calcif Tissue Int. 1990;46(6):384–94.CrossRefPubMed
48.
Zurück zum Zitat Wilson RM, Elliott JC, Dowker SE, Smith RI. Rietveld structure refinement of precipitated carbonate apatite using neutron diffraction data. Biomaterials. 2004;25(11):2205–13.CrossRefPubMed Wilson RM, Elliott JC, Dowker SE, Smith RI. Rietveld structure refinement of precipitated carbonate apatite using neutron diffraction data. Biomaterials. 2004;25(11):2205–13.CrossRefPubMed
49.
Zurück zum Zitat Ivanova TI, Frank-Kamenetskaya OV, Kol'tsov AB, Ugolkov VL. Crystal structure of calcium-deficient carbonated hydroxyapatite. Thermal decomposition. J Solid State Chem. 2001;160(2):340–9.CrossRef Ivanova TI, Frank-Kamenetskaya OV, Kol'tsov AB, Ugolkov VL. Crystal structure of calcium-deficient carbonated hydroxyapatite. Thermal decomposition. J Solid State Chem. 2001;160(2):340–9.CrossRef
50.
Zurück zum Zitat Byrne HJ, Knief P, Keating ME, Bonnier F. Spectral pre and post processing for infrared and Raman spectroscopy of biological tissues and cells. Chem Soc Rev. 2016;45(7):1865–78.CrossRefPubMed Byrne HJ, Knief P, Keating ME, Bonnier F. Spectral pre and post processing for infrared and Raman spectroscopy of biological tissues and cells. Chem Soc Rev. 2016;45(7):1865–78.CrossRefPubMed
51.
Zurück zum Zitat Rinnan Å. Pre-processing in vibrational spectroscopy—when, why and how. Anal Methods. 2014;6(18):7124–9.CrossRef Rinnan Å. Pre-processing in vibrational spectroscopy—when, why and how. Anal Methods. 2014;6(18):7124–9.CrossRef
52.
Zurück zum Zitat Lasch P. Spectral pre-processing for biomedical vibrational spectroscopy and microspectroscopic imaging. Chemom Intell Lab Syst. 2012;117:100–14.CrossRef Lasch P. Spectral pre-processing for biomedical vibrational spectroscopy and microspectroscopic imaging. Chemom Intell Lab Syst. 2012;117:100–14.CrossRef
53.
Zurück zum Zitat Kourkoumelis N, Tzaphlidou M. Multivariate statistical evaluation of bone site and sex as parameters for the Fourier transform infrared spectroscopic study of normal bone. Spectroscopy. 2010;24(1–2):99–104.CrossRef Kourkoumelis N, Tzaphlidou M. Multivariate statistical evaluation of bone site and sex as parameters for the Fourier transform infrared spectroscopic study of normal bone. Spectroscopy. 2010;24(1–2):99–104.CrossRef
54.
Zurück zum Zitat Baker MJ, Trevisan J, Bassan P, Bhargava R, Butler HJ, Dorling KM, et al. Using Fourier transform IR spectroscopy to analyze biological materials. Nat Protoc. 2014;9(8):1771–91.CrossRefPubMedPubMedCentral Baker MJ, Trevisan J, Bassan P, Bhargava R, Butler HJ, Dorling KM, et al. Using Fourier transform IR spectroscopy to analyze biological materials. Nat Protoc. 2014;9(8):1771–91.CrossRefPubMedPubMedCentral
55.
Zurück zum Zitat Petibois C, Desbat B. Clinical application of FTIR imaging: new reasons for hope. Trends Biotechnol. 2010;28(10):495–500.CrossRefPubMed Petibois C, Desbat B. Clinical application of FTIR imaging: new reasons for hope. Trends Biotechnol. 2010;28(10):495–500.CrossRefPubMed
56.
Zurück zum Zitat Paschalis EP, Gamsjaeger S, Klaushofer K. Vibrational spectroscopic techniques to assess bone quality. Osteoporos Int. 2017;28(8):2275–91.CrossRefPubMed Paschalis EP, Gamsjaeger S, Klaushofer K. Vibrational spectroscopic techniques to assess bone quality. Osteoporos Int. 2017;28(8):2275–91.CrossRefPubMed
57.
Zurück zum Zitat Paschalis EP, DiCarlo E, Betts F, Sherman P, Mendelsohn R, Boskey AL. FTIR microspectroscopic analysis of human osteonal bone. Calcif Tissue Int. 1996;59(6):480–7.CrossRefPubMed Paschalis EP, DiCarlo E, Betts F, Sherman P, Mendelsohn R, Boskey AL. FTIR microspectroscopic analysis of human osteonal bone. Calcif Tissue Int. 1996;59(6):480–7.CrossRefPubMed
59.
Zurück zum Zitat Boskey A, Camacho NP. FT-IR imaging of native and tissue-engineered bone and cartilage. Biomaterials. 2007;28(15):2465–78.CrossRefPubMed Boskey A, Camacho NP. FT-IR imaging of native and tissue-engineered bone and cartilage. Biomaterials. 2007;28(15):2465–78.CrossRefPubMed
60.
Zurück zum Zitat Miller LM, Vairavamurthy V, Chance MR, Mendelsohn R, Paschalis EP, Betts F, et al. In situ analysis of mineral content and crystallinity in bone using infrared micro-spectroscopy of the ν4 PO4 3− vibration. Biochim Biophys Acta (BBA) Gen Subj. 2001;1527(1–2):11–9.CrossRef Miller LM, Vairavamurthy V, Chance MR, Mendelsohn R, Paschalis EP, Betts F, et al. In situ analysis of mineral content and crystallinity in bone using infrared micro-spectroscopy of the ν4 PO4 3− vibration. Biochim Biophys Acta (BBA) Gen Subj. 2001;1527(1–2):11–9.CrossRef
61.
