Skip to main content
Erschienen in: The Egyptian Journal of Neurology, Psychiatry and Neurosurgery 1/2020

Open Access 01.12.2020 | Research

Value of magnetic resonance spectroscopy in geriatric patients with cognitive impairment

verfasst von: Mamdouh Ali Kotb, Ahmed M. Kamal, Nasser M. Aldossary, Ayman A. Alsify, Yassmin M. Ahmed

Erschienen in: The Egyptian Journal of Neurology, Psychiatry and Neurosurgery | Ausgabe 1/2020

Abstract

Background

Mild cognitive impairment is a transitional stage prior to dementia, and it is reported in depressed patients. Early diagnosis could predict the reversible etiologies and prevent further deterioration. Proton magnetic resonance spectroscopy has been used for early diagnosis and differential diagnosis of cognitive impairment.

Objective

We aimed to study the difference of hippocampal and frontal white matter metabolites between patients with Alzheimer’s disease, mild cognitive impairment, and cognitive impairment associated with depression, and if those metabolites can differentiate between them.

Subjects and methods

Geriatric patients with cognitive impairment were recruited from neurology and psychiatry clinics. All subjects underwent comprehensive medical evaluations, neuropsychological testing, laboratory tests as well as brain MRI and 1H-MRS studies.

Results

The present study included 85 subjects. Patients with MCI and AD had lower hippocampal NAA and NAA/Cr ratio than patients with depression and normal controls, while, frontal NAA and NAA/Cr ratio were lower in all patient’s subgroups compared to normal control.

Conclusion

Hippocampal NAA and NAA/Cr ratio might help to differentiate between MCI and cognitive impairment associated with depression.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

Alzheimer’s disease (AD) is the commonest cause of cognitive impairment in the geriatric population. It affects more than 35.6 million people living with dementia worldwide [1]. The transitional stage prior to dementia is mild cognitive impairment (MCI), with preserved activities of daily life [2], 20% of them develop dementia yearly [3]. MCI is reported in about 38% of depressed patients [4]. Furthermore, depression may be the early presenting feature of AD [5], and the diagnosis of depression can be difficult in the elderly [6]. The overall prevalence of depressive disorders among the geriatric population varies between10 and 20%, depending on the cultural situations [7, 8].
Several invasive neuroimaging tools such as PET or SPECT are useful to differentiate MCI from AD and healthy subjects [9, 10]. However, these tools might not have a strong specificity for clinical diagnosis. Structural neuroimaging tools like MRI is used to evaluate brain volume and degree of tissue atrophy in geriatric patients with cognitive impairment [11, 12]. But MRI usually misses the identification of early neuropathological changes. So, many new MRI techniques are currently used to evaluate the pathological processes underlying the development of cognitive impairment [13, 14]. Proton magnetic resonance spectroscopy (1H-MRS) is a recent technique that can, in vivo, evaluate human brain function, and it can measure the change of brain metabolite levels before structural changes. 1H-MRS has been used for early diagnosis and differential diagnosis of cognitive impairment [15].
Diagnosis of early signs of cognitive impairment is worth studying. It could predict the reversible etiologies and prevent further deterioration. In the elderly, cognitive deficit may be a sign of depression, MCI, or AD. Differentiation between functional and organic causes of dementia is a cornerstone for early therapeutic intervention and prevention of further progression of the disorder. Our goals were (a) to study the difference of hippocampal, frontal white matter N-acetylaspartate (NAA) concentrations, and N-acetylaspartate/creatine (NAA/Cr) ratio between patients with AD, MCI, and cognitive impairment associated with depression, (b) to study if these metabolites could differentiate between MCI and cognitive impairment associated with depression.

Subjects and methods

This study was a prospective cross-sectional case-control study of geriatric patients with cognitive disturbances attending Prince Sattam Bin-Abdulaziz University Hospital, outpatient clinics. Elderly patients were recruited from neurology and psychiatry clinics during the period from March 2016 to February 2019. Age- and sex-matched healthy volunteers were included as a control group. The study was approved by local Institutional Review Board. A written informed consent was taken from the patients or their caregiver. All subjects underwent comprehensive medical evaluations, including medical history, neurological and psychiatric examinations, neuropsychological testing, laboratory tests as well as brain MRI. Subjects were excluded from the study if they had symptoms or signs of cerebral strokes, major neurological diseases that could affect cognitive function, major psychiatric disorders other than depression, comorbid dementia with depression, thyroid dysfunctions, seizures, alcohol or drug abuse or dependence, or any contraindication to MRI. Diagnosis of probable Alzheimer’s disease was based on the criteria of the National Institute of Neurological and Communicative Disorders and Stroke and the Alzheimer’s Disease and Related Disorders Association (NINCDS-ADRDA) group criteria [16]. Patients with mild to moderate severity according to the Clinical Dementia Rating Scale [17] were included. Patients with MCI must fulfill the criteria of Petersen et al. [18]: memory complaints, normal daily living activities, normal general cognitive function, and abnormal memory for age but no dementia. Memory complaints of the patients were corroborated by a family member. Diagnosis of depression was made in accordance with the Diagnostic and Statistical Manual of Mental Disorders fifth edition [19]. In order to improve the classification of AD, MCI, and cognitive impairment associated with depression, we classified patients as follows: patients with clinical diagnosis (psychiatric interview, neuropsychiatric examination, and neuropsychological testing) of depression with memory domain improvement with repeated exposure, and with both control of encoding and retrieval cues were classified as cognitive impairment associated with depression. And patients with clinical diagnosis (psychiatric interview, neuropsychiatric examination, and neuropsychological testing) of AD or MCI with flat learning curve with repeated exposure, rapid forgetting, failure of recalling with cueing, and intrusions were classified as AD or MCI [20]. Patients with a confusing diagnosis were excluded from the study. All subjects were evaluated by The Geriatric Depression Scale (GDS) [21] and Montreal Cognitive Assessment Arabic version (MoCA) [22].
All subjects underwent MRI and 1H-MRS studies on a 1.5-T scanner (1.5 T Philips Gyroscan Intera, 2 × 1.5 T Siemens Magnetom Vision, Best, Netherlands; 1.5 T Siemens Magnetom Sonata, Erlangen, Germany). Conventional MR images were obtained. 1H-MRS voxel of interest measuring 20 × 10 × 10 mm3 were defined in standard location in the left hippocampus. In a coronal slice, the voxel was started at the posterior margin of the amygdala and extended posteriorly for 20 mm (Fig. 1). The studied part of the hippocampus included both grey and white matter and the most posterior portion of the amygdala. The second location was the left frontal white matter, the voxel size was 20 × 20 × 20 mm3, and the voxel was placed in normal-appearing left frontal white matter (Fig. 2).

Statistical analysis

The data were analyzed using the Statistical Package for the Social Sciences (SPSS) 13.0. Descriptive statistics were calculated. Difference between genders was evaluated by nonparametric chi-squared test. Group differences in age, GDS, MoCA, and metabolite concentrations were evaluated by one-way analysis of variance (ANOVA), Bonferroni post hoc analysis was used. Pearson’s correlation coefficient (r) was employed to analyze the association between the different variables. Values of P < 0.05 were considered to be statistically significant.

