Skip to main content
Erschienen in: Critical Care 1/2021

Open Access 01.12.2021 | Review

Bedside voluntary and evoked forces evaluation in intensive care unit patients: a narrative review

verfasst von: Djahid Kennouche, Eric Luneau, Thomas Lapole, Jérome Morel, Guillaume Y. Millet, Julien Gondin

Erschienen in: Critical Care | Ausgabe 1/2021

Abstract

Around one third of intensive care unit (ICU) patients will develop severe neuromuscular alterations, known as intensive care unit-acquired weakness (ICUAW), during their stay. The diagnosis of ICUAW is difficult and often delayed as a result of sedation or delirium. Indeed, the clinical evaluation of both Medical Research Council score and maximal voluntary force (e.g., using handgrip and/or handheld dynamometers), two independent predictors of mortality, can be performed only in awake and cooperative patients. Transcutaneous electrical/magnetic stimulation applied over motor nerves combined with the development of dedicated ergometer have recently been introduced in ICU patients in order to propose an early and non-invasive measurement of evoked force. The aim of this narrative review is to summarize the different tools allowing bedside force evaluation in ICU patients and the related experimental protocols. We suggest that non-invasive electrical and/or magnetic evoked force measurements could be a relevant strategy to characterize muscle weakness in the early phase of ICU and diagnose ICUAW.
Hinweise

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s13054-021-03567-9.
Djahid Kennouche and Eric Luneau have contributed equally
Guillaume Y. Millet and Julien Gondin have contributed equally
A comment to this article is available online at https://​doi.​org/​10.​1186/​s13054-021-03636-z.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

Around one third of ICU patients will develop severe neuromuscular alterations, known as intensive care unit-acquired weakness (ICUAW), during their stay [1]. ICUAW, defined as “a syndrome of generalized limb weakness that develops while the patient is critically ill and for which there is no alternative explanation other than the critical illness itself” [2], is the most related disease acquired in ICU. Both persistent reduction of force production and atrophy are involved in the poor health-related quality of life [3]. There is so far no effective treatment to counteract the long-term deleterious effects of ICUAW [4]. This is mainly due to the difficulties of making an early diagnosis which further limit our knowledge of the underlying pathophysiological mechanisms of ICUAW [5]. ICUAW can be caused by (i) a critical illness polyneuropathy (CIP) which has been described as a distal axonal sensory-motor polyneuropathy affecting limb and respiratory muscles [6]; (ii) a critical illness myopathy (CIM) which is considered as a primary myopathy that is not related to muscle denervation [7]; (iii) a combination of both also referred to as critical illness polyneuromyopathy (CIPNM) [8].
ICUAW diagnosis currently relies on manual muscle testing using the Medical Research Council (MRC) score [9]. This method is easy to perform as it does not require any special equipment. Handgrip (HG) [10] and handheld (HHD) [11] dynamometers have been used to provide quantitative values of the patient’s maximal strength. However, both MRC score and voluntary force measurements can be obtained only in awake and fully cooperative patients so that ICUAW diagnosis is inevitably delayed.
To overcome these limitations, non-volitional techniques combining electrical [12] or magnetic [13] stimulation applied to a motor nerve or over a muscle belly [14] with force measurements on a dedicated bedside ergometer have emerged in the field of ICU. This allows to record evoked-force in fully sedated patients, so that measurement can be performed early after ICU admission (i.e. within 24 h of ICU admission [15]).
The aim of this narrative review is to summarize the different tools and related experimental protocols allowing bedside force evaluation of limb muscles in ICU patients. We will exclude the tools used to assess respiratory muscle function since it has been described in details elsewhere [5, 16]. After a brief presentation of the gold-standard method for ICUAW diagnosis (i.e. MRC scale), we will present for each existing dynamometers and ergometers: (i) intra- and inter-investigators reliability, (ii) their interests and limitations for quantitative voluntary and evoked-force measurements at the bedside, (iii) an overview of the cross-sectional studies in which force production was compared between ICU patients and healthy controls as well as longitudinal approaches in which the time course of changes in force was assessed throughout an ICU stay. The search strategy is described in Additional File 1.

MRC scale

Definition

MRC is currently the gold-standard diagnostic method of ICUAW. This scale includes the measurements of 6 muscle groups (shoulder abductors, elbow flexors, wrist extensors, hip flexors, knee extensors and ankle dorsiflexors) on each side, ranking them between 0 (no visible contraction) and 5 (normal force on complete range of motion). The MRC scale is an ordinal scale which gives a sum-score (i.e. sum of each individual muscle score) ranging from 0 (paralysis) to 60 (normal force).

Reliability of MRC sum-score

Intra-investigator and inter-investigator reliability was considered as a test–retest performed by the same investigator on different occasions and measurements performed by different investigators on the same day, respectively. MRC reliability has mainly been assessed by intraclass correlation coefficients (ICCs), ranging between 0 (no agreement) and 1 (excellent agreement). So far, intra-investigator reliability of MRC has never been reported in ICU patients, even though good to excellent ICC values were observed in other pathologies [17, 18]. Inter-investigator reliability of the MRC sum-score was found to be good to excellent in ICU patients [1923] (Table 1). However, lower ICC values (i.e. ranging from 0.29 to 0.75) were reported when considering individual muscle groups [20], indicating that MRC is less reliable to assess force from a single muscle group. High inter-investigator reliability was also reported for the four-point scale (ICCs = 0.90–0.94) on a small cohort of ICU patients [24].
Table 1
Inter-investigator reliability measurements of MRC sum-score
References
Number of patients
Number of investigators
ICC (95% CI—range)
Hermans et al. [19]
75
2
0.95 (0.92–0.97)
Hough et al. [20]
30
2
0.83 (0.67–0.93)
Kleyweg et al. [21]
60
2
0.97 (0.96–0.98)
Fan et al. [22]
10
19
0.99 (0.98–1.00)
Connolly et al. [23]
20
2
0.94 (0.85–0.98)
Intraclass Correlation Coefficients (ICC) and their 95% Confidence Interval (CI) are reported