Zurück zum Zitat Isaksson H, Turunen MJ, Rieppo L, Saarakkala S, Tamminen IS, Rieppo J, et al. Infrared spectroscopy indicates altered bone turnover and remodeling activity in renal osteodystrophy. J Bone Miner Res. 2010;25(6):1360–6.CrossRefPubMed Isaksson H, Turunen MJ, Rieppo L, Saarakkala S, Tamminen IS, Rieppo J, et al. Infrared spectroscopy indicates altered bone turnover and remodeling activity in renal osteodystrophy. J Bone Miner Res. 2010;25(6):1360–6.CrossRefPubMed
62.
Zurück zum Zitat Gourion-Arsiquaud S, Burket JC, Havill LM, DiCarlo E, Doty SB, Mendelsohn R, et al. Spatial variation in osteonal bone properties relative to tissue and animal age. J Bone Miner Res. 2009a;24(7):1271–81.CrossRefPubMedPubMedCentral Gourion-Arsiquaud S, Burket JC, Havill LM, DiCarlo E, Doty SB, Mendelsohn R, et al. Spatial variation in osteonal bone properties relative to tissue and animal age. J Bone Miner Res. 2009a;24(7):1271–81.CrossRefPubMedPubMedCentral
63.
Zurück zum Zitat Blank RD, Baldini TH, Kaufman M, Bailey S, Gupta R, Yershov Y, et al. Spectroscopically determined collagen Pyr/deH-DHLNL cross-link ratio and crystallinity indices differ markedly in recombinant congenic mice with divergent calculated bone tissue strength. Connect Tissue Res. 2003;44(3–4):134–42.CrossRefPubMed Blank RD, Baldini TH, Kaufman M, Bailey S, Gupta R, Yershov Y, et al. Spectroscopically determined collagen Pyr/deH-DHLNL cross-link ratio and crystallinity indices differ markedly in recombinant congenic mice with divergent calculated bone tissue strength. Connect Tissue Res. 2003;44(3–4):134–42.CrossRefPubMed
64.
Zurück zum Zitat Bala Y, Farlay D, Chapurlat R, Boivin G. Modifications of bone material properties in postmenopausal osteoporotic women long-term treated with alendronate. Eur J Endocrinol. 2011;165:647–55. Bala Y, Farlay D, Chapurlat R, Boivin G. Modifications of bone material properties in postmenopausal osteoporotic women long-term treated with alendronate. Eur J Endocrinol. 2011;165:647–55.
65.
Zurück zum Zitat Donnelly E, Chen DX, Boskey AL, Baker SP, van der Meulen MC. Contribution of mineral to bone structural behavior and tissue mechanical properties. Calcif Tissue Int. 2010;87(5):450–60.CrossRefPubMedPubMedCentral Donnelly E, Chen DX, Boskey AL, Baker SP, van der Meulen MC. Contribution of mineral to bone structural behavior and tissue mechanical properties. Calcif Tissue Int. 2010;87(5):450–60.CrossRefPubMedPubMedCentral
66.
Zurück zum Zitat Dal Sasso G, Asscher Y, Angelini I, Nodari L, Artioli G. A universal curve of apatite crystallinity for the assessment of bone integrity and preservation. Sci Rep. 2018;8(1):12025.CrossRefPubMedPubMedCentral Dal Sasso G, Asscher Y, Angelini I, Nodari L, Artioli G. A universal curve of apatite crystallinity for the assessment of bone integrity and preservation. Sci Rep. 2018;8(1):12025.CrossRefPubMedPubMedCentral
67.
Zurück zum Zitat Kourkoumelis N, Lani A, Tzaphlidou M. Infrared spectroscopic assessment of the inflammation-mediated osteoporosis (IMO) model applied to rabbit bone. J Biol Phys. 2012;38(4):623–35.CrossRefPubMedPubMedCentral Kourkoumelis N, Lani A, Tzaphlidou M. Infrared spectroscopic assessment of the inflammation-mediated osteoporosis (IMO) model applied to rabbit bone. J Biol Phys. 2012;38(4):623–35.CrossRefPubMedPubMedCentral
68.
Zurück zum Zitat Farlay D, Panczer G, Rey C, Delmas PD, Boivin G. Mineral maturity and crystallinity index are distinct characteristics of bone mineral. J Bone Miner Metab. 2010;28(4):433–45.CrossRefPubMedPubMedCentral Farlay D, Panczer G, Rey C, Delmas PD, Boivin G. Mineral maturity and crystallinity index are distinct characteristics of bone mineral. J Bone Miner Metab. 2010;28(4):433–45.CrossRefPubMedPubMedCentral
69.
Zurück zum Zitat Bala Y, Depalle B, Farlay D, Douillard T, Meille S, Follet H, et al. Bone micromechanical properties are compromised during long-term alendronate therapy independently of mineralization. J Bone Miner Res. 2012;27(4):825–34.CrossRefPubMed Bala Y, Depalle B, Farlay D, Douillard T, Meille S, Follet H, et al. Bone micromechanical properties are compromised during long-term alendronate therapy independently of mineralization. J Bone Miner Res. 2012;27(4):825–34.CrossRefPubMed
70.
Zurück zum Zitat Yamauchi M, Young DR, Chandler GS, Mechanic GL. Cross-linking and new bone collagen synthesis in immobilized and recovering primate osteoporosis. Bone. 1988;9(6):415–8.CrossRefPubMed Yamauchi M, Young DR, Chandler GS, Mechanic GL. Cross-linking and new bone collagen synthesis in immobilized and recovering primate osteoporosis. Bone. 1988;9(6):415–8.CrossRefPubMed
71.
Zurück zum Zitat Banse X, Sims TJ, Bailey AJ. Mechanical properties of adult vertebral cancellous bone: correlation with collagen intermolecular cross-links. J Bone Miner Res. 2002;17(9):1621–8.CrossRefPubMed Banse X, Sims TJ, Bailey AJ. Mechanical properties of adult vertebral cancellous bone: correlation with collagen intermolecular cross-links. J Bone Miner Res. 2002;17(9):1621–8.CrossRefPubMed
72.
73.