Results

The present study included 73 subjects without age and gender significant differences between subjects’ subgroups. Patients with AD and MCI had significantly lower hippocampal NAA than patients with cognitive impairment associated with depression and normal controls. Similarly, patients with AD and MCI had significantly lower hippocampal NAA/Cr ratio than patients with cognitive impairment associated with depression and normal controls. Hippocampal and frontal creatine levels were constantly stable among patients’ subgroups.
Frontal NAA was significantly lower in patients with AD than patients with MCI and normal controls, at the same time, patients with cognitive impairment associated with depression and patients with MCI had significantly lower frontal NAA than normal controls. Patients with AD and patients with cognitive impairment associated with depression had significantly lower frontal NAA/Cr ratio than patients with MCI and normal controls. On the other hand, frontal NAA/Cr ratio was significantly lower in patients with MCI than normal controls. The highest GDS score was reported among patients with cognitive impairment associated with depression. Regarding MoCA scores, patients’ subgroups had significantly lower MoCA scores compared with normal controls, within patients’ subgroups; patients with AD had the lowest MoCA scores (Table 1).
Table 1
Demographic, clinical, and spectroscopic data of the studied groups
 
I
No. 20
II
No. 23
III
No. 15
IV
No.15
P value
Age in years
0.074
Mean ± SD
67.5 ± 4.3
64.9 ± 3.1
64.3 ± 3.7
64.4 ± 3.2
Male
No.
9
13
7
9
0.233
%
45
56.5
46.7
60
Female
No.
11
10
8
6
%
55
43.5
53.3
40
Hippo NAA
I vs II
P = 0.000
I vs IV
P = 0.000
II vs III
P = 0.000
III vs IV
P = 0.000
 
Mean ± SD
6.7 ± 1
10.6 ± 0.5
7.5 ± 1.5
10.9 ± 0.8
Hippo Cr.
 
Mean ± SD
5.1 ± 0.4
4.9 ± 0.2
4.8 ± 0.2
4.9 ± 0.2
Hippo NAA/Cr
I vs II
P = 0.000
I vs IV
P = 0.000
II vs III
P = 0.000
III vs IV
P = 0.000
 
Mean ± SD
1.3 ± 0.2
2.1 ± 0.1
1.5 ± 0.2
2.2 ± 0.1
Frontal NAA
I vs III
P = 0.000
I vs IV
P = 0.000
II vs IV
P = 0.000
III vs IV
P = 0.011
 
Mean ± SD
7.7 ± 1.4
8.4 ± 1.6
9.7 ± 1.3
11.4 ± 0.6
Frontal Cr.
 
Mean ± SD
4.9 ± 0.2
5.1 ± 0.4
4.9 ± 0.2
4.8 ± 0.2
Frontal NAA/Cr
I vs III
P = 0.000
I vs IV
P = 0.000
II vs III
P = 0.002
II vs IV
P = 0.000
III vs IV
P = 0.002
Mean ± SD
1.6 ± 0.3
1.7 ± 0.3
1.9 ± 0.3
2.4 ± 0.2
GDS
I vs II
P = 0.000
II vs III
P = 0.000
II vs IV
P = 0.000
  
Mean ± SD
3.1 ± 1.4
10.3 ± 2.5
2.1 ± 1
1.7 ± 0.7
MoCA
I vs II
P = 0.000
I vs III
P = 0.000
I vs IV
P = 0.000
II vs IV
P = 0.000
III vs IV
P = 0.000
Mean ±SD
8.6 ± 4.6
20.3 ± 2
22.7 ± 2.4
27.9 ± 1
I = Alzheimer’s disease, II = Cognitive impairment associated with depression, III = Mild cognitive impairment, IV = Control subjects
Hippo Hippocampus, NAA: N-acetylaspartate, Cr.: Creatine, NAA/Cr: N-acetylaspartate /creatine ratio, GDS: The Geriatric Depression Scale, MoCA: Montreal Cognitive Assessment Arabic version
Significance level is set at P < 0.05
Patients with AD showed significant positive correlation between MoCA and both hippocampal NAA and hippocampal NAA/Cr ratio. No other significant correlations were reported between clinical data and the radiological parameters in this group of patients (Table 2). On the other hand, patients with cognitive impairment associated with depression showed a significant negative correlation between GDS in one arm and hippocampal NAA, hippocampal NAA/Cr ratio, frontal NAA, and frontal NAA/Cr ratio in the other arm (Table 3).
Table 2
Correlations between age, clinical, and spectroscopic data in patients with AD
 
Age in years
GDS
MoCA
Hippo NAA
Pearson correlation
.184
−.019
.710
Significance
.438
.937
.000
Hippo Cr.
Pearson correlation
−.351
−.319
.095
Significance
.129
.170
.689
Hippo NAA/Cr
Pearson correlation
.359
.143
.599
Significance
.120
.548
.005
Frontal NAA
Pearson correlation
.195
.060
.325
Significance
.411
.802
.162
Frontal Cr.
Pearson correlation
−.031
.140
−.010
Significance
.898
.556
.968
Frontal NAA/Cr
Pearson correlation
.204
.018
.317
Significance
.388
.940
.173
Hippo: Hippocampus, NAA: N-acetylaspartate, Cr.: Creatine, NAA/Cr: N-acetylaspartate /creatine ratio, GDS: The Geriatric Depression Scale, MoCA: Montreal Cognitive Assessment Arabic version
Significance level is set at P < 0.05
Table 3
Correlations between age, clinical, and spectroscopic data in patients with cognitive impairment associated with depression
 
Age in years
GDS
MoCA
Hippo NAA
Pearson correlation
−.051
−.598
−.219
Significance
.817
.003
.315
Hippo Cr.
Pearson correlation
.352
−.187
.246
Significance
.100
.392
.258
Hippo NAA/Cr
Pearson correlation
−.292
−.450
−.393
Significance
.176
.031
.063
Frontal NAA
Pearson correlation
−.123
−.864
−.241
Significance
.575
.000
.268
Frontal Cr.
Pearson correlation
.221
−.155
.079
Significance
.312
.480
.718
Frontal NAA/Cr
Pearson correlation
−.223
−.816
−.289
Significance
.306
.000
.181
Hippo: Hippocampus, NAA: N-acetylaspartate, Cr.: Creatine, NAA/Cr: N-acetylaspartate /creatine ratio, GDS: The Geriatric Depression Scale, MoCA: Montreal Cognitive Assessment Arabic version
Significance level is set at P < 0.05
Patients with MCI had a positive significant correlation between MoCA and hippocampal NAA and hippocampal NAA/Cr ratio (Table 4). While normal controls showed no significant correlation between the clinical and the spectroscopic data (Table 5).
Table 4
Correlations between age, clinical, and spectroscopic data in patients with mild cognitive impairment
 
Age in years
GDS
MoCA
Hippo NAA
Pearson correlation
.265
.226
.568
Significance
.341
.418
.027
Hippo Cr.
Pearson correlation
.307
.369
.411
Significance
.266
.176
.128
Hippo NAA/Cr
Pearson correlation
.241
.151
.576
Significance
.387
.592
.024
Frontal NAA
Pearson correlation
.164
.269
.235
Significance
.560
.331
.399
Frontal Cr.
Pearson correlation
−.273
.175
.499
Significance
.325
.532
.058
Frontal NAA/Cr
Pearson correlation
.262
.220
.112
Significance
.346
.430
.690
Hippo: Hippocampus, NAA: N-acetylaspartate, Cr.: Creatine, NAA/Cr: N-acetylaspartate /creatine ratio, GDS: The Geriatric Depression Scale, MoCA: Montreal Cognitive Assessment Arabic version
Significance level is set at P < 0.05
Table 5
Correlations between age, clinical, and spectroscopic data in normal controls
 
Age in years
GDS
MoCA
Hippo NAA
Pearson correlation
−.251
.033
−.102
Significance
.366
.907
.717
Hippo Cr.
Pearson correlation
−.233
.068
.105
Significance
.404
.810
.711
Hippo NAA/Cr
Pearson correlation
−.105
−.009
−.148
Significance
.709
.975
.599
Frontal NAA
Pearson correlation
.123
−.293
.084
Significance
.662
.289
.767
Frontal Cr.
Pearson correlation
.375
−.105
.297
Significance
.168
.710
.282
Frontal NAA/Cr
Pearson correlation
−.115
−.138
−.094
Significance
.684
.623
.738
Hippo: Hippocampus, NAA: N-acetylaspartate, Cr.: Creatine, NAA/Cr: N-acetylaspartate /creatine ratio, GDS: The Geriatric Depression Scale, MoCA: Montreal Cognitive Assessment Arabic version
Significance level is set at P < 0.05