Diagnostic approach

An MRC sum-score below 48 has been arbitrarily used for ICUAW diagnosis [25] and a score below 36 indicates severe muscle weakness [19] (Fig. 1). A four-point ordinal scale has been recently introduced but remains to be validated on a large cohort of patients [26]. An MRC sum-score < 40 has been proposed as a modality to specifically diagnose patients with CIPNM [27]. However, this study suffers from several limitations such as highly selective inclusion criteria (i.e. only septic patients), a small sample size (i.e. only 50 patients), a lack of information regarding the electrophysiological investigations and the day of assessment. Interestingly, it has been recently demonstrated that even a slight reduction in MRC sum-score (i.e. ≤ 55) at ICU discharge may identify patients with poor long-term outcomes (i.e. mortality, strength, functional capacity and physical function) [28]. Further studies are needed to determine whether and to what extent this specific cut-off MRC sum-score at ICU discharge is influenced by the etiology of ICUAW (i.e. CIP, CIM or CIPNM).

Limitations

The first important limitation of MRC is that the grade ≤ 3 only uses gravity as reference whereas grade > 3 refers to muscle contraction against non-standardized and subjective resistance so that it is difficult to differentiate grade 4 (subnormal strength) and grade 5 (normal strength). MRC is further limited by a ceiling effect that precludes accurate measurements of strength. Although MRC sum-score is a good predictor of both hospital [29] and long-term [28] mortality, patients have to be awake and fully cooperative so that the diagnostic is inevitably delayed and can be further complicated by pain, edema or limitation on range of motion [30].

Voluntary force measurements

Existing ergometers and associated protocols

HG dynamometer (Fig. 2a) has been used to provide quantitative strength values in ICU patients who are sufficiently cooperative and have an MRC score ≥ 3 in at least four of six muscle groups being tested [11]. Different experimental protocols have been used to quantify voluntary strength by HG, i.e. measurements are not fully standardized among studies in ICU patients [31]. A majority of studies followed the recommendations of the American Society of Hand Therapists by performing testing in a seated position [10, 19, 27, 3237] while other investigations used a supine position to take into account the patients’ inability to maintain a stable vertical position [11, 24, 3841]. Both shoulder and forearm were in neutral/rotation position when testing in seated position while the elbow joint angle varied from 90° of flexion to full extension when testing in supine position.
HHD (Fig. 2b) have been used to assess voluntary strength in several muscle groups from awakening to ICU discharge. Voluntary force measurements can be performed in both lower and upper limb muscle groups (i.e. wrist extensors, elbow flexors and extensors, shoulder extensors, abductors and rotators, hip flexors and extensors, knee extensors, ankle dorsiflexors) in less than 15 min [42]. As for HG, HHD does not require any complex training for the physician/investigator. The protocol is carried out in a supine position to avoid measurement errors due to gravity and to consider the inability of ICU patients to remain seated at the edge of the bed [39, 43]. Knee extension force measurements have been performed with either the test leg positioned over a bolster [39, 40] or at 30° [38] to 90° [11] of knee flexion. Considering these differences in testing position, methodological guidelines have been provided to standardize HG and HHD force measurements in ICU patients [11, 19, 39].

Reliability

Intra-investigator reliability of HG measurements has been reported to be excellent in ICU patients (ICC = 0.86–0.92), although lower than that observed in healthy subjects (ICC = 0.97–0.99) [39]. Inter-investigator reliability was also good to excellent for HG in ICU patients (Table 2), as illustrated by the ICCs ranging from 0.88 to 0.97 [19, 24, 39]. Again, higher ICCs were found in healthy subjects (0.96 and 0.97) as compared to ICU patients (0.89 and 0.92) [39].
Table 2
Inter-investigator reliability of force measurements performed with handgrip and handheld dynamometers in ICU patients
References
Patients
Handgrip
Handheld
Right
Left
Shoulder abduction
Elbow Flexion
Wrist extension
Hip flexion
Knee extension
Ankle dorsiflexion
Vanpee et al. [11]
39
  
0.91 (0.85–0.95)
0.96 (0.93–0.98)
0.94 (0.91–0.97)
0.80 (0.67–0.89)
0.94 (0.90–0.97)
0.76 (0.33–0.90)
Hermans et al. [19]
46
0.93 (0.86–0.97)
0.97 (0.94–0.98)
      
Parry et al. [24]
29
0.97 (0.90–0.99)W
0.94 (0.82–0.98)W
      
0.88 (0.70–0.96)M
0.97 (0.91–0.99)M
      
Baldwin et al. [39]
15
0.92 (0.68–0.98)
0.89 (0.54–0.97)
 
0.71 (− 0.21 to 0.93)R
  
0.84 (0.52–0.95)R
 
0.62 (− 0.30 to 0.90)L
0.79 (0.34–0.93) L
Intraclass Correlation Coefficients (and their 95% Confidence Interval) are reported
W women, M men, R right, L left
Excellent intra-investigator reliability of HHD measurements was obtained in all muscles but the left elbow flexors (ICC = 0.42). This later finding could be explained by the presence of radial arterial lines during the initial measurements [39]. Inter-investigator reliability of HHD was good to excellent [11, 39] (except for the elbow flexors, Table 2). However, Vanpee et al. [11] reported higher ICCs for elbow flexion and knee extension as compared with those measured by Baldwin et al. [39]. This could be related to several methodological differences between the two studies, such as the definition of awakening, the testing position, the use of visual feedback during force measurements, the age of the patients, the length of stay at the first force assessment and the experimental design.