Zurück zum Zitat Robins SP, Duncan A, Wilson N, Evans BJ. Standardization of pyridinium crosslinks, pyridinoline and deoxypyridinoline, for use as biochemical markers of collagen degradation. Clin Chem. 1996;42(10):1621–6.PubMed Robins SP, Duncan A, Wilson N, Evans BJ. Standardization of pyridinium crosslinks, pyridinoline and deoxypyridinoline, for use as biochemical markers of collagen degradation. Clin Chem. 1996;42(10):1621–6.PubMed
74.
Zurück zum Zitat Paschalis EP, Gamsjaeger S, Tatakis DN, Hassler N, Robins SP, Klaushofer K. Fourier transform infrared spectroscopic characterization of mineralizing type I collagen enzymatic trivalent cross-links. Calcif Tissue Int. 2015;96(1):18–29.CrossRefPubMed Paschalis EP, Gamsjaeger S, Tatakis DN, Hassler N, Robins SP, Klaushofer K. Fourier transform infrared spectroscopic characterization of mineralizing type I collagen enzymatic trivalent cross-links. Calcif Tissue Int. 2015;96(1):18–29.CrossRefPubMed
75.
Zurück zum Zitat Farlay D, Duclos ME, Gineyts E, Bertholon C, Viguet-Carrin S, Nallala J, et al. The ratio 1660/1690 cm−1 measured by infrared microspectroscopy is not specific of enzymatic collagen cross-links in bone tissue. PLoS One. 2011;6(12):e28736.CrossRefPubMedPubMedCentral Farlay D, Duclos ME, Gineyts E, Bertholon C, Viguet-Carrin S, Nallala J, et al. The ratio 1660/1690 cm−1 measured by infrared microspectroscopy is not specific of enzymatic collagen cross-links in bone tissue. PLoS One. 2011;6(12):e28736.CrossRefPubMedPubMedCentral
76.
Zurück zum Zitat Goodacre R, Sergo V, Barr H, Sammon C, Schultz ZD, Baker MJ, et al. Clinical Spectroscopy: general discussion. Faraday Discuss. 2016;187:429–60.CrossRefPubMed Goodacre R, Sergo V, Barr H, Sammon C, Schultz ZD, Baker MJ, et al. Clinical Spectroscopy: general discussion. Faraday Discuss. 2016;187:429–60.CrossRefPubMed
77.
Zurück zum Zitat Hooijmans CR, Ritskes-Hoitinga M. Progress in using systematic reviews of animal studies to improve translational research. PLoS Med. 2013;10(7):e1001482.CrossRefPubMedPubMedCentral Hooijmans CR, Ritskes-Hoitinga M. Progress in using systematic reviews of animal studies to improve translational research. PLoS Med. 2013;10(7):e1001482.CrossRefPubMedPubMedCentral
78.
Zurück zum Zitat Perel P, Roberts I, Sena E, Wheble P, Briscoe C, Sandercock P, et al. Comparison of treatment effects between animal experiments and clinical trials: systematic review. BMJ. 2007;334(7586):197.CrossRefPubMed Perel P, Roberts I, Sena E, Wheble P, Briscoe C, Sandercock P, et al. Comparison of treatment effects between animal experiments and clinical trials: systematic review. BMJ. 2007;334(7586):197.CrossRefPubMed
79.
Zurück zum Zitat Bonjour JP, Ammann P, Rizzoli R. Importance of preclinical studies in the development of drugs for treatment of osteoporosis: a review related to the 1998 WHO guidelines. Osteoporos Int. 1999;9(5):379–93.CrossRefPubMed Bonjour JP, Ammann P, Rizzoli R. Importance of preclinical studies in the development of drugs for treatment of osteoporosis: a review related to the 1998 WHO guidelines. Osteoporos Int. 1999;9(5):379–93.CrossRefPubMed
80.
81.
Zurück zum Zitat Acevedo C, Stadelmann VA, Pioletti DP, Alliston T, Ritchie RO. Fatigue as the missing link between bone fragility and fracture. Nat Biomed Eng. 2018;2(2):62–71. Acevedo C, Stadelmann VA, Pioletti DP, Alliston T, Ritchie RO. Fatigue as the missing link between bone fragility and fracture. Nat Biomed Eng. 2018;2(2):62–71.
82.
Zurück zum Zitat Gupta HS, Zioupos P. Fracture of bone tissue: the ‘hows’ and the ‘whys’. Med Eng Phys. 2008;30(10):1209–26.CrossRefPubMed Gupta HS, Zioupos P. Fracture of bone tissue: the ‘hows’ and the ‘whys’. Med Eng Phys. 2008;30(10):1209–26.CrossRefPubMed
83.
Zurück zum Zitat Zimmermann EA, Schaible E, Bale H, Barth HD, Tang SY, Reichert P, et al. Age-related changes in the plasticity and toughness of human cortical bone at multiple length scales. Proc Natl Acad Sci. 2011;108(35):14416–21.CrossRefPubMedPubMedCentral Zimmermann EA, Schaible E, Bale H, Barth HD, Tang SY, Reichert P, et al. Age-related changes in the plasticity and toughness of human cortical bone at multiple length scales. Proc Natl Acad Sci. 2011;108(35):14416–21.CrossRefPubMedPubMedCentral
84.
Zurück zum Zitat Nyman JS, Granke M, Singleton RC, Pharr GM. Tissue-level mechanical properties of bone contributing to fracture risk. Curr Osteoporos Rep. 2016;14(4):138–50.CrossRefPubMedPubMedCentral Nyman JS, Granke M, Singleton RC, Pharr GM. Tissue-level mechanical properties of bone contributing to fracture risk. Curr Osteoporos Rep. 2016;14(4):138–50.CrossRefPubMedPubMedCentral
85.
Zurück zum Zitat Currey J. Structural heterogeneity in bone: good or bad? J Musculoskelet Nueronal Interact. 2005;5(4):317. Currey J. Structural heterogeneity in bone: good or bad? J Musculoskelet Nueronal Interact. 2005;5(4):317.
86.
