Skip to main content
main-content

28.01.2021 | Mammakarzinom | Leitthema | Ausgabe 2/2021 Open Access

Der Radiologe 2/2021

Künstliche Intelligenz in der Mammadiagnostik

Anwendungsgebiete aus klinischer Perspektive

Zeitschrift:
Der Radiologe > Ausgabe 2/2021
Autor:
Pascal A. T. Baltzer
Der Arbeitsablauf in der Mammadiagnostik lässt sich in 3 Bereiche aufteilen: Früherkennung (Screening), Abklärung von auffälligen Screeningbefunden (Assessment) bzw. von symptomatischen Patientinnen (der Arbeitsablauf ist ähnlich) sowie das prätherapeutische Management bekannter Karzinome inklusive der Beurteilung des Ansprechens auf neoadjuvante Therapien und der präoperativen Markierung bildgebender Befunde (Abb.  1).

Früherkennung/Screening

Internationale Fachgesellschaften empfehlen die Röntgenmammographie zur Früherkennung (Sekundärprävention) von Brustkrebs [ 1]. Wenn auch die Mammographie ein einfaches, relativ kostengünstiges und vor allem robustes Verfahren mit lange etablierten Qualitätssicherungsmaßnahmen darstellt, sind die Schwächen dieser Herangehensweise bekannt: Das Risiko für Brustkrebs ist in der weiblichen Bevölkerung nicht gleichverteilt. Während Frauen mit bekannter Genmutation mit sehr hoher Wahrscheinlichkeit im Laufe ihres Lebens an Brustkrebs erkranken, trifft diese Erkrankung andere Frauen niemals. Die Bestimmung des Brustkrebsrisikos ist Gegenstand interdisziplinärer Forschung und wird hier nicht im Detail behandelt. Als mutmaßlich wichtigster unabhängiger Risikofaktor gilt die mammographische Brustdichte. Sie lässt sich sowohl subjektiv kategorial nach dem BI-RADS-Lexikon als auch quantitativ bestimmen. Unabhängig von der Herangehensweise ist eine erhöhte Brustdichte mit einem erhöhten Risiko, an Brustkrebs zu erkranken, assoziiert [ 2, 3]. Zudem beeinflusst die Brustdichte auch die Sensitivität der Mammographie: Je dichter die Brust, desto weniger wahrscheinlich werden gerade kleine Tumoren mittels Mammographie detektiert [ 4]. Ein Surrogatmarker für die Anzahl verpasster, biologisch aggressiver Tumoren spiegelt sich in der Rate von Intervallkarzinomen wider [ 4, 5]. Intervallkarzinome werden im Screening-Intervall klinisch apparent. Dabei stellt die Brustdichte einen breit verfügbaren Biomarker dar, welcher für eine individuell adaptierte Screeningstrategie herangezogen werden kann. Frauen mit erhöhter Brustdichte benötigen zusätzliche Tests zur Optimierung der Tumordetektionsraten [ 6]. Das vielversprechendste Verfahren dafür ist die Magnetresonanztomographie (MRT) der Mamma. Eine prospektiv-randomisierte Studie an Frauen mit quantitativ erfasster extrem hoher Brustdichte konnte überzeugende Zahlen zur Reduktion der Intervallkarzinome und damit biologisch signifikanter Befunde belegen [ 5]. Dieser Ansatz wurde zudem als kosteneffektiv bewertet [ 7]. Gemessen an den Intervallkarzinomraten wäre ein Einsatz der MRT auch bei mäßig erhöhter Brustdichte erwägenswert [ 4]. Bei suffizienter Einbindung in RIS/PACS-Systeme könnte der Prozess einer individualisierten Auswahl passender Untersuchungen und Untersuchungsintervalle in der Screeningsituation mittels künstlicher Intelligenz (KI) weitgehend automatisiert werden ([ 8]; Abb.  1).
Ein ungelöstes Problem des Brustkrebs-Screenings ist die sog. Überdiagnose. Der Begriff beschreibt die Diagnose und Therapie von wenig aggressiven, die Prognose der Patientinnen nicht beeinflussenden Karzinomen [ 9]. Allein am histologischen bzw. immunhistochemischen Tumortyp lässt sich ein Brustkrebs derzeit nicht verlässlich als klinisch relevant oder irrelevant bewerten. Deshalb bleibt Überdiagnose ein klinisch abstrakter Begriff, und die Raten überdiagnostizierter Karzinome lassen sich lediglich epidemiologisch durch persistierend die Hintergrundinzidenz übersteigende Tumordetektionsraten abschätzen. Das Problem der Überdiagnose ist nicht die Diagnose selbst, sondern die daraus folgende Therapie [ 9]. Diese folgt Leitlinien, welche neuen Erkenntnissen erst Rechnung tragen müssen. Der Begriff Überdiagnose nebst der damit verbundenen Kritik am Mammographie-Screening ist somit irreführend und weist auf ein überholtes Verständnis von Medizinethik und Wissenschaft hin: Vielmehr ist die Diagnose solcher Tumoren notwendig für die Entwicklung verbesserter diagnostischer und therapeutischer Strategien. Die Diskussion dieses Begriffs verschleiert auch das wirkliche Problem der Brustkrebsdiagnostik: die Unterdiagnose klinisch signifikanter Mammakarzinome, direkt messbar an Intervallkarzinomen und der trotz Verbesserung der diagnostischen und therapeutischen Verfahren weiterhin sehr hohen Sterblichkeit an Brustkrebs [ 10]. Die breite Verfügbarkeit funktioneller bildgebender Biomarker hat ein großes Potenzial, mit Hilfe individualisierter Phänotypisierung von Brustkrebs Therapieentscheidungen zu unterstützen. Zur Integration dieser Informationsfülle werden Verfahren der KI mit hoher Wahrscheinlichkeit erforderlich ([ 11, 12]; Abb.  1).