Discussion

The present study showed that hippocampal NAA level and NAA/Cr ratio could differentiate patients with MCI from elderly depressed patients with cognitive impairment.
Patients with AD and patients with MCI had significantly lower hippocampal NAA and NAA/Cr ratio than other groups. In accordance with our results, Watanabe et al. [23] reported an intermediate hippocampal NAA level in patients with MCI that was lower than normal control but higher than AD patients. The meta-analysis study of Tumati et al. [24] revealed a lower hippocampal NAA level in MCI group compared with healthy controls. In partial contradiction to our results, Jessen et al. [25] reported a higher medial temporal lobe NAA concentration in MCI patients than in patients with AD, but no difference was observed between MCI and healthy subjects. Another study reported a lower hippocampal NAA in patients with AD compared to patients with MCI and healthy control and a tendency towards a significant difference in NAA between MCI and healthy controls [26]. However, no difference was observed between MCI, AD, and healthy subjects in the study of Rupsingh et al. [27]. Previous studies reported also a significant reduction of NAA levels in patients with AD compared with age-matched normal subjects [28, 29]. Many previous studies did not find differences in hippocampal NAA in patients with depression compared with healthy subjects [3032]. Although Venkatraman et al. [33] reported an increased left medial temporal lobe NAA in late-life depression, without any change in the right one.
It was reported that hippocampal NAA/Cr ratio decreased significantly in AD patients, but not in patients with MCI, compared with healthy control [27]. In other studies, the hippocampal NAA/Cr ratio was decreased in patients with AD [25, 27] and MCI compared to healthy subjects [15, 24, 29]. A lower NAA/Cr ratio was reported in the left hippocampus in AD and MCI patients [15, 34], and both hippocampi in AD patients [35] compared with healthy subjects.
In patients with major depressive disorder, the hippocampal NAA/Cr ratio did not differ from the control group [31]. However, in patients with post-stroke depression, the ratio decreased in both hippocampi [36], it also decreased in the left hippocampus in patients with first-episode major depressive disorder [37].
Hippocampal complex plays an important role in memory [38]. The initial pathological changes of AD first occur in the entorhinal cortex, then the hippocampus, and spread to other areas [39]. Structurally, hippocampal atrophy occurs early in Alzheimer’s disease [40]. The most affected site in patients with MCI is the anterior hippocampal formation [41]. Moreover, marked cortical atrophy in the temporal region including the hippocampus had been reported in MCI patients [42]. Patients with depression had been reported to have hippocampal-dependent memory deficits that were exacerbated with the progression of depression [32]. Hypothalamic pituitary dysfunction occurs in patients with depression, which could affect the hippocampus with subsequent reduction of hippocampal volume [43]. Hippocampal volume changes might explain the metabolic abnormalities reported in previous studies.
Frontal NAA and NAA/Cr ratio were significantly lower in all patient groups than normal controls. A previous study reported lower frontal NAA in patients with AD than control subjects [44]. Similarly, the left prefrontal cortex NAA was decreased in patients with MCI compared to healthy control [45]. Other study reported no difference between patients with MCI, AD, and healthy control regarding the frontal NAA level [46].
Lower frontal NAA was reported in the frontal white matter in patients with late-life depression [47]. However, no significant difference was reported in patients with MDD in other studies [30, 48]. Olvera et al. [49], studied patients with MDD and found decreased NAA level in right medial prefrontal cortex, and a trend towards the decreased level in the left dorsolateral prefrontal gray matter and right dorsolateral prefrontal white matter.
For AD relative to healthy subjects, there was a strong tendency toward a statistically significant reduced NAA/Cr ratio in the left frontal region [50]. In patients with MCI, NAA/Cr ratio was mildly reduced but it dropped as MCI progressed to AD, in addition, a lower NAA/Cr could predict progression to AD [51, 52].
NAA/Cr was significantly lower in bilateral dorsolateral prefrontal white matter in MDD patients than healthy control [53, 54]. NAA/Cr was reduced also in the right prefrontal cortex in moderate MDD patients but it did not change in patients with mild MDD [48]; however, other study did not show significant changes on NAA/Cr ratio in bilateral ventral prefrontal white matter in patients with major depressive disorder [55]. In the study of Chen et al. (2009), patients with late-life major depressive disorder had a significantly lower NAA/Cr ratio in the frontal white matter than healthy subjects. A lower NAA/Cr ratio might indicate a neurodegenerative process in frontal white matter in late-life depression [47, 56].
The amygdala and the prefrontal cortex interconnected with many areas and play a major role in mood regulation [57]. Neuronal or glial loss in the frontal cortex and connectivity impairment between left frontal and limbic structure have been reported in late-life depression. These changes support theories of fronto-limbic dysregulation in depression [33, 58, 59]. Accordingly, the metabolic changes reported in the hippocampus might be related to decreased frontal lobe inhibition of the amygdala.
Frontal lobe atrophic changes and hyperactivation had been reported in patients with MCI and AD [6068]. However, frontal cortex hypoactivation was reported in MCI patients with prominent cognitive decline [65, 6971]. Changes in frontal lobe activation in patients with MCI might be a compensatory mechanism to maintain normal cognitive ability [72].
In the present study, hippocampal NAA and NAA/Cr ratio correlated positively with cognitive ability (as measured by MoCA) of patients with AD and patients with MCI. A previous study reported a significant correlation between NAA/Cr ratio and cognitive testing in Alzheimer’s disease [29]. NAA/Cr ratio in the medial temporal lobe correlated with Mini-Mental State Examination (MMSE) and the cognitive part of the Alzheimer Disease Assessment Scale scores [73]. NAA/Cr ratio correlated also with verbal memory testing and general cognition [74]. Hippocampal metabolic concentration had strong correlations with MMSE and Revised Wechsler Memory Scale in patients with AD [23]. A strong relation was also reported between hippocampal NAA and cognitive tests, specifically the memory subtests of the Consortium to Establish a Registry for Alzheimer’s Disease(CERAD) neuropsychological battery in patients with AD [26, 27]. Moreover, low gray matter NAA level was related to poor performance on recognition memory tests [75].
Levels of NAA in medial temporal lobe had been reported to have a positive association with verbal memory ability both in MCI and AD [26, 76]. A significant positive correlation was reported between hippocampal NAA, hippocampal NAA/Cr ratio, and MMSE in patients with MCI [26, 27]. Hippocampal NAA was clearly related to delayed recall of a learned word list and the delayed praxis subtests of the CERDA battery [26]. It had been reported that right and left hippocampal NAA levels correlated positively with subtests of Wechsler Memory Scale-Revised, and the correlation was more prominent for the left hippocampus than the right hippocampus, which might suggest the importance of the left hippocampus in episodic memory function, moreover, NAA levels might reflect memory performance of patients with MCI and AD [76].
In depressed patients, we observed a negative correlation between depression scores and hippocampal and frontal metabolite levels. A significant positive correlation was observed between Beck Depression Inventory (BDI) and hippocampal NAA but not with NAA/Cr ratio [31]. A significant correlation was reported also between the memory quotient and NAA/Cr ratio in bilateral dorsolateral prefrontal white matters. Correlations with statistical significance were determined between NAA/Cr in the left dorsolateral prefrontal white matter and visual regeneration, and associative learning. The right dorsolateral prefrontal white matter NAA/Cr ratio correlated significantly with personal experience, visual recognition, and associative learning in depressed patients [54].
The point of strength in this study is that, although, MCI and depression are common in the geriatric population and differentiation between them is a challenging issue. Our study showed that MRS could help in solving this challenging situation. Our study was limited by some factors including, the relatively small number of patients that might be explained by the few numbers of elderly patients who fulfilled the criteria of inclusion in the study, and MRS is a costly procedure. Also, a considerable number of patients could not tolerate or refused to do an MRI brain. Other brain areas, as cingulate gyrus, and occipital lobe, were not studied to avoid too long time of brain scan. We recommend further study that includes other brain areas which might improve the classification of cognitive impairment in geriatric population.

Conclusions

In conclusion, patients with MCI and AD had lower hippocampal NAA and NAA/Cr ratio than patients with depression and normal controls, while, frontal NAA and NAA/Cr ratio were lower in all patient’s subgroups compared with normal control. Hippocampal NAA and NAA/Cr ratio might help to differentiate between MCI and cognitive impairment associated with depression.