Voluntary force in ICU patients: cross-sectional, longitudinal and diagnostic approaches

Cross-sectional approach

Absolute HG forces largely varied between studies and ranged from 3 to 20 kg during the first week of admission [32, 36, 44] and from 6 to 16 kg [19, 24, 32, 3941] over the second and third week (Table 3). Absolute HHD forces ranged from 8 to 12 kg for knee extension and elbow extension after a median ICU stay of 13–16 days [39, 40]. Several factors can explain the large differences among studies. Both age and the proportion of men could influence absolute force values [24, 45]. Older patients (> 80 years old) had lower HG absolute force values than their younger counterparts after ICU discharge [45]. It has also been reported that women had a median HG score of 0 kg while men obtained a median score of 20 kg when measurements were performed around 9 days after awakening [24]. In addition, the longer the mechanical ventilation, the lower the absolute grip force values (Table 3) [32]. Severity of illness (i.e. APACHE III) was also higher and HG force was lower in patients with ICUAW as compared with patients without ICUAW [10].
Table 3
Main outcomes from studies measuring voluntary force with handheld (HHD) and handgrip (HG) dynamometers in ICU patients
References
Number of patients
% Men
Age (years)
Ventilation duration (days)
ICU LOS (days)
Disease severity
Scoring system
Method
Testing session (days)
Main results
Ali et al. [10]
35 with ICUAW
101without ICUAW
40
50.5
59.5
57.1
12
6
21
12
66
APACHE III
HG (seated)
N/A
Handgrip cutoffs values for ICUAW diagnostic: 7 kg for women, 11 kg for men
Vanpee et al. [11]
39 + 12 (retest)
62
64
N/A
N/A
N/A
N/A
HHD
N/A
Absolute force for shoulder abduction: 74 N; elbow flexion: 75–79 N; wrist extension: 61–62 N; hip flexion: 112–119 N; knee extension: 85–94 N; ankle dorsiflexion: 57–80 N
No gender difference for force loss
Hermans et al. [19]
46
59
N/A
N/A
15
N/A
N/A
HG (seated)
15
HG absolute force for right hand: 11 kg for women vs 19 kg for men
Parry et al. [24]
60
58
69
6.6
12
22
APACHE II
HG (supine)
9
HG absolute median force values were 20 kg and 0 kg in men and women, respectively
27% of patients had a grip force of 0 kg (majority of women with n = 14/16)
Schmidt et al. [27]
28 with ICUAW
22 without ICUAW
39
50
58
49
N/A
40
14
77
66
APACHE IV
HG (seated)
N/A
Definition of new HG cutoff values (4 kg and 7 kg in women and men, respectively) to diagnose ICUAW as compared with EMG measurements
HG absolute force values were lower in patients with ICUAW as compared with patients without ICUAW (2.5 vs 13.6 kg, respectively)
Cottereau et al. [32]
3 groups:
41
33
10
37
60
10
58
68
69
4
11
20
8
17
24
47
52
60
SAPS II
HG (seated)
First SBT:
4
8
12
Absolute HG force values were of 20; 12 and 6 kg at day 4; 8, and 12 of SBT, respectively
Relative HG force values were of 30; 29 and 25% at day 4; 8, and 12 of SBT, respectively (normative database of Bohannon et al. [48])
Borges et al. [33]
72
36
53
7.5
10
20
APACHE II
HHD (quadriceps) + HG (seated)
Hospital discharge
Quadriceps and HG relative values were: 51% and 55% (Normative database of Hogrel et al. [65])
Bragança et al. [34]
45
60
55
5
10
69
SAPS III
HG (seated)
N/A
ICUAW patients had lower HG absolute force values as compared with patients without ICUAW (4 vs 22 kg, respectively)
HG cutoff values [10] had high agreement with MRC criteria for ICUAW diagnosis
Sidiras et al. [35]
36 with ICUAW
92 without ICUAW
42
74
58
51
18
08
26
12
18
15
APACHE II
HG (seated)
ICU and hospital discharge
ICUAW patients are weaker than patients without ICUAW at both ICU and hospital discharge (3 vs 14 kg and 7 vs 16 kg, respectively)
Women had lower HG relative force values at ICU and hospital discharge as compared with men
Borges & Soriano [36]
37
54
53
5
10
56
SAPS III
HG (seated)
3 and hospital discharge
HG absolute force values were of 12 and 19 kg at day 3 and hospital discharge, respectively
HG relative values were of 37% vs 68% at day 3 and hospital discharge, respectively (normative database of Günther et al. [46]
Burtin et al. [38]
90
72
57
N/A
N/A
25
APACHE II
HHD + HG
(supine)
ICU and hospital discharge
No significant difference for quadriceps force (normalized to body weight) measured with HHD between ICU and hospital discharge: 1.86 N.kg−1 and 2.03 N.kg−1
Baldwin et al. [39]
17
59
78
10
18
20
APACHE II
HHD + HG (supine)
13
HG, elbow flexion and knee extension absolute force values for right side were: 11; 9 and 11 kg, respectively
Baldwin & Bersten [40]
16
56
62
13
20
94
APACHE III
HHD + HG (supine)
16
HG, elbow flexion and knee extension absolute force values for right side were 11; 9 and 8 kg, respectively
Chlan et al. [41]
120
49
52
N/A
N/A
61
APACHE III
HG (supine)
9 (still ventilated)
Mean HG force was 3.2 kg (ranging from 0 to 54 kg) with 6 patients having a force of 0 kg
No force improvement was observed over time under MV
Dietrich et al. [45]
253
52
50
 < 80
 > 80
8
6.5
10
9
14
APACHE II
HG (seated)
1–5 after ICU discharge
HG absolute force (dominant, non-dominant):
20 and 18 kg for patients < 80 years vs 15 and 13 kg for patients > 80 years
Samosawala et al. [49]
64
64
49
N/A
9.6
N/A
N/A
HHD
3; 5 and 7
Absolute force decreased by 11.8% between day 3 and 7
Morris et al. [50]
300
45
56
N/A
7.5
76
APACHE III
HHD + HG (seated)
ICU and hospital discharge
HHD and HG absolute values at ICU and hospital discharge were: 9.9 kg and 10.4 kg vs 20.9 and 24.3 kg, respectively
Segaran et al. [51]
44
78
58
4–16
7–16
20
APACHE II
HG (seated)
N/A
HG measurements not feasible due to a lack of alertness (assessed by 4 questions), weakness and poly-trauma
EMG electromyography, LOS length of stay, HHD handheld dynamometer, HG handgrip, ICU intense care unit, ICUAW intense care unit-acquired weakness, MV mechanical ventilation, NO no ICUAW, SBT spontaneous breathing trial; (II), (III), (IV): Score acute physiology and chronic health evaluation II, III, IV; SAPS: Simplified acute physiology scores II, III. Median values are underlined
To take into account these differences, HG and HHD force has been normalized to age- and sex-matched values recorded in healthy controls to obtain relative/predictive values, i.e. values that patients should get if they had no ICUAW. Relative HG force values ranged from 12 to 37% of predicted values during the first week of ICU stay [32, 36, 44] (Fig. 1). This heterogeneity can also be due to differences in duration of MV and ICU stay and disease severity. Surprisingly, the lowest relative force values (12% of predicted values) were observed in a specific cohort of patients admitted to surgical ICU and having a very short MV (median of 3 days) and ICU stay (median of 5 days) duration [44]. This unexpected result could be related, at least in part, to the fact that 55% of the patients had HG force of 0 kg [44].
HG, elbow flexion and knee extension relative force values ranged from 25 to 39% of predicted values (Fig. 1) and from 51 to 54% in the late phase of ICU admission (12–16 days) [32, 40] and at hospital discharge [33, 35, 36], respectively. Interestingly, patients with septic shock displayed lower predictive values than patients with only severe sepsis [33], illustrating the impact of disease severity on force production. Despite the use of relative/predictive values, differences in the clinical status of patients and in the normative database [4648] clearly limit the comparison of voluntary force measurements among studies in ICU patients.