Abklärung von Screening-Recalls und symptomatischen Patientinnen

Auch aufgrund erheblicher Unterschiede bei der Vergütung medizinischer Leistungen zwischen verschiedenen Ländern erfolgt die Abklärung auffälliger Befunde weniger einheitlich als das Screening. Neben gezielten mammographischen Aufnahmen bieten sich vor einer bildgezielten Biopsie weitere diagnostische Verfahren wie Ultraschall, Kontrastmittel-Mammographie oder MRT an ([ 13]; Abb.  1). Die Wahl der weiterführenden Diagnostik obliegt den jeweiligen RadiologInnen, welche die individuellen Befunde der Patientin für ihre Managemententscheidung in Betracht ziehen müssen. Diese ist im Fall bildgebend oder klinisch eindeutig lokalisierbarer Auffälligkeiten einfach: Internationale Richtlinien empfehlen die perkutane Biopsie zur sicheren Diagnose [ 1416]. Weiterführende Bildgebung wird vorrangig zur Planung von Biopsien eingesetzt. Diffuse, schlecht lokalisierbare Prozesse lassen sich nicht direkt biopsieren [ 17]. Das gilt mit Einschränkung auch für ausgedehnte, nichtsolide Prozesse, wie Verkalkungen. Die Biopsie eines Teils der Verkalkung mag einen gutartigen Befund ergeben, schließt jedoch Malignität in den Augen erfahrener Kliniker nicht ausreichend aus („sampling error“). Eine Möglichkeit stellen weiterführende bildgebende Verfahren dar [ 1720]. Während die Magnetresonanztomographie mit Sicherheit das akkurateste Verfahren in diesem Setting ist (nur die MRT erreicht aufgrund ihres hohen negativen Vorhersagewerts eine ausreichende Sicherheit, um einen Verzicht auf Biopsie zu rechtfertigen [ 21]), stellt sie einen zusätzlichen Aufwand dar und kann die Situation durch potenzielle falsch-positive Befunde verkomplizieren [ 22, 23]. Während der ökonomische Aufwand stark von den politisch akzeptierten Kosten der alternativen Verfahrensweisen abhängt (für die MRT der Mamma Faktor 10 und höher in Ländern mit vergleichbarem sozioökonomischem Status), ist der organisatorische Aufwand einfacher zu bemessen. Selbst bei guter Verfügbarkeit von Magnetresonanztomographien ist eine Verzögerung des Managements von zumindest Stunden, wahrscheinlicher Tagen zu erwarten. Gerade deshalb erfreut sich die Kontrastmittel-Mammographie trotz klar unterlegener diagnostischer Aussagekraft großer Beliebtheit [ 24, 25]. Nicht zu unterschätzen sind auch multiparametrische Ultraschallverfahren [ 26]. Alle lassen sich noch vor Ort mit geringem Zeitverlust einsetzen. Hier ergeben sich mehrere Einsatzgebiete für KI-basierte Lösungen [ 2729]. Zum einen könnte die individuelle Patienteninformation zusammen mit bisher erhobenen bildgebenden Befunden in einer KI-basierten Managementempfehlung münden [ 30]. Dank Machine Learning lassen sich aus standardisierten Routinekriterien objektivierbare klinische Entscheidungsregeln erstellen, zuletzt überzeugend als der Kaiser-Score für die MRT der Mamma. Diese klinische Entscheidungsregel ( http://​www.​meduniwien.​ac.​at/​kaiser-score/​) ermöglicht sichere Diagnosen von kontrastmittelaffinen Läsionen und hat ihren (Mehr)wert in multiplen klinischen Szenarien gezeigt (Abb.  2; [ 3133]). Möglicherweise noch eleganter ist der Einsatz KI-basierter Systeme zur automatisierten Evaluation bildgebender Veränderungen im Sinne einer Zweitmeinung mit dem Ergebnis einer objektiven und möglicherweise verbesserten Einschätzung des Karzinomrisikos (Abb.  3 und  4). Ein KI-Algorithmus kann dabei eine Wahrscheinlichkeit für das Vorliegen der gesuchten Pathologie (z. B. invasiver Brustkrebs) ausgeben. Befunde mit sehr niedrigem Risiko könnten gefahrlos verlaufskontrolliert werden [ 34, 35]. Der Einsatz von KI kann damit potenziell unnötige weiterführende Bildgebung und Eingriffe vermeiden.