Zurück zum Zitat Makowski AJ, Granke M, Uppuganti S, Mahadevan-Jansen A, Nyman JS. Bone tissue heterogeneity is associated with fracture toughness: a polarization Raman spectroscopy study. In SPIE BiOS. International Society for Optics and Photonics. SPIE Proc. 2015;9303:341. Makowski AJ, Granke M, Uppuganti S, Mahadevan-Jansen A, Nyman JS. Bone tissue heterogeneity is associated with fracture toughness: a polarization Raman spectroscopy study. In SPIE BiOS. International Society for Optics and Photonics. SPIE Proc. 2015;9303:341.
87.
Zurück zum Zitat Besdo S, Vashishth D. Extended finite element models of introcortical porosity and heterogeneity in cortical bone. Comput Mater Sci. 2012;64:301–5.CrossRefPubMedPubMedCentral Besdo S, Vashishth D. Extended finite element models of introcortical porosity and heterogeneity in cortical bone. Comput Mater Sci. 2012;64:301–5.CrossRefPubMedPubMedCentral
88.
Zurück zum Zitat Yao H, Dao M, Carnelli D, Tai K, Ortiz C. Size-dependent heterogeneity benefits the mechanical performance of bone. J Mech Phys Solids. 2011;59(1):64–74.CrossRef Yao H, Dao M, Carnelli D, Tai K, Ortiz C. Size-dependent heterogeneity benefits the mechanical performance of bone. J Mech Phys Solids. 2011;59(1):64–74.CrossRef
89.
Zurück zum Zitat Hadjipanteli A, Kourkoumelis N, Fromme P, Olivo A, Huang J, Speller R. A new technique for the assessment of the 3D spatial distribution of the calcium/phosphorus ratio in bone apatite. Physiol Meas. 2013;34(11):1399–410.CrossRefPubMed Hadjipanteli A, Kourkoumelis N, Fromme P, Olivo A, Huang J, Speller R. A new technique for the assessment of the 3D spatial distribution of the calcium/phosphorus ratio in bone apatite. Physiol Meas. 2013;34(11):1399–410.CrossRefPubMed
90.
Zurück zum Zitat Hadjipanteli A, Kourkoumelis N, Speller R. Evaluation of CT-DEA performance on ca/P ratio assessment in bone apatite using EDX. X-Ray Spectrom. 2014;43(5):286–91.CrossRef Hadjipanteli A, Kourkoumelis N, Speller R. Evaluation of CT-DEA performance on ca/P ratio assessment in bone apatite using EDX. X-Ray Spectrom. 2014;43(5):286–91.CrossRef
91.
Zurück zum Zitat Hadjipanteli A, Kourkoumelis N, Fromme P, Huang J, Speller RD. Evaluation of the 3D spatial distribution of the calcium/phosphorus ratio in bone using computed-tomography dual-energy analysis. Phys Med. 2016;32(1):162–8.CrossRefPubMed Hadjipanteli A, Kourkoumelis N, Fromme P, Huang J, Speller RD. Evaluation of the 3D spatial distribution of the calcium/phosphorus ratio in bone using computed-tomography dual-energy analysis. Phys Med. 2016;32(1):162–8.CrossRefPubMed
92.
Zurück zum Zitat Boskey AL, Donnelly E, Boskey E, Spevak L, Ma Y, Zhang W, et al. Examining the relationships between bone tissue composition, compositional heterogeneity, and fragility fracture: a matched case-controlled FTIRI study. J Bone Miner Res. 2016;31(5):1070–81.CrossRefPubMed Boskey AL, Donnelly E, Boskey E, Spevak L, Ma Y, Zhang W, et al. Examining the relationships between bone tissue composition, compositional heterogeneity, and fragility fracture: a matched case-controlled FTIRI study. J Bone Miner Res. 2016;31(5):1070–81.CrossRefPubMed
93.
Zurück zum Zitat Gourion-Arsiquaud S, Faibish D, Myers E, Spevak L, Compston J, Hodsman A, et al. Use of FTIR spectroscopic imaging to identify parameters associated with fragility fracture. J Bone Miner Res. 2009;24(9):1565–71.CrossRefPubMedPubMedCentral Gourion-Arsiquaud S, Faibish D, Myers E, Spevak L, Compston J, Hodsman A, et al. Use of FTIR spectroscopic imaging to identify parameters associated with fragility fracture. J Bone Miner Res. 2009;24(9):1565–71.CrossRefPubMedPubMedCentral
94.
Zurück zum Zitat Wang ZX, Lloyd AA, Burket JC, Gourion-Arsiquaud S, Donnelly E. Altered distributions of bone tissue mineral and collagen properties in women with fragility fractures. Bone. 2016;84:237–44.CrossRefPubMed Wang ZX, Lloyd AA, Burket JC, Gourion-Arsiquaud S, Donnelly E. Altered distributions of bone tissue mineral and collagen properties in women with fragility fractures. Bone. 2016;84:237–44.CrossRefPubMed
95.
Zurück zum Zitat Gourion-Arsiquaud S, Lukashova L, Power J, Loveridge N, Reeve J, Boskey AL. Fourier transform infrared imaging of femoral neck bone: reduced heterogeneity of mineral-to-matrix and carbonate-to-phosphate and more variable crystallinity in treatment-naive fracture cases compared with fracture-free controls. J Bone Miner Res. 2013;28(1):150–61.CrossRefPubMed Gourion-Arsiquaud S, Lukashova L, Power J, Loveridge N, Reeve J, Boskey AL. Fourier transform infrared imaging of femoral neck bone: reduced heterogeneity of mineral-to-matrix and carbonate-to-phosphate and more variable crystallinity in treatment-naive fracture cases compared with fracture-free controls. J Bone Miner Res. 2013;28(1):150–61.CrossRefPubMed
96.
Zurück zum Zitat Imbert L, Gourion-Arsiquaud S, Villarreal-Ramirez E, Spevak L, Taleb H, van der Meulen MCH, et al. Dynamic structure and composition of bone investigated by nanoscale infrared spectroscopy. PLoS One. 2018;13(9):e0202833.CrossRefPubMedPubMedCentral Imbert L, Gourion-Arsiquaud S, Villarreal-Ramirez E, Spevak L, Taleb H, van der Meulen MCH, et al. Dynamic structure and composition of bone investigated by nanoscale infrared spectroscopy. PLoS One. 2018;13(9):e0202833.CrossRefPubMedPubMedCentral
97.