Longitudinal approach

To circumvent the aforementioned issues, longitudinal voluntary force measurements have been performed with both HG and HHD during ICU stay [41, 49]. HG force remained unchanged from day 1 to day 5 of awakening (i.e. the initial strength measurements were performed at a median ICU stay of 3 days) [36] or declined throughout the ICU stay (i.e. -0.34 lb-force per additional day of MV ventilation, especially in older women) [41]. Force recorded by HHD was reduced by 10–13% from day 3 to day 7 of ICU stay [49]. Altogether, these findings indicate that force does not recover within the first days of awakening.
Changes in voluntary force production between ICU and hospital discharge are still unclear. Indeed, knee extension force remained unchanged [38] while higher HG force values were reported at hospital discharge as compared with ICU discharge, although no statistical analysis was performed between the two measurements [35, 50]. ICUAW patients were always weaker than patients without ICUAW at both ICU and hospital discharge [35]. Further longitudinal studies are needed to determine the time course of voluntary force production from awakening to hospital discharge.

Diagnostic approach

The ability of HG to diagnose ICUAW has been investigated and cut-off values of less than 11 kg in men and less than 7 kg in women (Fig. 1) allowed to discriminate ICUAW with a sensitivity of 0.81 and a specificity of 0.83 [10]. In addition, MRC scores were positively correlated with HG force values. The use of HG as a surrogate to MRC to diagnose ICUAW was further confirmed by Parry et al. [24] with a sensitivity of 0.88 and a specificity of 0.80. However, the specificity was lower in women (0.45–0.55) than in men (0.88–0.92), despite a perfect sensitivity for women (i.e. 1.0). The lower specificity in women was explained by a very large number of women (14 out of 16) with a grip strength of 0 kg. Finally, the cut-off values of Ali et al. [10] were further confirmed in another population of ICU patients [34]. Lower cut-off values (i.e. 7 kg for men and 4 kg for women) were reported in septic patients diagnosed with CIPNM [27]. However, these results should be interpreted with caution considering the above-mentioned methodological limitations of this study [27]. Surprisingly, no study has investigated if HHD could be used to diagnose ICUAW despite its good to excellent reliability (Table 2 and Fig. 1).