Management bekannter Karzinome

Das Management histologisch gesicherter Karzinome stellt einen dritten Schwerpunkt der Bildgebung nebst bildgezielter Interventionen dar (Abb.  1). Der immunhistochemisch am Biopsiepräparat determinierte Tumortyp bestimmt weitgehend die therapeutische Herangehensweise: sofortige Operation oder neoadjuvante medikamentöse Behandlung [ 36]. Spezielle Entscheidungen werden jedoch durch den bildgebenden Befund entscheidend beeinflusst. Das Lokalstaging ist eine Domäne der Bildgebung und bestimmt die Möglichkeit einer brusterhaltenden Therapie. Auch die Lymphknotendiagnostik und ggf. gezielte Biopsie von Lymphknoten hat in den letzten Jahren an Bedeutung gewonnen [ 16]. Im Fall neoadjuvanter Therapien werden bildgebende Verfahren zur Beurteilung des Therapieansprechens angewendet [ 37]. Eine akkurate Diagnose der Vitalität residueller Tumoranteile oder ein frühzeitig im Therapieverlauf mittels bildgebender Marker zu diagnostizierendes Therapieversagen wären für die Adaption von Therapiestrategien äußerst wünschenswert [ 38]. Jede Operation, auch solche nach neoadjuvanter Therapie, erfordert zumindest bei diffusen, multifokalen oder klinisch nichtpalpablen Befunden eine operative Markierung der Befunde, anhand derer sich ChirurgInnen in situ orientieren können [ 16]. Gerade in diesem Bereich fehlt es an klaren Standards aufgrund der starken Variabilität der individuellen Fälle [ 39]. KI-basierte Ansätze könnten hier Abläufe entscheidend optimieren [ 8, 27].