Acknowledgements

Not applicable.
The study was approved by the Institutional Review Board of College of Medicine, Prince Sattam Bin Abdulaziz University, KSA on 4 January 2016. A written consent was taken from all of the participants or their caregiver after explaining the details, benefits, and risks to them.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Chan KY, Wang W, Wu JJ, Liu L, Theodoratou E, Car J, et al. Epidemiology of Alzheimer's disease and other forms of dementia in China, 1990–2010: a systematic review and analysis. Lancet. 2013;381(9882):2016–23.PubMedCrossRef Chan KY, Wang W, Wu JJ, Liu L, Theodoratou E, Car J, et al. Epidemiology of Alzheimer's disease and other forms of dementia in China, 1990–2010: a systematic review and analysis. Lancet. 2013;381(9882):2016–23.PubMedCrossRef
2.
Zurück zum Zitat Lin JS, O’Connor E, Rossom RC, Perdue LA, Eckstrom E. Screening for cognitive impairment in older adults: a systematic review for the US Preventive Services Task Force. Ann Internal Med. 2013;159(9):601–12. Lin JS, O’Connor E, Rossom RC, Perdue LA, Eckstrom E. Screening for cognitive impairment in older adults: a systematic review for the US Preventive Services Task Force. Ann Internal Med. 2013;159(9):601–12.
3.
Zurück zum Zitat Etgen T, Sander D, Bickel H, Förstl H. Mild cognitive impairment and dementia: the importance of modifiable risk factors. Dtsch Arztebl Int. 2011;108(44):743.PubMedPubMedCentral Etgen T, Sander D, Bickel H, Förstl H. Mild cognitive impairment and dementia: the importance of modifiable risk factors. Dtsch Arztebl Int. 2011;108(44):743.PubMedPubMedCentral
4.
Zurück zum Zitat Reischies FM, Neu P. Comorbidity of mild cognitive disorder and depression–a neuropsychological analysis. Eur Arch Psychiatry Clin Neurosci. 2000;250(4):186–93.PubMedCrossRef Reischies FM, Neu P. Comorbidity of mild cognitive disorder and depression–a neuropsychological analysis. Eur Arch Psychiatry Clin Neurosci. 2000;250(4):186–93.PubMedCrossRef
5.
Zurück zum Zitat Evans M, Mottram P. Diagnosis of depression in elderly patients. Adv Psychiatr Treatment. 2000;6(1):49–56.CrossRef Evans M, Mottram P. Diagnosis of depression in elderly patients. Adv Psychiatr Treatment. 2000;6(1):49–56.CrossRef
6.
Zurück zum Zitat Gottfries CG. Late life depression. Eur Arch Psychiatry Clin Neurosci. 2001;251(Suppl 2):II57–61.PubMedCrossRef Gottfries CG. Late life depression. Eur Arch Psychiatry Clin Neurosci. 2001;251(Suppl 2):II57–61.PubMedCrossRef
7.
Zurück zum Zitat Rangaswamy S. World Health Report: Mental health: new understanding new hope. Geneva: The World Health Organization; 2001. Rangaswamy S. World Health Report: Mental health: new understanding new hope. Geneva: The World Health Organization; 2001.
8.
Zurück zum Zitat Wig NN. World health day 2001. Ind J Psychiatry. 2001;43(1):1. Wig NN. World health day 2001. Ind J Psychiatry. 2001;43(1):1.
9.
Zurück zum Zitat Chetelat G, Desgranges B, De La Sayette V, Viader F, Eustache F, Baron J-C. Mild cognitive impairment: can FDG-PET predict who is to rapidly convert to Alzheimer’s disease? Neurology. 2003;60(8):1374–7.PubMedCrossRef Chetelat G, Desgranges B, De La Sayette V, Viader F, Eustache F, Baron J-C. Mild cognitive impairment: can FDG-PET predict who is to rapidly convert to Alzheimer’s disease? Neurology. 2003;60(8):1374–7.PubMedCrossRef
10.
Zurück zum Zitat Drzezga A, Lautenschlager N, Siebner H, Riemenschneider M, Willoch F, Minoshima S, et al. Cerebral metabolic changes accompanying conversion of mild cognitive impairment into Alzheimer’s disease: a PET follow-up study. Eur J Nucl Med Mol Imaging. 2003;30(8):1104–13.PubMedCrossRef Drzezga A, Lautenschlager N, Siebner H, Riemenschneider M, Willoch F, Minoshima S, et al. Cerebral metabolic changes accompanying conversion of mild cognitive impairment into Alzheimer’s disease: a PET follow-up study. Eur J Nucl Med Mol Imaging. 2003;30(8):1104–13.PubMedCrossRef
11.
Zurück zum Zitat Chincarini A, Bosco P, Calvini P, Gemme G, Esposito M, Olivieri C, et al. Local MRI analysis approach in the diagnosis of early and prodromal Alzheimer’s disease. Neuroimage. 2011;58(2):469–80.PubMedCrossRef Chincarini A, Bosco P, Calvini P, Gemme G, Esposito M, Olivieri C, et al. Local MRI analysis approach in the diagnosis of early and prodromal Alzheimer’s disease. Neuroimage. 2011;58(2):469–80.PubMedCrossRef
12.
Zurück zum Zitat Liu Y, Paajanen T, Zhang Y, Westman E, Wahlund L-O, Simmons A, et al. Analysis of regional MRI volumes and thicknesses as predictors of conversion from mild cognitive impairment to Alzheimer's disease. Neurobiol Aging. 2010;31(8):1375–85.PubMedCrossRef Liu Y, Paajanen T, Zhang Y, Westman E, Wahlund L-O, Simmons A, et al. Analysis of regional MRI volumes and thicknesses as predictors of conversion from mild cognitive impairment to Alzheimer's disease. Neurobiol Aging. 2010;31(8):1375–85.PubMedCrossRef
13.
Zurück zum Zitat O’brien J. Role of imaging techniques in the diagnosis of dementia. Br J Radiol. 2007;80(special_issue_2):S71–S7.PubMedCrossRef O’brien J. Role of imaging techniques in the diagnosis of dementia. Br J Radiol. 2007;80(special_issue_2):S71–S7.PubMedCrossRef
14.
Zurück zum Zitat Li T-Q, Wahlund L-O. The search for neuroimaging biomarkers of Alzheimer’s disease with advanced MRI techniques. Acta Radiologica. 2011;52(2):211–22.PubMedCrossRef Li T-Q, Wahlund L-O. The search for neuroimaging biomarkers of Alzheimer’s disease with advanced MRI techniques. Acta Radiologica. 2011;52(2):211–22.PubMedCrossRef
15.
Zurück zum Zitat Targosz-Gajniak MG, Siuda JS, Wicher MM, Banasik TJ, Bujak MA, Augusciak-Duma AM, et al. Magnetic resonance spectroscopy as a predictor of conversion of mild cognitive impairment to dementia. J Neurol Sci. 2013;335(1-2):58–63.PubMedCrossRef Targosz-Gajniak MG, Siuda JS, Wicher MM, Banasik TJ, Bujak MA, Augusciak-Duma AM, et al. Magnetic resonance spectroscopy as a predictor of conversion of mild cognitive impairment to dementia. J Neurol Sci. 2013;335(1-2):58–63.PubMedCrossRef
16.
Zurück zum Zitat McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group* under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology. 1984;34(7):939.PubMedCrossRef McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group* under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology. 1984;34(7):939.PubMedCrossRef
17.
Zurück zum Zitat Morris JC. The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology. 1993. Morris JC. The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology. 1993.
18.
Zurück zum Zitat Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol. 1999;56(3):303–8.PubMedCrossRef Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol. 1999;56(3):303–8.PubMedCrossRef
19.
Zurück zum Zitat Edition F. Diagnostic and statistical manual of mental disorders. Am Psychiatric Assoc. 2013. Edition F. Diagnostic and statistical manual of mental disorders. Am Psychiatric Assoc. 2013.
20.
Zurück zum Zitat Leyhe T, Reynolds CF III, Melcher T, Linnemann C, Klöppel S, Blennow K, et al. A common challenge in older adults: Classification, overlap, and therapy of depression and dementia. Alzheimers Dement. 2017;13(1):59–71.PubMedCrossRef Leyhe T, Reynolds CF III, Melcher T, Linnemann C, Klöppel S, Blennow K, et al. A common challenge in older adults: Classification, overlap, and therapy of depression and dementia. Alzheimers Dement. 2017;13(1):59–71.PubMedCrossRef
21.
Zurück zum Zitat Greenberg SA. The geriatric depression scale (GDS). Best Pract Nursing Care Older Adults. 2012;4(1):1–2. Greenberg SA. The geriatric depression scale (GDS). Best Pract Nursing Care Older Adults. 2012;4(1):1–2.
22.
Zurück zum Zitat Rahman TTA, El Gaafary MM. Montreal cognitive assessment Arabic version: reliability and validity prevalence of mild cognitive impairment among elderly attending geriatric clubs in Cairo. Geriatr Gerontol Int. 2009;9(1):54–61.PubMedCrossRef Rahman TTA, El Gaafary MM. Montreal cognitive assessment Arabic version: reliability and validity prevalence of mild cognitive impairment among elderly attending geriatric clubs in Cairo. Geriatr Gerontol Int. 2009;9(1):54–61.PubMedCrossRef