Limitations

Normative database of voluntary force vary among studies which limits the interpretation of cross-sectional studies. In addition, patients must be sufficiently awake/cooperative to be able to develop a voluntary force and should have an MRC score higher than 3 in elbow flexion and wrist extension [19]. However, criteria used to define awakening state have not been standardized between studies [11, 39]. In addition, HG force measurements had a significant floor effect with ~ 25–55% of patients having a score of 0 kg [24, 44, 51]. This could be related to the diagnosis of ICUAW [24], lack of alertness or motivation as well as fatigue and pain associated with the disease. Finally, the first voluntary force measurements are usually performed after a median ICU stay ranging from 3 [36, 44, 49] to 16 days [40]. In this context, non-volitional force measurements could be an attractive alternative to HG/HHD in order to provide an earlier characterization of neuromuscular function in sedated patients (Fig. 1).

Evoked force

Existing ergometers and associated protocols

Non-volitional force measurements can be obtained in sedated patient using an ergometer consisting of a force transducer and an adjustable platform combined with supramaximal stimuli applied either over a motor nerve or a muscle belly [52]. The most used technique is electrical stimulation (ES) [53] that usually allows to spatially recruit all motor units. Magnetic stimulation (MS), which consists in applying a magnetic field over a motor nerve through an ergonomic coil to depolarize motor axons, has been introduced as an alternative to ES [54] to limit discomfort. The main advantages of evoked force either with ES or MS rely on the possibility to assess muscle force in sedated patients in the very early phase of ICU admission (i.e. within 24 h of ICU admission, [15]). Evoked force can be obtained in response to single twitch (Tw), paired pulse and/or trains of stimulations [52]. So far, different ergometers have been developed allowing to record evoked force in response to ES and/or MS in ICU patients on three muscle groups (Fig. 2c–e): adductor pollicis [12, 13, 55], ankle dorsiflexors [15, 56] and quadriceps [14, 57, 58].

Adductor pollicis (AP)

The first ergometer to assess AP force in ICU patients was inspired by a device (Fig. 2c) previously developed by Merton [59]. Forearm and hand are immobilized in supinated position in an arm board. An adjustable metal loop connected to a strain gauge is positioned around the proximal phalanx of the thumb to record evoked force in response to stimulation applied over the ulnar nerve. The thumb is abducted and the metacarpophalangeal and interphalangeal joints are fully extended.

Ankle dorsiflexors

The ergometer used to assess the ankle dorsiflexors force in response to peroneal nerve stimulation (Fig. 2d) combines a boot fixed on an adjustable footplate with a strain gauge to record the evoked force [15, 56, 60]. The system can be adjusted to fit the patient’s leg that is firmly maintained using non-elastic straps. The patient is lying in bed, with the leg fully extended, the other one being maintained to avoid unwanted motion during the stimulation.

Quadriceps

Three different ergometers have been developed so far (one of them is shown on Fig. 2e), to record quadriceps force production in response to stimuli applied either over the femoral nerve [58, 61] or the muscle belly [14]. The ergometers have been designed to optimize knee and hip angle joint angles when patient is in supine position. The tested leg is positioned on a support and a strain gauge is attached next to the malleolus perpendicularly to the leg axis.

Reliability

Reliability of evoked-force measurements has been scarcely investigated in ICU patients. No studies have measured intra- or inter-investigator ICC values and only a few investigations have reported coefficient of variations (CV) between two measurements. Intra-investigator reliability of magnetically-evoked Tw forces was found to be good in AP muscle (CV of 7.8% [3–9%]) [13]. Data extraction from Laghi’s et al. study [58] indicated an excellent intra-investigator reliability of quadriceps evoked force recorded in response Tw and paired pulse MS stimulations in ICU patients (CV of 1.9% [0.6–7.7%] and 1.5% [0.2–3.4%], respectively). In the same way, a good reliability of quadriceps Tw measurements in response to MS was also suggested on the basis of Bland–Altman comparison of values recorded in sedated and awake patients [61]. Only one study investigated the reliability of evoked force using ES and reported an excellent intra-investigator variability in ICU patients (i.e. CV = 6%) [56].

Evoked force in ICU patients: cross-sectional and longitudinal approaches

Cross-sectional approach

AP Tw force production in response to MS was 40% lower in ICU patients (at a length of stay: ∼18.5 days) as compared with healthy subjects (i.e. 4.2 N [2.2–6.7 N] vs. 7 N [4.4–9.8 N], respectively) [13]. Electrically-evoked force recorded (within 24 h of inclusion) on the AP muscle in response to a 30 Hz stimulation train was 69% lower in ICU patients (mean MV duration: ~ 14 days) than in healthy subjects after a 2-week immobilization period to mimic disuse associated with ICU (i.e. 20 ± 16 vs 65 ± 19 N, respectively) [55]. This suggests that factors other than immobilization are involved in muscle weakness. Ankle dorsiflexors evoked force in response to ES was reduced by ~ 20% for Tw and by ~ 40% for trains of stimuli after one week of ventilation and ICU stay as compared to healthy volunteers [56].
Quadriceps evoked Tw force in response to MS was four times lower in ICU after a mean stay of 7 days than in healthy subjects [58, 61]. When considering quadriceps force in response to paired pulse MS stimulations, values were ~ 54% lower in ICU patients (MV duration: ~ 10 days) as compared with healthy subjects (i.e. 10.2 vs. 22.1 kg, respectively) [58]. Finally, the ratio between the force evoked by a tetanic stimulation at 10 Hz to the force evoked by a tetanic stimulation at 50 Hz has been found to be higher in ICU patients with sepsis than in controls [12]. The clinical relevance of this index is unclear and no information on the magnitude of muscle weakness was provided in this study. In summary, although the clinical conditions varied between these studies, ICU patients showed large reduction in evoked force in both upper and lower limb muscles (Table 4 and Fig. 3).
Table 4
Main outcomes from studies measuring evoked force in ICU patients
References
Muscle
Stimulation technique
Number of patients (controls)
Duration of ICU stay or MV$ (days [range])
Main results
Finn et al. [12]
Adductor Pollicis
ES
44 (26)
9.5 [0–38]
F10/F50* ratio was higher in patients than in controls
Harris et al. [13]
 