Zurück zum Zitat Gaidash AA, Sinitsa LN, Babenko OA, Lugovskoy AA. Nanoporous structure of bone matrix at osteoporosis from data of atomic force microscopy and IR spectroscopy. J Osteoporos. 2011;2011:1–7.CrossRef Gaidash AA, Sinitsa LN, Babenko OA, Lugovskoy AA. Nanoporous structure of bone matrix at osteoporosis from data of atomic force microscopy and IR spectroscopy. J Osteoporos. 2011;2011:1–7.CrossRef
98.
Zurück zum Zitat Mathavan N, Turunen MJ, Tägil M, Isaksson H. Characterising bone material composition and structure in the ovariectomized (OVX) rat model of osteoporosis. Calcif Tissue Int. 2015;97(2):134–44.CrossRefPubMed Mathavan N, Turunen MJ, Tägil M, Isaksson H. Characterising bone material composition and structure in the ovariectomized (OVX) rat model of osteoporosis. Calcif Tissue Int. 2015;97(2):134–44.CrossRefPubMed
100.
Zurück zum Zitat Kourkoumelis N, Balatsoukas I, Tzaphlidou M. Ca/P concentration ratio at different sites of normal and osteoporotic rabbit bones evaluated by Auger and energy dispersive X-ray spectroscopy. J Biol Phys. 2012;38(2):279–91.CrossRefPubMed Kourkoumelis N, Balatsoukas I, Tzaphlidou M. Ca/P concentration ratio at different sites of normal and osteoporotic rabbit bones evaluated by Auger and energy dispersive X-ray spectroscopy. J Biol Phys. 2012;38(2):279–91.CrossRefPubMed
101.
Zurück zum Zitat Burr DB, Forwood MR, Fyhrie DP, Martin RB, Schaffler MB, Turner CH. Bone microdamage and skeletal fragility in osteoporotic and stress fractures. J Bone Miner Res. 1997;12(1):6–15.CrossRefPubMed Burr DB, Forwood MR, Fyhrie DP, Martin RB, Schaffler MB, Turner CH. Bone microdamage and skeletal fragility in osteoporotic and stress fractures. J Bone Miner Res. 1997;12(1):6–15.CrossRefPubMed
102.
Zurück zum Zitat Paschalis EP, Betts F, DiCarlo E, Mendelsohn R, Boskey AL. FTIR microspectroscopic analysis of human iliac crest biopsies from untreated osteoporotic bone. Calcif Tissue Int. 1997;61(6):487–92.CrossRefPubMed Paschalis EP, Betts F, DiCarlo E, Mendelsohn R, Boskey AL. FTIR microspectroscopic analysis of human iliac crest biopsies from untreated osteoporotic bone. Calcif Tissue Int. 1997;61(6):487–92.CrossRefPubMed
103.
Zurück zum Zitat Gadeleta SJ, Boskey AL, Paschalis E, Carlson C, Menschik F, Baldini T, et al. A physical, chemical, and mechanical study of lumbar vertebrae from normal, ovariectomized, and nandrolone decanoate-treated cynomolgus monkeys (Macaca fascicularis). Bone. 2000;27(4):541–50.CrossRefPubMed Gadeleta SJ, Boskey AL, Paschalis E, Carlson C, Menschik F, Baldini T, et al. A physical, chemical, and mechanical study of lumbar vertebrae from normal, ovariectomized, and nandrolone decanoate-treated cynomolgus monkeys (Macaca fascicularis). Bone. 2000;27(4):541–50.CrossRefPubMed
104.
Zurück zum Zitat Faibish D, Ott SM, Boskey AL. Mineral changes in osteoporosis a review. Clin Orthop Relat Res. 2006;443:28–38.CrossRefPubMed Faibish D, Ott SM, Boskey AL. Mineral changes in osteoporosis a review. Clin Orthop Relat Res. 2006;443:28–38.CrossRefPubMed
105.
Zurück zum Zitat Boskey AL, DiCarlo E, Paschalis E, West P, Mendelsohn R. Comparison of mineral quality and quantity in iliac crest biopsies from high-and low-turnover osteoporosis: an FT-IR microspectroscopic investigation. Osteoporos Int. 2005;16(12):2031–8.CrossRefPubMedPubMedCentral Boskey AL, DiCarlo E, Paschalis E, West P, Mendelsohn R. Comparison of mineral quality and quantity in iliac crest biopsies from high-and low-turnover osteoporosis: an FT-IR microspectroscopic investigation. Osteoporos Int. 2005;16(12):2031–8.CrossRefPubMedPubMedCentral
106.
Zurück zum Zitat McCreadie BR, Morris MD, Chen TC, Rao DS, Finney WF, Widjaja E, et al. Bone tissue compositional differences in women with and without osteoporotic fracture. Bone. 2006;39(6):1190–5.CrossRefPubMed McCreadie BR, Morris MD, Chen TC, Rao DS, Finney WF, Widjaja E, et al. Bone tissue compositional differences in women with and without osteoporotic fracture. Bone. 2006;39(6):1190–5.CrossRefPubMed
107.
Zurück zum Zitat Greenwood C, Clement J, Dicken A, Evans JP, Lyburn I, Martin RM, et al. Towards new material biomarkers for fracture risk. Bone. 2016;93:55–63.CrossRefPubMed Greenwood C, Clement J, Dicken A, Evans JP, Lyburn I, Martin RM, et al. Towards new material biomarkers for fracture risk. Bone. 2016;93:55–63.CrossRefPubMed
108.
Zurück zum Zitat Spevak L, Flach CR, Hunter T, Mendelsohn R, Boskey A. Fourier transform infrared spectroscopic imaging parameters describing acid phosphate substitution in biologic hydroxyapatite. Calcif Tissue Int. 2013;92(5):418–28.CrossRefPubMedPubMedCentral Spevak L, Flach CR, Hunter T, Mendelsohn R, Boskey A. Fourier transform infrared spectroscopic imaging parameters describing acid phosphate substitution in biologic hydroxyapatite. Calcif Tissue Int. 2013;92(5):418–28.CrossRefPubMedPubMedCentral
109.