23.
Zurück zum Zitat Watanabe T, Shiino A, Akiguchi I. Absolute quantification in proton magnetic resonance spectroscopy is useful to differentiate amnesic mild cognitive impairment from Alzheimer’s disease and healthy aging. Dement Geriatr Cogn Disord. 2010;30(1):71–7.PubMedCrossRef Watanabe T, Shiino A, Akiguchi I. Absolute quantification in proton magnetic resonance spectroscopy is useful to differentiate amnesic mild cognitive impairment from Alzheimer’s disease and healthy aging. Dement Geriatr Cogn Disord. 2010;30(1):71–7.PubMedCrossRef
24.
Zurück zum Zitat Tumati S, Martens S, Aleman A. Magnetic resonance spectroscopy in mild cognitive impairment: systematic review and meta-analysis. Neurosci Biobehav Rev. 2013;37(10):2571–86.PubMedCrossRef Tumati S, Martens S, Aleman A. Magnetic resonance spectroscopy in mild cognitive impairment: systematic review and meta-analysis. Neurosci Biobehav Rev. 2013;37(10):2571–86.PubMedCrossRef
25.
Zurück zum Zitat Jessen F, Gür O, Block W, Ende G, Frölich L, Hammen T, et al. A multicenter 1H-MRS study of the medial temporal lobe in AD and MCI. Neurology. 2009;72(20):1735–40.PubMedCrossRef Jessen F, Gür O, Block W, Ende G, Frölich L, Hammen T, et al. A multicenter 1H-MRS study of the medial temporal lobe in AD and MCI. Neurology. 2009;72(20):1735–40.PubMedCrossRef
26.
Zurück zum Zitat Foy CM, Daly EM, Glover A, O’Gorman R, Simmons A, Murphy DG, et al. Hippocampal proton MR spectroscopy in early Alzheimer’s disease and mild cognitive impairment. Brain Topogr. 2011;24(3-4):316–22.PubMedCrossRef Foy CM, Daly EM, Glover A, O’Gorman R, Simmons A, Murphy DG, et al. Hippocampal proton MR spectroscopy in early Alzheimer’s disease and mild cognitive impairment. Brain Topogr. 2011;24(3-4):316–22.PubMedCrossRef
27.
Zurück zum Zitat Rupsingh R, Borrie M, Smith M, Wells J, Bartha R. Reduced hippocampal glutamate in Alzheimer disease. Neurobiol Aging. 2011;32(5):802–10.PubMedCrossRef Rupsingh R, Borrie M, Smith M, Wells J, Bartha R. Reduced hippocampal glutamate in Alzheimer disease. Neurobiol Aging. 2011;32(5):802–10.PubMedCrossRef
28.
Zurück zum Zitat Graff-Radford J, Kantarci K. Magnetic resonance spectroscopy in Alzheimer’s disease. Neuropsychiatric Dis Treat. 2013;9:687. Graff-Radford J, Kantarci K. Magnetic resonance spectroscopy in Alzheimer’s disease. Neuropsychiatric Dis Treat. 2013;9:687.
29.
Zurück zum Zitat Ackl N, Ising M, Schreiber YA, Atiya M, Sonntag A, Auer DP. Hippocampal metabolic abnormalities in mild cognitive impairment and Alzheimer’s disease. Neurosci Lett. 2005;384(1-2):23–8.PubMedCrossRef Ackl N, Ising M, Schreiber YA, Atiya M, Sonntag A, Auer DP. Hippocampal metabolic abnormalities in mild cognitive impairment and Alzheimer’s disease. Neurosci Lett. 2005;384(1-2):23–8.PubMedCrossRef
30.
Zurück zum Zitat Yildiz-Yesiloglu A, Ankerst DP. Review of 1H magnetic resonance spectroscopy findings in major depressive disorder: a meta-analysis. Psychiatry Res. 2006;147(1):1–25.PubMedCrossRef Yildiz-Yesiloglu A, Ankerst DP. Review of 1H magnetic resonance spectroscopy findings in major depressive disorder: a meta-analysis. Psychiatry Res. 2006;147(1):1–25.PubMedCrossRef
31.
Zurück zum Zitat Block W, Träber F, von Widdern O, Metten M, Schild H, Maier W, et al. Proton MR spectroscopy of the hippocampus at 3 T in patients with unipolar major depressive disorder: correlates and predictors of treatment response. Int J Neuropsychopharmacol. 2009;12(3):415–22.PubMedCrossRef Block W, Träber F, von Widdern O, Metten M, Schild H, Maier W, et al. Proton MR spectroscopy of the hippocampus at 3 T in patients with unipolar major depressive disorder: correlates and predictors of treatment response. Int J Neuropsychopharmacol. 2009;12(3):415–22.PubMedCrossRef
32.
Zurück zum Zitat Milne A, MacQueen GM, Yucel K, Soreni N, Hall GB. Hippocampal metabolic abnormalities at first onset and with recurrent episodes of a major depressive disorder: a proton magnetic resonance spectroscopy study. Neuroimage. 2009;47(1):36–41.PubMedCrossRef Milne A, MacQueen GM, Yucel K, Soreni N, Hall GB. Hippocampal metabolic abnormalities at first onset and with recurrent episodes of a major depressive disorder: a proton magnetic resonance spectroscopy study. Neuroimage. 2009;47(1):36–41.PubMedCrossRef
33.
Zurück zum Zitat Venkatraman TN, Krishnan RR, Steffens DC, Song AW, Taylor WD. Biochemical abnormalities of the medial temporal lobe and medial prefrontal cortex in late-life depression. Psychiatry Res. 2009;172(1):49–54.PubMedPubMedCentralCrossRef Venkatraman TN, Krishnan RR, Steffens DC, Song AW, Taylor WD. Biochemical abnormalities of the medial temporal lobe and medial prefrontal cortex in late-life depression. Psychiatry Res. 2009;172(1):49–54.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Dixon RM, Bradley KM, Budge MM, Styles P, Smith AD. Longitudinal quantitative proton magnetic resonance spectroscopy of the hippocampus in Alzheimer’s disease. Brain. 2002;125(10):2332–41.PubMedCrossRef Dixon RM, Bradley KM, Budge MM, Styles P, Smith AD. Longitudinal quantitative proton magnetic resonance spectroscopy of the hippocampus in Alzheimer’s disease. Brain. 2002;125(10):2332–41.PubMedCrossRef
35.
Zurück zum Zitat Block W, Jessen F, Träber F, Flacke S, Manka C, Lamerichs R, et al. Regional N-acetylaspartate reduction in the hippocampus detected with fast proton magnetic resonance spectroscopic imaging in patients with Alzheimer disease. Arch Neurol. 2002;59(5):828–34.PubMedCrossRef Block W, Jessen F, Träber F, Flacke S, Manka C, Lamerichs R, et al. Regional N-acetylaspartate reduction in the hippocampus detected with fast proton magnetic resonance spectroscopic imaging in patients with Alzheimer disease. Arch Neurol. 2002;59(5):828–34.PubMedCrossRef
36.
Zurück zum Zitat Huang Y, Chen W, Li Y, Wu X, Shi X, Geng D. Effects of antidepressant treatment on N-acetyl aspartate and choline levels in the hippocampus and thalami of post-stroke depression patients: A study using 1H magnetic resonance spectroscopy. Psychiatry Res. 2010;182(1):48–52.PubMedCrossRef Huang Y, Chen W, Li Y, Wu X, Shi X, Geng D. Effects of antidepressant treatment on N-acetyl aspartate and choline levels in the hippocampus and thalami of post-stroke depression patients: A study using 1H magnetic resonance spectroscopy. Psychiatry Res. 2010;182(1):48–52.PubMedCrossRef
37.
Zurück zum Zitat Xiancang M, Sun Y, Gao C, Sun Q, Ding H, Bolang Y. 1H-MRS in frontal lobe and hippocampus of patients with first episode major depression. J Xi’an Jiaotong Univ (Medical Sciences). 1981;(02). Xiancang M, Sun Y, Gao C, Sun Q, Ding H, Bolang Y. 1H-MRS in frontal lobe and hippocampus of patients with first episode major depression. J Xi’an Jiaotong Univ (Medical Sciences). 1981;(02).
38.
Zurück zum Zitat Golomb J, de Leon MJ, Kluger A, George AE, Tarshish C, Ferris SH. Hippocampal atrophy in normal aging. An association with recent memory impairment. Arch Neurol. 1993;50(9):967–73.PubMedCrossRef Golomb J, de Leon MJ, Kluger A, George AE, Tarshish C, Ferris SH. Hippocampal atrophy in normal aging. An association with recent memory impairment. Arch Neurol. 1993;50(9):967–73.PubMedCrossRef
39.
Zurück zum Zitat Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathologica. 1991;82(4):239–59.PubMedCrossRef Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathologica. 1991;82(4):239–59.PubMedCrossRef
40.
Zurück zum Zitat Convit A, De Leon M, Golomb J, George A, Tarshish C, Bobinski M, et al. Hippocampal atrophy in early Alzheimer’s disease: anatomic specificity and validation. Psychiatr Q. 1993;64(4):371–87.PubMedCrossRef Convit A, De Leon M, Golomb J, George A, Tarshish C, Bobinski M, et al. Hippocampal atrophy in early Alzheimer’s disease: anatomic specificity and validation. Psychiatr Q. 1993;64(4):371–87.PubMedCrossRef
41.
Zurück zum Zitat Petersen RC, Jack C, Xu Y-C, Waring S, O’brien P, Smith G, et al. Memory and MRI-based hippocampal volumes in aging and AD. Neurology. 2000;54(3):581.PubMedCrossRef Petersen RC, Jack C, Xu Y-C, Waring S, O’brien P, Smith G, et al. Memory and MRI-based hippocampal volumes in aging and AD. Neurology. 2000;54(3):581.PubMedCrossRef