ES & MS
12 (38)
18.5 [1–89]
Force was 40% lower in patients as compared with controls
Eikermann et al. [55]
 
ES
13 (7)
13.5 [5–23]$
Force was 69% lower in patients as compared with controls
Connolly et al. [15]
 
ES
21
13 [9–25]
Force was lower within the 24 h of admission in patients as compared with control values obtained in healthy subjects
Force remained unchanged when recorded 7 days after the initial measurements
Ginz et al. [56]
Ankle
Dorsiflexors
ES
19 (20)
7 [N/A]
Force was 20–40% lower in patients as compared with controls
Ginz et al. [60]
 
ES
8
5 [2–10]
Force decreased during the ICU stay and recovered after weaning of MV in ICU survivors
Silva et al. [14]
Quadriceps
ES#
30 (30)
23 [15–26]
Force decreased by ~ 25 and ~ 36% after 14 days of MV
Laghi et al. [58]
 
MS
12 (50)
9.9 [1–22]$
Force was 54% lower in patients as compared with controls
Vivodtzev et al. [61]
 
MS
13 (8)
7 [N/A]
Force was 75% lower in patients as compared with controls
*F10/F50: ratio between the forces produced by a 10 Hz stimulation train to the force produced by a 50 Hz stimulation train
#Electrical stimulation was applied over the quadriceps muscle belly; ES: electrical stimulation; MS: magnetic stimulation; MV: mechanical ventilation; N/A: Not available

Longitudinal approach

There is a paucity of studies that assessed the time-course of changes in evoked force in ICU patients. In a small cohort of 8 patients, seven of them showed a gradual decrease in electrically-evoked ankle dorsiflexor force during the ICU stay [60]. Interestingly, force significantly recovered after weaning of MV in ICU survivors but continued to decrease in the two patients who eventually died. In addition, ankle dorsiflexor force recorded within the 24 h of admission was already lower than that recorded on similarly aged healthy controls, suggesting that muscle weakness may be related to the influence of both critical illness and the presence of associated comorbidity [15]. In this study, muscle weakness was not further exacerbated when force was recorded 7 days after the initial testing. On the contrary, quadriceps electrically-evoked force decreased by ~ 25% and by ~ 36% at day 7 and day 14 of ICU stay [14], respectively.

Limitations

Although both ES and MS techniques seem to be reliable to record evoked-force in ICU patients, these results have been obtained on small cohorts of patients (i.e. n < 15 patients). There is so far no-commercially available ergometer allowing for evoked-force measurements at the beside and these investigations require specialized expertise. Discomfort associated to ES may prevent longitudinal force measurements in ICU patients after awakening [12, 56]. The level of discomfort is lower when using MS but the conditions of stimulation supramaximality with MS may not be met in overweight/obese patients [62] or in patients with edema which represent a large proportion of ICU patients. It is unclear whether and to what extent force measurements on a single muscle group may be representative for generalized muscle weakness.

Conclusions and perspectives

Over the last decade, force evaluation at patient bedside evolved from subjective to objective/quantitative measurements. Non-invasive electrical and/or magnetic evoked force measurements could be a relevant strategy to characterize muscle weakness in the early phase of ICU (i.e. in sedated patients). However, there is still a paucity of ergometers adapted to routine clinical practice and the reliability of evoked force measurements remains to be carefully investigated. Only a few longitudinal studies have characterized changes in evoked force from admission to awakening and/or to hospital discharge. Moreover, unlike with voluntary force measurements, the link between evoked force measurements and the diagnosis of ICUAW remains to be established. Overall, prospective multicenter ICU cohort studies are needed to determine whether and to what extent (e.g. cutoff values) evoked force measurements can be used as a valid surrogate of MRC for ICUAW diagnosis. This would allow to identify ICU patients most at risk early and will subsequently enable tailored interventional strategies, which can be delivered in the critical period to try to minimize the related alterations of neuromuscular function. Bedside ergometers could also be used to provide a comprehensive characterization of skeletal neuromuscular function in fully cooperative patients in order to get information on maximal voluntary force (as usually assessed by HHD), voluntary activation using superimposed stimuli on a maximal voluntary contraction (to evaluate whether and to what extent neural drive is impaired in ICU patients) and Tw properties (an index of muscle function) (Fig. 1) [52]. Evoked force measurements should also be combined with surface electromyography and ultrasound analyses, that can be easily performed at the bedside in sedated patients, in order to get a clear picture of the deleterious consequences of an ICU stay on the neuromuscular system and to improve our knowledge of the pathophysiology of ICUAW. The application of ES over the muscle belly (also refers to as neuromuscular ES) has been considered as a potential strategy for limiting/preventing muscle weakness/atrophy in ICU patients. However, its effectiveness is still equivocal in ICU patients [14, 63], one reason likely being methodological limitations. Indeed, the force produced in response to the stimulation, known as the main determinant of neuromuscular ES effectiveness [64], has never been accurately quantified in ICU patients. Therefore, the use of bedside ergometers could also allow to objectively quantify the individual contractile response to neuromuscular ES and identify potential responders to neuromuscular ES.

Acknowledgements

We thank Isabelle Millet for drawing Fig. 2.

Declarations

Not applicable.
Not applicable.