Zurück zum Zitat Garcia I, Chiodo V, Ma Y, Boskey A. Evidence of altered matrix composition in iliac crest biopsies from patients with idiopathic juvenile osteoporosis. Connect Tissue Res. 2016;57(1):28–37.CrossRefPubMed Garcia I, Chiodo V, Ma Y, Boskey A. Evidence of altered matrix composition in iliac crest biopsies from patients with idiopathic juvenile osteoporosis. Connect Tissue Res. 2016;57(1):28–37.CrossRefPubMed
110.
Zurück zum Zitat Miller LM, Novatt JT, Hamerman D, Carlson CS. Alterations in mineral composition observed in osteoarthritic joints of cynomolgus monkeys. Bone. 2004;35(2):498–506.CrossRefPubMed Miller LM, Novatt JT, Hamerman D, Carlson CS. Alterations in mineral composition observed in osteoarthritic joints of cynomolgus monkeys. Bone. 2004;35(2):498–506.CrossRefPubMed
111.
Zurück zum Zitat Huang RY, Miller LM, Carlson CS, Chance MR. Characterization of bone mineral composition in the proximal tibia of cynomolgus monkeys: effect of ovariectomy and nandrolone decanoate treatment. Bone. 2002;30(3):492–7.CrossRefPubMed Huang RY, Miller LM, Carlson CS, Chance MR. Characterization of bone mineral composition in the proximal tibia of cynomolgus monkeys: effect of ovariectomy and nandrolone decanoate treatment. Bone. 2002;30(3):492–7.CrossRefPubMed
112.
Zurück zum Zitat Bohic S, Rey C, Legrand A, Sfihi H, Rohanizadeh R, Martel C, et al. Characterization of the trabecular rat bone mineral: effect of ovariectomy and bisphosphonate treatment. Bone. 2000;26(4):341–8.CrossRefPubMed Bohic S, Rey C, Legrand A, Sfihi H, Rohanizadeh R, Martel C, et al. Characterization of the trabecular rat bone mineral: effect of ovariectomy and bisphosphonate treatment. Bone. 2000;26(4):341–8.CrossRefPubMed
113.
Zurück zum Zitat Ouyang H, Sherman PJ, Paschalis EP, Boskey AL, Mendelsohn R. Fourier transform infrared microscopic imaging: effects of estrogen and estrogen deficiency on fracture healing in rat femurs. Appl Spectrosc. 2004;58(1):1–9.CrossRefPubMed Ouyang H, Sherman PJ, Paschalis EP, Boskey AL, Mendelsohn R. Fourier transform infrared microscopic imaging: effects of estrogen and estrogen deficiency on fracture healing in rat femurs. Appl Spectrosc. 2004;58(1):1–9.CrossRefPubMed
114.
Zurück zum Zitat Huang RY, Miller LM, Carlson CS, Chance MR. In situ chemistry of osteoporosis revealed by synchrotron infrared microspectroscopy. Bone. 2003;33(4):514–21.CrossRefPubMed Huang RY, Miller LM, Carlson CS, Chance MR. In situ chemistry of osteoporosis revealed by synchrotron infrared microspectroscopy. Bone. 2003;33(4):514–21.CrossRefPubMed
115.
Zurück zum Zitat Akkus O, Adar F, Schaffler MB. Age-related changes in physicochemical properties of mineral crystals are related to impaired mechanical function of cortical bone. Bone. 2004;34(3):443–53.CrossRefPubMed Akkus O, Adar F, Schaffler MB. Age-related changes in physicochemical properties of mineral crystals are related to impaired mechanical function of cortical bone. Bone. 2004;34(3):443–53.CrossRefPubMed
116.
Zurück zum Zitat Ruppel ME, Burr DB, Miller LM. Chemical makeup of microdamaged bone differs from undamaged bone. Bone. 2006;39(2):318–24.CrossRefPubMed Ruppel ME, Burr DB, Miller LM. Chemical makeup of microdamaged bone differs from undamaged bone. Bone. 2006;39(2):318–24.CrossRefPubMed
117.
Zurück zum Zitat Lani A, Kourkoumelis N, Baliouskas G, Tzaphlidou M. The effect of calcium and vitamin D supplementation on osteoporotic rabbit bones studied by vibrational spectroscopy. J Biol Phys. 2014;40(4):401–12.CrossRefPubMedPubMedCentral Lani A, Kourkoumelis N, Baliouskas G, Tzaphlidou M. The effect of calcium and vitamin D supplementation on osteoporotic rabbit bones studied by vibrational spectroscopy. J Biol Phys. 2014;40(4):401–12.CrossRefPubMedPubMedCentral
118.
Zurück zum Zitat Saito M, Marumo KM. Collagen cross-links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus. Osteoporos Int. 2010;21(2):195–214.CrossRefPubMed Saito M, Marumo KM. Collagen cross-links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus. Osteoporos Int. 2010;21(2):195–214.CrossRefPubMed
119.
Zurück zum Zitat SY T, Vashishth D. The relative contributions of non-enzymatic glycation and cortical porosity on the fracture toughness of aging bone. J Biomech. 2011;44(2):330–6.CrossRef SY T, Vashishth D. The relative contributions of non-enzymatic glycation and cortical porosity on the fracture toughness of aging bone. J Biomech. 2011;44(2):330–6.CrossRef
120.
Zurück zum Zitat Siegmund T, Allen MR, Burr DB. Failure of mineralized collagen fibrils: modeling the role of collagen cross-linking. J Biomech. 2008;41(7):1427–35.CrossRefPubMed Siegmund T, Allen MR, Burr DB. Failure of mineralized collagen fibrils: modeling the role of collagen cross-linking. J Biomech. 2008;41(7):1427–35.CrossRefPubMed
121.