42.
Zurück zum Zitat Seo SW, Im K, Lee J-M, Kim Y-H, Kim ST, Kim SY, et al. Cortical thickness in single-versus multiple-domain amnestic mild cognitive impairment. Neuroimage. 2007;36(2):289–97.PubMedCrossRef Seo SW, Im K, Lee J-M, Kim Y-H, Kim ST, Kim SY, et al. Cortical thickness in single-versus multiple-domain amnestic mild cognitive impairment. Neuroimage. 2007;36(2):289–97.PubMedCrossRef
43.
44.
Zurück zum Zitat Valenzuela MJ, Sachdev P. Magnetic resonance spectroscopy in AD. Neurology. 2001;56(5):592–8.PubMedCrossRef Valenzuela MJ, Sachdev P. Magnetic resonance spectroscopy in AD. Neurology. 2001;56(5):592–8.PubMedCrossRef
45.
Zurück zum Zitat Li X, Shao X, Wang N, Wang T, Chen G, Zhou H. Correlation of auditory event-related potentials and magnetic resonance spectroscopy measures in mild cognitive impairment. Brain Res. 2010;1346:204–12.PubMedCrossRef Li X, Shao X, Wang N, Wang T, Chen G, Zhou H. Correlation of auditory event-related potentials and magnetic resonance spectroscopy measures in mild cognitive impairment. Brain Res. 2010;1346:204–12.PubMedCrossRef
46.
Zurück zum Zitat Siger M, Schuff N, Zhu X, Miller BL, Weiner MW. Regional myo-inositol concentration in mild cognitive impairment Using 1H magnetic resonance spectroscopic imaging. Alzheimer Dis Assoc Disord. 2009;23(1):57.PubMedPubMedCentralCrossRef Siger M, Schuff N, Zhu X, Miller BL, Weiner MW. Regional myo-inositol concentration in mild cognitive impairment Using 1H magnetic resonance spectroscopic imaging. Alzheimer Dis Assoc Disord. 2009;23(1):57.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Chen C-S, Chiang I-C, Li C-W, Lin W-C, Lu C-Y, Hsieh T-J, et al. Proton magnetic resonance spectroscopy of late-life major depressive disorder. Psychiatry Res. 2009;172(3):210–4.PubMedCrossRef Chen C-S, Chiang I-C, Li C-W, Lin W-C, Lu C-Y, Hsieh T-J, et al. Proton magnetic resonance spectroscopy of late-life major depressive disorder. Psychiatry Res. 2009;172(3):210–4.PubMedCrossRef
48.
Zurück zum Zitat Sözeri-Varma G, Kalkan-Oğuzhanoglu N, Efe M, Kıroglu Y, Duman T. Neurochemical metabolites in prefrontal cortex in patients with mild/moderate levels in first-episode depression. Neuropsychiatr Dis Treat. 2013;9:1053.PubMedPubMedCentralCrossRef Sözeri-Varma G, Kalkan-Oğuzhanoglu N, Efe M, Kıroglu Y, Duman T. Neurochemical metabolites in prefrontal cortex in patients with mild/moderate levels in first-episode depression. Neuropsychiatr Dis Treat. 2013;9:1053.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Olvera RL, Caetano SC, Stanley JA, Chen H-H, Nicoletti M, Hatch JP, et al. Reduced medial prefrontal N-Acetyl-Aspartate levels in pediatric major depressive disorder: A multi-voxel in vivo1H spectroscopy study. Psychiatry Res. 2010;184(2):71–6.PubMedPubMedCentralCrossRef Olvera RL, Caetano SC, Stanley JA, Chen H-H, Nicoletti M, Hatch JP, et al. Reduced medial prefrontal N-Acetyl-Aspartate levels in pediatric major depressive disorder: A multi-voxel in vivo1H spectroscopy study. Psychiatry Res. 2010;184(2):71–6.PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Suriyajakryuththana W, Tuntiyatorn L, Teepprasarn N, Sukying C. Proton magnetic resonance spectroscopy in mild cognitive impairment and Alzheimer's disease: a preliminary study. J Med Assoc Thai. 2014;97(4):407–14.PubMed Suriyajakryuththana W, Tuntiyatorn L, Teepprasarn N, Sukying C. Proton magnetic resonance spectroscopy in mild cognitive impairment and Alzheimer's disease: a preliminary study. J Med Assoc Thai. 2014;97(4):407–14.PubMed
51.
Zurück zum Zitat Metastasio A, Rinaldi P, Mariani E, Feliziani F, Tarducci R, Gobbi R, et al., editors. Conversion of MCI to dementia: Role of proton magnetic resonance spectroscopy. International Psychogeriatrics. New York: Cambridge Univ Press; 2005. Metastasio A, Rinaldi P, Mariani E, Feliziani F, Tarducci R, Gobbi R, et al., editors. Conversion of MCI to dementia: Role of proton magnetic resonance spectroscopy. International Psychogeriatrics. New York: Cambridge Univ Press; 2005.
52.
Zurück zum Zitat Kantarci K, Weigand SD, Petersen RC, Boeve BF, Knopman DS, Gunter J, et al. Longitudinal 1H MRS changes in mild cognitive impairment and Alzheimer’s disease. Neurobiol Aging. 2007;28(9):1330–9.PubMedCrossRef Kantarci K, Weigand SD, Petersen RC, Boeve BF, Knopman DS, Gunter J, et al. Longitudinal 1H MRS changes in mild cognitive impairment and Alzheimer’s disease. Neurobiol Aging. 2007;28(9):1330–9.PubMedCrossRef
53.
Zurück zum Zitat Wang Y, Jia Y, Xu G, Ling X, Liu S, Huang L. Frontal white matter biochemical abnormalities in first-episode, treatment-naive patients with major depressive disorder: a proton magnetic resonance spectroscopy study. J Affect Disord. 2012;136(3):620–6.PubMedCrossRef Wang Y, Jia Y, Xu G, Ling X, Liu S, Huang L. Frontal white matter biochemical abnormalities in first-episode, treatment-naive patients with major depressive disorder: a proton magnetic resonance spectroscopy study. J Affect Disord. 2012;136(3):620–6.PubMedCrossRef
54.
Zurück zum Zitat Mao N, Fang J, Xie H, Liu X, Jiang X, Wang G, et al. Correlation between neurochemical metabolism and memory function in adolescent patients with depression: A multi-voxel 1 H magnetic resonance spectroscopy study. Psychiatry Clin Neurosci. 2016;70(4):167–74.PubMedCrossRef Mao N, Fang J, Xie H, Liu X, Jiang X, Wang G, et al. Correlation between neurochemical metabolism and memory function in adolescent patients with depression: A multi-voxel 1 H magnetic resonance spectroscopy study. Psychiatry Clin Neurosci. 2016;70(4):167–74.PubMedCrossRef
55.
Zurück zum Zitat Zhang Y, Han Y, Wang Y, Zhang Y, Li L, Jin E, et al. A MRS study of metabolic alterations in the frontal white matter of major depressive disorder patients with the treatment of SSRIs. BMC Psychiatry. 2015;15(1):99.PubMedPubMedCentralCrossRef Zhang Y, Han Y, Wang Y, Zhang Y, Li L, Jin E, et al. A MRS study of metabolic alterations in the frontal white matter of major depressive disorder patients with the treatment of SSRIs. BMC Psychiatry. 2015;15(1):99.PubMedPubMedCentralCrossRef
56.
Zurück zum Zitat Murata T, Kimura H, Omori M, Kado H, Kosaka H, Iidaka T, et al. MRI white matter hyperintensities, 1H-MR spectroscopy and cognitive function in geriatric depression: a comparison of early-and late-onset cases. Int J Geriatric Psychiatry. 2001;16(12):1129–35.CrossRef Murata T, Kimura H, Omori M, Kado H, Kosaka H, Iidaka T, et al. MRI white matter hyperintensities, 1H-MR spectroscopy and cognitive function in geriatric depression: a comparison of early-and late-onset cases. Int J Geriatric Psychiatry. 2001;16(12):1129–35.CrossRef
57.
Zurück zum Zitat Phillips ML, Drevets WC, Rauch SL, Lane R. Neurobiology of emotion perception II: implications for major psychiatric disorders. Biol Psychiatry. 2003;54(5):515–28.PubMedCrossRef Phillips ML, Drevets WC, Rauch SL, Lane R. Neurobiology of emotion perception II: implications for major psychiatric disorders. Biol Psychiatry. 2003;54(5):515–28.PubMedCrossRef
58.
Zurück zum Zitat Ballmaier M, Toga AW, Blanton RE, Sowell ER, Lavretsky H, Peterson J, et al. Anterior cingulate, gyrus rectus, and orbitofrontal abnormalities in elderly depressed patients: an MRI-based parcellation of the prefrontal cortex. Am J Psychiatry. 2004;161(1):99–108.PubMedCrossRef Ballmaier M, Toga AW, Blanton RE, Sowell ER, Lavretsky H, Peterson J, et al. Anterior cingulate, gyrus rectus, and orbitofrontal abnormalities in elderly depressed patients: an MRI-based parcellation of the prefrontal cortex. Am J Psychiatry. 2004;161(1):99–108.PubMedCrossRef
59.
Zurück zum Zitat Taylor WD, MacFall JR, Gerig G, Krishnan RR. Structusral integrity of the uncinate fasciculus in geriatric depression: Relationship with age of onset. Neuropsychiatr Dis Treat. 2007;3(5):669.PubMedPubMedCentral Taylor WD, MacFall JR, Gerig G, Krishnan RR. Structusral integrity of the uncinate fasciculus in geriatric depression: Relationship with age of onset. Neuropsychiatr Dis Treat. 2007;3(5):669.PubMedPubMedCentral