Einsatzgebiete der künstlichen Intelligenz

Radiologische Herausforderungen

Die obigen Ausführungen und Abb.  1 zeigen verschiedene attraktive Ansatzpunkte für die Anwendung von künstlicher Intelligenz in der Mammadiagnostik auf. Computertechnik hat in der heutigen Radiologie einen zentralen Stellenwert, Befunde werden dank Digitalisierung nebst Spracherkennung möglichst unmittelbar nach der Untersuchung erwartet. [ 8]. Die Verbesserung der bildgebenden Gerätetechnik hat zusammen mit effizienteren digitalen Arbeitsplätzen in den letzten Jahrzehnten zu einer ausgeprägten Verdichtung der radiologischen Arbeit geführt [ 40, 41]. Radiologische Leistungen im Jahr 2020 werden insbesondere außerhalb spezialisierter akademischer Einrichtungen im Akkord erarbeitet. Für einen der zentralen Punkte der Diagnostik, nämlich die Befundvermittlung an Patienten und Zuweiser bleibt wenig Zeit [ 42]. Genau diese Probleme lassen sich potenziell durch KI-Verfahren lösen [ 8]. Der weit gefasste Begriff umschließt dabei Anwendungen zur Fehlererkennung, zur Identifizierung von unauffälligen Befunden sowie zur Vermeidung von Fehlern. All das lässt sich auch bereits im Vorfeld bei der Stellung der Untersuchungsindikation und Bildakquisition anwenden. Der rein digitale Arbeitsplatz erlaubt eine flexible Einbindung von softwarebasierten Lösungen der genannten Probleme.

Erforschung der KI

Künstliche Intelligenz ist generell ein unscharfer Ausdruck, welcher in den vergangenen Jahrzehnten seit seiner Prägung vielfach inflationär eingesetzt wurde [ 8, 27, 28]. Gerade in der Radiologie wurde die Rolle der KI oftmals grotesk überschätzt [ 8]. Künstliche Intelligenz impliziert Autonomität und Kreativität. Beides trifft auf die heute verfügbaren Verfahren, welche von statistischer Klassifikation bis hin zu Deep Learning reichen, nicht zu. Die durch Fortschritte in der Computertechnik erreichten Steigerungen der Rechenkapazität gestatten heute die Anwendung erheblich komplexerer Modelle bzw. eine zeiteffiziente Anwendung derselben [ 29]. Das ermöglicht zwar die Lösung komplexer, nichtlinearer Probleme, erfordert aber entsprechend robuste Lösungen. Fehlende Robustheit oder Generalisierbarkeit von Algorithmen der KI stellt die Achillesferse derselben dar. Sie hängt kritisch von der verfügbaren Datenmenge und der erreichbaren Standardisierung ab [ 8]. Der klassische translationale Ansatz von akademischer Forschung, deren Ergebnisse durch Unternehmen kommerzialisiert werden, ist hier einerseits einfacher, andererseits schwerer zu realisieren. Einfacher, weil die Aufnahmen bildgebender Verfahren direkt als Daten verstanden werden können [ 43]. Schwerer, weil die Forschung auf dem Gebiet große Datenmengen zielorientiert filtert, also direkten Hypothesen folgt. Ohne vorherige Standardisierung der Datenarchive ist der Erfolg dieses Ablaufs jedoch limitiert [ 44]. Der klassische Ansatz von kleinen Forschungsgruppen, welche mit beschränkten lokalen Datenbanken Ergebnisse generieren und publizieren, ist bei Studien zur künstlichen Intelligenz gefährlich. Die Vielzahl der verfügbaren Daten, welche miteinander assoziiert werden, impliziert eine hohe Rate falsch-positiver Forschungsergebnisse. Insbesondere bei limitierter Studienqualität können die echten (richtig-positiven) Ergebnisse verschleiert werden [ 44, 45]. Man kann Forschung auf dem Gebiet der KI mit industriellem Fischfang in trübem Wasser vergleichen. Der Forscher hofft auf einen wertvollen Fund, muss diesen allerdings unter Unmengen irrelevanter Ergebnisse identifizieren. Ohne auf die Datenschutzproblematik einzugehen, ist auch die Zusammenarbeit mit der Wirtschaft in diesem Fall nicht gefahrlos. Die zumindest auf mittelfristigen finanziellen Erfolg ausgerichtete Strategie von Unternehmen impliziert eine Vernachlässigung der Sorgfaltspflicht, mangelhafte Kritik und Überbewertung von ökonomischem Potenzial [ 46]. Wie bereits für genomische und proteomische Forschung angeregt, stellen nur große interdisziplinäre Kollaborationen zwischen Forschern und Unternehmen einen nachhaltigen Ansatz dar [ 45].