Zurück zum Zitat Viguet-Carrin S, Garnero P, Delmas PD. The role of collagen in bone strength. Osteoporos Int. 2006;17(3):319–36.CrossRefPubMed Viguet-Carrin S, Garnero P, Delmas PD. The role of collagen in bone strength. Osteoporos Int. 2006;17(3):319–36.CrossRefPubMed
122.
Zurück zum Zitat Vashishth D. The role of the collagen matrix in skeletal fragility. Curr Osteoporos Rep. 2007;5(2):62–6.CrossRefPubMed Vashishth D. The role of the collagen matrix in skeletal fragility. Curr Osteoporos Rep. 2007;5(2):62–6.CrossRefPubMed
123.
Zurück zum Zitat Schmidt FN, Zimmermann EA, Campbell GM, Sroga GE, Püschel K, Amling M, et al. Assessment of collagen quality associated with non-enzymatic cross-links in human bone using Fourier-transform infrared imaging. Bone. 2017;97:243–51.CrossRefPubMedPubMedCentral Schmidt FN, Zimmermann EA, Campbell GM, Sroga GE, Püschel K, Amling M, et al. Assessment of collagen quality associated with non-enzymatic cross-links in human bone using Fourier-transform infrared imaging. Bone. 2017;97:243–51.CrossRefPubMedPubMedCentral
124.
Zurück zum Zitat Paschalis EP, Shane E, Lyritis G, Skarantavos G, Mendelsohn R, Boskey AL. Bone fragility and collagen cross-links. J Bone Miner Res. 2004;19(12):2000–4.CrossRefPubMed Paschalis EP, Shane E, Lyritis G, Skarantavos G, Mendelsohn R, Boskey AL. Bone fragility and collagen cross-links. J Bone Miner Res. 2004;19(12):2000–4.CrossRefPubMed
125.
Zurück zum Zitat Wen XX, Wang FQ, Xu C, Wu ZX, Zhang Y, Feng YF, et al. Time related changes of mineral and collagen and their roles in cortical bone mechanics of ovariectomized rabbits. PLoS One. 2015;10(6):e0127973.CrossRefPubMedPubMedCentral Wen XX, Wang FQ, Xu C, Wu ZX, Zhang Y, Feng YF, et al. Time related changes of mineral and collagen and their roles in cortical bone mechanics of ovariectomized rabbits. PLoS One. 2015;10(6):e0127973.CrossRefPubMedPubMedCentral
126.
Zurück zum Zitat Imbert L, Boskey A. Effects of drugs on bone quality. Clin Rev Bone Miner Metab. 2016;14(3):167–96.CrossRef Imbert L, Boskey A. Effects of drugs on bone quality. Clin Rev Bone Miner Metab. 2016;14(3):167–96.CrossRef
128.
Zurück zum Zitat Ettinger B, Burr DB, Ritchie RO. Proposed pathogenesis for atypical femoral fractures: lessons from materials research. Bone. 2013;55(2):495–500.CrossRefPubMed Ettinger B, Burr DB, Ritchie RO. Proposed pathogenesis for atypical femoral fractures: lessons from materials research. Bone. 2013;55(2):495–500.CrossRefPubMed
129.
Zurück zum Zitat Russell RG, Watts NB, Ebetino FH, Rogers MJ. Mechanisms of action of bisphosphonates: similarities and differences and their potential influence on clinical efficacy. Osteoporos Int. 2008;19(6):733–59.CrossRefPubMed Russell RG, Watts NB, Ebetino FH, Rogers MJ. Mechanisms of action of bisphosphonates: similarities and differences and their potential influence on clinical efficacy. Osteoporos Int. 2008;19(6):733–59.CrossRefPubMed
130.
Zurück zum Zitat Errassifi F, Sarda S, Barroug A, Legrouri A, Sfihi H, Rey C. Infrared, Raman and NMR investigations of risedronate adsorption on nanocrystalline apatites. J Colloid Interface Sci. 2014;420:101–11.CrossRefPubMed Errassifi F, Sarda S, Barroug A, Legrouri A, Sfihi H, Rey C. Infrared, Raman and NMR investigations of risedronate adsorption on nanocrystalline apatites. J Colloid Interface Sci. 2014;420:101–11.CrossRefPubMed
131.
Zurück zum Zitat Rey C, Combes C, Drouet C, Sfihi H, Barroug A. Physico-chemical properties of nanocrystalline apatites: implications for biominerals and biomaterials. Mater Sci Eng C. 2007;27(2):198–205.CrossRef Rey C, Combes C, Drouet C, Sfihi H, Barroug A. Physico-chemical properties of nanocrystalline apatites: implications for biominerals and biomaterials. Mater Sci Eng C. 2007;27(2):198–205.CrossRef
132.
Zurück zum Zitat Boskey AL, Spevak L, Weinstein RS. Spectroscopic markers of bone quality in alendronate-treated postmenopausal women. Osteoporos Int. 2009;20(5):793–800.CrossRefPubMed Boskey AL, Spevak L, Weinstein RS. Spectroscopic markers of bone quality in alendronate-treated postmenopausal women. Osteoporos Int. 2009;20(5):793–800.CrossRefPubMed
133.
Zurück zum Zitat Gamsjaeger S, Buchinger B, Zwettler E, Recker R, Black D, Gasser JA, et al. Bone material properties in actively bone-forming trabeculae in postmenopausal women with osteoporosis after three years of treatment with once-yearly zoledronic acid. J Bone Miner Res. 2011;26(1):12–8.CrossRefPubMed Gamsjaeger S, Buchinger B, Zwettler E, Recker R, Black D, Gasser JA, et al. Bone material properties in actively bone-forming trabeculae in postmenopausal women with osteoporosis after three years of treatment with once-yearly zoledronic acid. J Bone Miner Res. 2011;26(1):12–8.CrossRefPubMed
134.