60.
Zurück zum Zitat Wolk DA, Dickerson BC, Initiative ADN. Fractionating verbal episodic memory in Alzheimer's disease. Neuroimage. 2011;54(2):1530–9.PubMedCrossRef Wolk DA, Dickerson BC, Initiative ADN. Fractionating verbal episodic memory in Alzheimer's disease. Neuroimage. 2011;54(2):1530–9.PubMedCrossRef
61.
Zurück zum Zitat Irish M, Addis D, Hodges J, Piguet O. Considering the role of semantic memory in episodic future thinking: Evidence from semantic dementia. Brain. 2012;135(Pt 7):2178–91.PubMedCrossRef Irish M, Addis D, Hodges J, Piguet O. Considering the role of semantic memory in episodic future thinking: Evidence from semantic dementia. Brain. 2012;135(Pt 7):2178–91.PubMedCrossRef
62.
Zurück zum Zitat Defrancesco M, Egger K, Marksteiner J, Esterhammer R, Hinterhuber H, Deisenhammer EA, et al. Changes in white matter integrity before conversion from mild cognitive impairment to Alzheimer’s disease. PloS one. 2014;9(8):e106062.PubMedPubMedCentralCrossRef Defrancesco M, Egger K, Marksteiner J, Esterhammer R, Hinterhuber H, Deisenhammer EA, et al. Changes in white matter integrity before conversion from mild cognitive impairment to Alzheimer’s disease. PloS one. 2014;9(8):e106062.PubMedPubMedCentralCrossRef
63.
Zurück zum Zitat Han SD, Houston WS, Jak AJ, Eyler LT, Nagel BJ, Fleisher AS, et al. Verbal paired-associate learning by APOE genotype in non-demented older adults: fMRI evidence of a right hemispheric compensatory response. Neurobiol Aging. 2007;28(2):238–47.PubMedCrossRef Han SD, Houston WS, Jak AJ, Eyler LT, Nagel BJ, Fleisher AS, et al. Verbal paired-associate learning by APOE genotype in non-demented older adults: fMRI evidence of a right hemispheric compensatory response. Neurobiol Aging. 2007;28(2):238–47.PubMedCrossRef
64.
Zurück zum Zitat Erk S, Spottke A, Meisen A, Wagner M, Walter H, Jessen F. Evidence of neuronal compensation during episodic memory in subjective memory impairment. Arch Gen Psychiatry. 2011;68(8):845–52.PubMedCrossRef Erk S, Spottke A, Meisen A, Wagner M, Walter H, Jessen F. Evidence of neuronal compensation during episodic memory in subjective memory impairment. Arch Gen Psychiatry. 2011;68(8):845–52.PubMedCrossRef
65.
Zurück zum Zitat Petrella JR, Krishnan S, Slavin MJ, Tran T-TT, Murty L, Doraiswamy PM. Mild cognitive impairment: evaluation with 4-T functional MR imaging. Radiology. 2006;240(1):177–86.PubMedCrossRef Petrella JR, Krishnan S, Slavin MJ, Tran T-TT, Murty L, Doraiswamy PM. Mild cognitive impairment: evaluation with 4-T functional MR imaging. Radiology. 2006;240(1):177–86.PubMedCrossRef
66.
Zurück zum Zitat Heun R, Freymann K, Erb M, Leube DT, Jessen F, Kircher TT, et al. Mild cognitive impairment (MCI) and actual retrieval performance affect cerebral activation in the elderly. Neurobiology of Aging. 2007;28(3):404–13.PubMedCrossRef Heun R, Freymann K, Erb M, Leube DT, Jessen F, Kircher TT, et al. Mild cognitive impairment (MCI) and actual retrieval performance affect cerebral activation in the elderly. Neurobiology of Aging. 2007;28(3):404–13.PubMedCrossRef
67.
Zurück zum Zitat Clément F, Belleville S, Mellah S. Functional neuroanatomy of the encoding and retrieval processes of verbal episodic memory in MCI. Cortex. 2010;46(8):1005–15.PubMedCrossRef Clément F, Belleville S, Mellah S. Functional neuroanatomy of the encoding and retrieval processes of verbal episodic memory in MCI. Cortex. 2010;46(8):1005–15.PubMedCrossRef
68.
Zurück zum Zitat Jin M, Pelak VS, Curran T, Nandy RR, Cordes D. A preliminary study of functional abnormalities in aMCI subjects during different episodic memory tasks. Magn Reson Imaging. 2012;30(4):459–70.PubMedPubMedCentralCrossRef Jin M, Pelak VS, Curran T, Nandy RR, Cordes D. A preliminary study of functional abnormalities in aMCI subjects during different episodic memory tasks. Magn Reson Imaging. 2012;30(4):459–70.PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat Clément F, Belleville S. Compensation and disease severity on the memory-related activations in mild cognitive impairment. Biol Psychiatry. 2010;68(10):894–902.PubMedCrossRef Clément F, Belleville S. Compensation and disease severity on the memory-related activations in mild cognitive impairment. Biol Psychiatry. 2010;68(10):894–902.PubMedCrossRef
70.
Zurück zum Zitat Machulda MM, Senjem ML, Weigand SD, Smith GE, Ivnik RJ, Boeve BF, et al. Functional magnetic resonance imaging changes in amnestic and nonamnestic mild cognitive impairment during encoding and recognition tasks. J Int Neuropsychol Soc. 2009;15(3):372–82.PubMedPubMedCentralCrossRef Machulda MM, Senjem ML, Weigand SD, Smith GE, Ivnik RJ, Boeve BF, et al. Functional magnetic resonance imaging changes in amnestic and nonamnestic mild cognitive impairment during encoding and recognition tasks. J Int Neuropsychol Soc. 2009;15(3):372–82.PubMedPubMedCentralCrossRef
71.
Zurück zum Zitat Giovanello KS, De Brigard F, Ford JH, Kaufer DI, Burke JR, Browndyke JN, et al. Event-related functional magnetic resonance imaging changes during relational retrieval in normal aging and amnestic mild cognitive impairment. J Int Neuropsychol Soc. 2012;18(5):886–97.PubMedCrossRef Giovanello KS, De Brigard F, Ford JH, Kaufer DI, Burke JR, Browndyke JN, et al. Event-related functional magnetic resonance imaging changes during relational retrieval in normal aging and amnestic mild cognitive impairment. J Int Neuropsychol Soc. 2012;18(5):886–97.PubMedCrossRef
72.
Zurück zum Zitat Bayram E, Caldwell JZ, Banks SJ. Current understanding of magnetic resonance imaging biomarkers and memory in Alzheimer's disease. Alzheimers Dement. 2018;4:395–413. Bayram E, Caldwell JZ, Banks SJ. Current understanding of magnetic resonance imaging biomarkers and memory in Alzheimer's disease. Alzheimers Dement. 2018;4:395–413.
73.
Zurück zum Zitat Jessen F, Block W, Träber F, Keller E, Flacke S, Papassotiropoulos A, et al. Proton MR spectroscopy detects a relative decrease of N-acetylaspartate in the medial temporal lobe of patients with AD. Neurology. 2000;55(5):684–8.PubMedCrossRef Jessen F, Block W, Träber F, Keller E, Flacke S, Papassotiropoulos A, et al. Proton MR spectroscopy detects a relative decrease of N-acetylaspartate in the medial temporal lobe of patients with AD. Neurology. 2000;55(5):684–8.PubMedCrossRef
74.
Zurück zum Zitat Kantarci K, Smith GE, Ivnik RJ, Petersen RC, Boeve BF, Knopman DS, et al. 1 H magnetic resonance spectroscopy, cognitive function, and apolipoprotein E genotype in normal aging, mild cognitive impairment and Alzheimer's disease. J Int Neuropsychol Soc. 2002;8(7):934–42.PubMedPubMedCentralCrossRef Kantarci K, Smith GE, Ivnik RJ, Petersen RC, Boeve BF, Knopman DS, et al. 1 H magnetic resonance spectroscopy, cognitive function, and apolipoprotein E genotype in normal aging, mild cognitive impairment and Alzheimer's disease. J Int Neuropsychol Soc. 2002;8(7):934–42.PubMedPubMedCentralCrossRef
75.
Zurück zum Zitat Pfefferbaum A, Adalsteinsson E, Spielman D, Sullivan EV, Lim KO. In vivo brain concentrations of N-acetyl compounds, creatine, and choline in Alzheimer disease. Arch General Psychiatry. 1999;56(2):185–92.CrossRef Pfefferbaum A, Adalsteinsson E, Spielman D, Sullivan EV, Lim KO. In vivo brain concentrations of N-acetyl compounds, creatine, and choline in Alzheimer disease. Arch General Psychiatry. 1999;56(2):185–92.CrossRef
76.
Zurück zum Zitat Watanabe T, Shiino A, Akiguchi I. Hippocampal metabolites and memory performances in patients with amnestic mild cognitive impairment and Alzheimer’s disease. Neurobiol Learn Mem. 2012;97(3):289–93.PubMedCrossRef Watanabe T, Shiino A, Akiguchi I. Hippocampal metabolites and memory performances in patients with amnestic mild cognitive impairment and Alzheimer’s disease. Neurobiol Learn Mem. 2012;97(3):289–93.PubMedCrossRef
Metadaten
Titel
Value of magnetic resonance spectroscopy in geriatric patients with cognitive impairment
verfasst von
Mamdouh Ali Kotb
Ahmed M. Kamal
Nasser M. Aldossary
Ayman A. Alsify
Yassmin M. Ahmed
Publikationsdatum
01.12.2020
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1186/s41983-020-0147-y