Integration in den klinischen Alltag

Die Erstellung eines KI-Tools impliziert noch keine problemfreie Anwendung. Wie kürzlich ganz ausgezeichnet in einem dedizierten Artikel zusammengefasst, erfordert die produktive Anwendung von KI-Lösungen ganz grundlegende organisatorische und administrative Schritte [ 8]. Der beste Algorithmus zur Klassifikation von Herdbefunden ist beispielsweise hilflos, wenn eine uneinheitliche Serienbezeichnung (z. B. nach einem Softwareupdate des Geräteherstellers) die Identifikation des zu analysierenden Bildmaterials nicht ermöglicht. Gerade bei KI-Lösungen in größerem Maßstab lässt sich der Fehler dann nicht einfach lokalisieren und die präzise Definition des Workflows und der Fehlermeldung sind entscheidend für die Lösung des Problems. Natürlich ließe sich dies durch eine weitere KI-Lösung oder Vernetzung der Techniken beheben, was nur die aktuelle Problematik widerspiegelt: Ein Großteil der Forscher und Unternehmen arbeiten in einer Art Goldrausch an eigenen und originellen Lösungen, und wie schon bei anderen Industriezweigen ist die Definition von KI-spezifischen Standards eine der großen Herausforderungen für das ganze Gebiet [ 8, 27, 46].

Fazit für die Praxis

  • Verfahren der künstlichen Intelligenz versprechen eine nachhaltige Verbesserung der Mammadiagnostik durch Vereinfachung von Abläufen, Reduktion monotoner und ergebnisloser Tätigkeiten und den Hinweis auf mögliche Fehler.
  • Die dadurch freigesetzten ärztlichen Kapazitäten könnten in eine verbesserte Kommunikation mit PatientInnen und interdisziplinären KollegInnen im Sinne einer personalisierten Medizin eingesetzt werden.
  • Der vorliegende Text hat mit dem Ziel einer kommerziell neutralen Präsentation absichtlich bereits erhältliche Produkte (zumeist für die Anwendung im Screening nebst quantitativer Brustdichtemessung) von der Darstellung ausgeschlossen. Allen derzeit verfügbaren Lösungen gemein ist das Fehlen eines echten integrativen Ansatzes.
  • KI-basierte Tools benötigen für eine zielgerichtete Anwendung eine genaue Definition der lokalen Bedürfnisse und Gegebenheiten und müssen auf diese zugeschnitten werden.
  • Echte, überregionale und fächerübergreifende KI-Lösungen für die Senologie sind zwar bereits abzusehen, jedoch in den nächsten Jahren noch nicht zu erwarten.

Einhaltung ethischer Richtlinien

Interessenkonflikt

P.A.T. Baltzer gibt an, dass kein Interessenkonflikt besteht.
Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.
Open Access Dieser Artikel wird unter der Creative Commons Namensnennung 4.0 International Lizenz veröffentlicht, welche die Nutzung, Vervielfältigung, Bearbeitung, Verbreitung und Wiedergabe in jeglichem Medium und Format erlaubt, sofern Sie den/die ursprünglichen Autor(en) und die Quelle ordnungsgemäß nennen, einen Link zur Creative Commons Lizenz beifügen und angeben, ob Änderungen vorgenommen wurden.
Die in diesem Artikel enthaltenen Bilder und sonstiges Drittmaterial unterliegen ebenfalls der genannten Creative Commons Lizenz, sofern sich aus der Abbildungslegende nichts anderes ergibt. Sofern das betreffende Material nicht unter der genannten Creative Commons Lizenz steht und die betreffende Handlung nicht nach gesetzlichen Vorschriften erlaubt ist, ist für die oben aufgeführten Weiterverwendungen des Materials die Einwilligung des jeweiligen Rechteinhabers einzuholen.
Weitere Details zur Lizenz entnehmen Sie bitte der Lizenzinformation auf http://​creativecommons.​org/​licenses/​by/​4.​0/​deed.​de.