Zurück zum Zitat Hofstetter B, Gamsjaeger S, Phipps RJ, Recker RR, Ebetino FH, Klaushofer K, et al. Effects of alendronate and risedronate on bone material properties in actively forming trabecular bone surfaces. J Bone Miner Res. 2012;27(5):995–1003.CrossRefPubMed Hofstetter B, Gamsjaeger S, Phipps RJ, Recker RR, Ebetino FH, Klaushofer K, et al. Effects of alendronate and risedronate on bone material properties in actively forming trabecular bone surfaces. J Bone Miner Res. 2012;27(5):995–1003.CrossRefPubMed
135.
Zurück zum Zitat Lloyd AA, Gludovatz B, Riedel C, Luengo EA, Saiyed R, Marty E, et al. Atypical fracture with long-term bisphosphonate therapy is associated with altered cortical composition and reduced fracture resistance. Proc Natl Acad Sci. 2017;114(33):8722–7.CrossRefPubMedPubMedCentral Lloyd AA, Gludovatz B, Riedel C, Luengo EA, Saiyed R, Marty E, et al. Atypical fracture with long-term bisphosphonate therapy is associated with altered cortical composition and reduced fracture resistance. Proc Natl Acad Sci. 2017;114(33):8722–7.CrossRefPubMedPubMedCentral
136.
Zurück zum Zitat Milovanovic P, Zimmermann EA, Riedel C, vom Scheidt A, Herzog L, Krause M, et al. Multi-level characterization of human femoral cortices and their underlying osteocyte network reveal trends in quality of young, aged, osteoporotic and antiresorptive-treated bone. Biomaterials. 2015;45:46–55.CrossRefPubMed Milovanovic P, Zimmermann EA, Riedel C, vom Scheidt A, Herzog L, Krause M, et al. Multi-level characterization of human femoral cortices and their underlying osteocyte network reveal trends in quality of young, aged, osteoporotic and antiresorptive-treated bone. Biomaterials. 2015;45:46–55.CrossRefPubMed
137.
Zurück zum Zitat Plotkin LI, Lezcano V, Thostenson J, Weinstein RS, Manolagas SC, Bellido T. Connexin 43 is required for the anti-apoptotic effect of bisphosphonates on osteocytes and osteoblasts in vivo. J Bone Miner Res. 2008;23(11):1712–21.CrossRefPubMedPubMedCentral Plotkin LI, Lezcano V, Thostenson J, Weinstein RS, Manolagas SC, Bellido T. Connexin 43 is required for the anti-apoptotic effect of bisphosphonates on osteocytes and osteoblasts in vivo. J Bone Miner Res. 2008;23(11):1712–21.CrossRefPubMedPubMedCentral
138.
Zurück zum Zitat Boskey AL, Spevak L, Ma Y, Wang H, Bauer DC, Black DM, et al. Insights into the bisphosphonate holiday: a preliminary FTIRI study. Osteoporos Int. 2018;29(3):699–705.CrossRefPubMed Boskey AL, Spevak L, Ma Y, Wang H, Bauer DC, Black DM, et al. Insights into the bisphosphonate holiday: a preliminary FTIRI study. Osteoporos Int. 2018;29(3):699–705.CrossRefPubMed
139.
Zurück zum Zitat Gourion-Arsiquaud S, Allen MR, Burr DB, Vashishth D, Tang SY, Boskey AL. Bisphosphonate treatment modifies canine bone mineral and matrix properties and their heterogeneity. Bone. 2010;46(3):666–72.CrossRefPubMed Gourion-Arsiquaud S, Allen MR, Burr DB, Vashishth D, Tang SY, Boskey AL. Bisphosphonate treatment modifies canine bone mineral and matrix properties and their heterogeneity. Bone. 2010;46(3):666–72.CrossRefPubMed
140.
Zurück zum Zitat Burr DB, Miller L, Grynpas M, Li J, Boyde A, Mashiba T, et al. Tissue mineralization is increased following 1-year treatment with high doses of bisphosphonates in dogs. Bone. 2003;33(6):960–9.CrossRefPubMed Burr DB, Miller L, Grynpas M, Li J, Boyde A, Mashiba T, et al. Tissue mineralization is increased following 1-year treatment with high doses of bisphosphonates in dogs. Bone. 2003;33(6):960–9.CrossRefPubMed
141.
Zurück zum Zitat Acevedo C, Bale H, Gludovatz B, Wat A, Tang SY, Wang M, et al. Alendronate treatment alters bone tissues at multiple structural levels in healthy canine cortical bone. Bone. 2015;81:352–63.CrossRefPubMed Acevedo C, Bale H, Gludovatz B, Wat A, Tang SY, Wang M, et al. Alendronate treatment alters bone tissues at multiple structural levels in healthy canine cortical bone. Bone. 2015;81:352–63.CrossRefPubMed
142.
Zurück zum Zitat Burket JC, Brooks DJ, MacLeay JM, Baker SP, Boskey AL, van der Meulen MC. Variations in nanomechanical properties and tissue composition within trabeculae from an ovine model of osteoporosis and treatment. Bone. 2013;52(1):326–36.CrossRefPubMed Burket JC, Brooks DJ, MacLeay JM, Baker SP, Boskey AL, van der Meulen MC. Variations in nanomechanical properties and tissue composition within trabeculae from an ovine model of osteoporosis and treatment. Bone. 2013;52(1):326–36.CrossRefPubMed
Metadaten
Titel
Fourier Transform Infrared Spectroscopy of Bone Tissue: Bone Quality Assessment in Preclinical and Clinical Applications of Osteoporosis and Fragility Fracture
verfasst von
Nikolaos Kourkoumelis
Xianzuo Zhang
Zeming Lin
Jian Wang
Publikationsdatum
10.01.2019
Verlag
Springer US
Erschienen in
Clinical & Translational Metabolism / Ausgabe 1/2019
Print ISSN: 1534-8644
Elektronische ISSN: 2948-2445
DOI
https://doi.org/10.1007/s12018-018-9255-y

Weitere Artikel der Ausgabe 1/2019

Clinical Reviews in Bone and Mineral Metabolism 1/2019 Zur Ausgabe

ACKNOWLEDGEMENT TO REFEREES

Acknowledgement to Referees 2018

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.