Competing interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
2.
Zurück zum Zitat Fan E, Cheek F, Chlan L, Gosselink R, Hart N, Herridge MS, et al. An Official American Thoracic Society Clinical Practice Guideline: the diagnosis of intensive care unit-acquired weakness in adults. Am J Respir Crit Care Med. 2014;190:1437–46.PubMedCrossRef Fan E, Cheek F, Chlan L, Gosselink R, Hart N, Herridge MS, et al. An Official American Thoracic Society Clinical Practice Guideline: the diagnosis of intensive care unit-acquired weakness in adults. Am J Respir Crit Care Med. 2014;190:1437–46.PubMedCrossRef
3.
Zurück zum Zitat Herridge MS, Tansey CM, Matté A, Tomlinson G, Diaz-Granados N, Cooper A, et al. Functional disability 5 years after acute respiratory distress syndrome. N Engl J Med. 2011;364:1293–304.PubMedCrossRef Herridge MS, Tansey CM, Matté A, Tomlinson G, Diaz-Granados N, Cooper A, et al. Functional disability 5 years after acute respiratory distress syndrome. N Engl J Med. 2011;364:1293–304.PubMedCrossRef
4.
Zurück zum Zitat Fuke R, Hifumi T, Kondo Y, Hatakeyama J, Takei T, Yamakawa K, et al. Early rehabilitation to prevent postintensive care syndrome in patients with critical illness: a systematic review and meta-analysis. BMJ Open. 2018;8:e019998.PubMedPubMedCentralCrossRef Fuke R, Hifumi T, Kondo Y, Hatakeyama J, Takei T, Yamakawa K, et al. Early rehabilitation to prevent postintensive care syndrome in patients with critical illness: a systematic review and meta-analysis. BMJ Open. 2018;8:e019998.PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Bolton CF, Laverty DA, Brown JD, Witt NJ, Hahn AF, Sibbald WJ. Critically ill polyneuropathy: electrophysiological studies and differentiation from Guillain–Barré syndrome. J Neurol Neurosurg Psychiatry. 1986;49:563–73.PubMedPubMedCentralCrossRef Bolton CF, Laverty DA, Brown JD, Witt NJ, Hahn AF, Sibbald WJ. Critically ill polyneuropathy: electrophysiological studies and differentiation from Guillain–Barré syndrome. J Neurol Neurosurg Psychiatry. 1986;49:563–73.PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Latronico N, Bolton CF. Critical illness polyneuropathy and myopathy: a major cause of muscle weakness and paralysis. Lancet Neurol. 2011;10:931–41.PubMedCrossRef Latronico N, Bolton CF. Critical illness polyneuropathy and myopathy: a major cause of muscle weakness and paralysis. Lancet Neurol. 2011;10:931–41.PubMedCrossRef
8.
Zurück zum Zitat Piva S, Fagoni N, Latronico N. Intensive care unit–acquired weakness: unanswered questions and targets for future research. F1000Research. 2019 Piva S, Fagoni N, Latronico N. Intensive care unit–acquired weakness: unanswered questions and targets for future research. F1000Research. 2019
9.
Zurück zum Zitat Matthews WB. Aids to the examination of the peripheral nervous system: (Medical research council memorandum, no. 45, superseding war memorandum no. 7), v + 62 pages, 90 illustrations, Her Majesty’s Stationery Office, London, 1976, £ 0.80. J Neurol Sci. 1977;33:299.CrossRef Matthews WB. Aids to the examination of the peripheral nervous system: (Medical research council memorandum, no. 45, superseding war memorandum no. 7), v + 62 pages, 90 illustrations, Her Majesty’s Stationery Office, London, 1976, £ 0.80. J Neurol Sci. 1977;33:299.CrossRef
10.
Zurück zum Zitat Ali NA, O’Brien JM, Hoffmann SP, Phillips G, Garland A, Finley JCW, et al. Acquired weakness, handgrip strength, and mortality in critically Ill patients. Am J Respir Crit Care Med. 2008;178:261–8.PubMedCrossRef Ali NA, O’Brien JM, Hoffmann SP, Phillips G, Garland A, Finley JCW, et al. Acquired weakness, handgrip strength, and mortality in critically Ill patients. Am J Respir Crit Care Med. 2008;178:261–8.PubMedCrossRef
11.
Zurück zum Zitat Vanpee G, Segers J, Van Mechelen H, Wouters P, Van den Berghe G, Hermans G, et al. The interobserver agreement of handheld dynamometry for muscle strength assessment in critically Ill patients. Crit Care Med. 2011;39:1929–34.PubMedCrossRef Vanpee G, Segers J, Van Mechelen H, Wouters P, Van den Berghe G, Hermans G, et al. The interobserver agreement of handheld dynamometry for muscle strength assessment in critically Ill patients. Crit Care Med. 2011;39:1929–34.PubMedCrossRef
12.
Zurück zum Zitat Finn PJ, Plank LD, Clark MA, Connolly AB, Hill GL. Assessment of involuntary muscle function in patients after critical injury or severe sepsis. JPEN J Parenter Enteral Nutr. 1996;20:332–7.PubMedCrossRef Finn PJ, Plank LD, Clark MA, Connolly AB, Hill GL. Assessment of involuntary muscle function in patients after critical injury or severe sepsis. JPEN J Parenter Enteral Nutr. 1996;20:332–7.PubMedCrossRef
13.