Unsere Produktempfehlungen

Der Radiologe

Print-Titel

  • Ein umfassender Themenschwerpunkt in jeder Ausgabe
  • CME-Punkte sammeln mit praxisrelevanten und leitliniengerechten Fortbildungsbeiträgen
  • IT und Management für Radiologen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag als Mediziner

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Dent - Das Online-Abo für Zahnärzte

Online-Abonnement

Mit e.Dent erhalten Sie Zugang zu allen zahnmedizinischen Fortbildungen und unseren zahnmedizinischen und ausgesuchten medizinischen Zeitschriften.

Weitere Produktempfehlungen anzeigen
Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 2/2021

Der Radiologe 2/2021 Zur Ausgabe

Mitteilungen des Berufsverbandes der Deutschen Radiologen

Mitteilungen des Berufsverbandes der Deutschen Radiologen

Passend zum Thema

Fortgeschrittener gBRCA1/2-mutierter Brustkrebs: "++" für PARPi

Die aktuelle Leitlinie der Kommission Mamma der AGO bewertet PARP-Inhibitoren zur Therapie von PatientInnen mit fortgeschrittenem HER2- Mammakarzinom mit dem höchstmöglichen Empfehlungsgrad (++). Eine Voraussetzung für den Einsatz ist das Vorliegen einer BRCA-Keimbahnmutation.

Passend zum Thema

CDK4/6-Inhibition:

RCT und RWE: Datenlage beim HR+/HER2- Brustkrebs

Randomisierte klinische Studien (RCT) sind der Goldstandard zur Beurteilung von Wirksamkeit und Sicherheit eines Wirkstoffs [1]. Zur Klasse der CDK4/6-Inhibitoren existiert bereits eine breite Basis klinischer Studiendaten, aber auch Real World Evidence (RWE) gewinnt immer mehr an Bedeutung [2-9].

Mehr

Passend zum Thema

ANZEIGE

19.04.2021 | Onlineartikel

Thromboseprophylaxe bei GI-Tumoren: Erstmal daran denken

Obere gastrointestinale Tumoren, allen voran das Pankreaskarzinom aber auch Ösophagus- und Magenkarzinome, gehen oft mit Thromboembolien einher. Als internistischer Onkologe erläutert Prof. Dr. Ralf Hofheinz, Mannheim, welche antikoagulatorischen Maßnahmen bei der stationären Behandlung und im ambulanten Setting betroffener Patienten durchzuführen sind. Dabei berücksichtigt er das besondere Blutungsrisiko genauso wie mögliche Arzneimittelinteraktionen. 

Publikation: Individuelles Thrombosemanagement bei „3G“-Tumoren

Bei Patienten mit gastrointestinalen, genito-urologischen und gynäkologischen Tumoren („3G“) besteht unter therapeutischer Antikoagulation ein im Vergleich zu anderen Krebsarten deutlich erhöhtes Blutungsrisiko. Wie diese Risiken einzuordnen sind und wie in der Praxis damit umgegangen wird, diskutierten Onkologen und Gerinnungsexperten bei der 65. Jahrestagung der Gesellschaft für Thrombose- und Hämostaseforschung (GTH).

ANZEIGE

Management von Thromboembolien bei Krebspatienten

Die Thromboembolie ist neben Infektionen die zweithäufigste Todesursache bei Krebspatienten. Die Behandlung der CAT (cancer associated thrombosis) ist komplex und orientiert sich am individuellen Patienten. Angesichts einer Vielzahl zur Verfügung stehender medikamentöser Behandlungsoptionen finden Sie hier Video-Experteninterviews, Sonderpublikationen und aktuelle Behandlungsalgorithmen zur Therapieentscheidung auf Basis von Expertenempfehlungen.

Bildnachweise