Weitere Artikel der Ausgabe 1/2020

The Egyptian Journal of Neurology, Psychiatry and Neurosurgery 1/2020 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Demenzkranke durch Antipsychotika vielfach gefährdet

Demenz Nachrichten

Der Einsatz von Antipsychotika gegen psychische und Verhaltenssymptome in Zusammenhang mit Demenzerkrankungen erfordert eine sorgfältige Nutzen-Risiken-Abwägung. Neuen Erkenntnissen zufolge sind auf der Risikoseite weitere schwerwiegende Ereignisse zu berücksichtigen.

Nicht Creutzfeldt Jakob, sondern Abführtee-Vergiftung

29.05.2024 Hyponatriämie Nachrichten

Eine ältere Frau trinkt regelmäßig Sennesblättertee gegen ihre Verstopfung. Der scheint plötzlich gut zu wirken. Auf Durchfall und Erbrechen folgt allerdings eine Hyponatriämie. Nach deren Korrektur kommt es plötzlich zu progredienten Kognitions- und Verhaltensstörungen.

Schutz der Synapsen bei Alzheimer

29.05.2024 Morbus Alzheimer Nachrichten

Mit einem Neurotrophin-Rezeptor-Modulator lässt sich möglicherweise eine bestehende Alzheimerdemenz etwas abschwächen: Erste Phase-2-Daten deuten auf einen verbesserten Synapsenschutz.

Sozialer Aufstieg verringert Demenzgefahr

24.05.2024 Demenz Nachrichten

Ein hohes soziales Niveau ist mit die beste Versicherung gegen eine Demenz. Noch geringer ist das Demenzrisiko für Menschen, die sozial aufsteigen: Sie gewinnen fast zwei demenzfreie Lebensjahre. Umgekehrt steigt die Demenzgefahr beim sozialen Abstieg.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.