Zurück zum Zitat Harris ML, Luo YM, Watson AC, Rafferty GF, Polkey MI, Green M, et al. Adductor pollicis twitch tension assessed by magnetic stimulation of the ulnar nerve. Am J Respir Crit Care Med. 2000;162:240–5.PubMedCrossRef Harris ML, Luo YM, Watson AC, Rafferty GF, Polkey MI, Green M, et al. Adductor pollicis twitch tension assessed by magnetic stimulation of the ulnar nerve. Am J Respir Crit Care Med. 2000;162:240–5.PubMedCrossRef
14.
Zurück zum Zitat Silva PE, de Cássia MR, Livino-de-Carvalho K, de Araujo AET, Castro J, da Silva VM, et al. Neuromuscular electrical stimulation in critically ill traumatic brain injury patients attenuates muscle atrophy, neurophysiological disorders, and weakness: a randomized controlled trial. J Intensive Care. 2019;7:59.PubMedPubMedCentralCrossRef Silva PE, de Cássia MR, Livino-de-Carvalho K, de Araujo AET, Castro J, da Silva VM, et al. Neuromuscular electrical stimulation in critically ill traumatic brain injury patients attenuates muscle atrophy, neurophysiological disorders, and weakness: a randomized controlled trial. J Intensive Care. 2019;7:59.PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Connolly B, Maddocks M, MacBean V, Bernal W, Hart N, Hopkins P, et al. Nonvolitional assessment of tibialis anterior force and architecture during critical illness. Muscle Nerve. 2018;57:964–72.PubMedCrossRef Connolly B, Maddocks M, MacBean V, Bernal W, Hart N, Hopkins P, et al. Nonvolitional assessment of tibialis anterior force and architecture during critical illness. Muscle Nerve. 2018;57:964–72.PubMedCrossRef
16.
Zurück zum Zitat Bittner EA, Martyn JA, George E, Frontera WR, Eikermann M. Measurement of muscle strength in the intensive care unit. Crit Care Med. 2009;37:S321–30.PubMedCrossRef Bittner EA, Martyn JA, George E, Frontera WR, Eikermann M. Measurement of muscle strength in the intensive care unit. Crit Care Med. 2009;37:S321–30.PubMedCrossRef
17.
Zurück zum Zitat Florence JM, Pandya S, King WM, Robison JD, Baty J, Miller JP, et al. Intrarater reliability of manual muscle test (Medical Research Council scale) grades in Duchenne’s muscular dystrophy. Phys Ther. 1992;72:115–22; discussion 122–126. Florence JM, Pandya S, King WM, Robison JD, Baty J, Miller JP, et al. Intrarater reliability of manual muscle test (Medical Research Council scale) grades in Duchenne’s muscular dystrophy. Phys Ther. 1992;72:115–22; discussion 122–126.
18.
Zurück zum Zitat Paternostro-Sluga T, Grim-Stieger M, Posch M, Schuhfried O, Vacariu G, Mittermaier C, et al. Reliability and validity of the Medical Research Council (MRC) scale and a modified scale for testing muscle strength in patients with radial palsy. J Rehabil Med. 2008;40:665–71.PubMedCrossRef Paternostro-Sluga T, Grim-Stieger M, Posch M, Schuhfried O, Vacariu G, Mittermaier C, et al. Reliability and validity of the Medical Research Council (MRC) scale and a modified scale for testing muscle strength in patients with radial palsy. J Rehabil Med. 2008;40:665–71.PubMedCrossRef
19.
Zurück zum Zitat Hermans G, Clerckx B, Vanhullebusch T, Segers J, Vanpee G, Robbeets C, et al. Interobserver agreement of Medical Research Council sum-score and handgrip strength in the intensive care unit. Muscle Nerve. 2012;45:18–25.PubMedCrossRef Hermans G, Clerckx B, Vanhullebusch T, Segers J, Vanpee G, Robbeets C, et al. Interobserver agreement of Medical Research Council sum-score and handgrip strength in the intensive care unit. Muscle Nerve. 2012;45:18–25.PubMedCrossRef
20.
Zurück zum Zitat Hough CL, Lieu BK, Caldwell ES. Manual muscle strength testing of critically ill patients: feasibility and interobserver agreement. Crit Care. 2011;15:R43.PubMedPubMedCentralCrossRef Hough CL, Lieu BK, Caldwell ES. Manual muscle strength testing of critically ill patients: feasibility and interobserver agreement. Crit Care. 2011;15:R43.PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Kleyweg RP, van der Meché FG, Schmitz PI. Interobserver agreement in the assessment of muscle strength and functional abilities in Guillain-Barré syndrome. Muscle Nerve. 1991;14:1103–9.PubMedCrossRef Kleyweg RP, van der Meché FG, Schmitz PI. Interobserver agreement in the assessment of muscle strength and functional abilities in Guillain-Barré syndrome. Muscle Nerve. 1991;14:1103–9.PubMedCrossRef
22.
Zurück zum Zitat Fan E, Ciesla ND, Truong AD, Bhoopathi V, Zeger SL, Needham DM. Inter-rater reliability of manual muscle strength testing in ICU survivors and simulated patients. Intensive Care Med. 2010;36:1038–43.PubMedPubMedCentralCrossRef Fan E, Ciesla ND, Truong AD, Bhoopathi V, Zeger SL, Needham DM. Inter-rater reliability of manual muscle strength testing in ICU survivors and simulated patients. Intensive Care Med. 2010;36:1038–43.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Connolly BA, Jones GD, Curtis AA, Murphy PB, Douiri A, Hopkinson NS, et al. Clinical predictive value of manual muscle strength testing during critical illness: an observational cohort study. Crit Care. 2013;17:R229.PubMedPubMedCentralCrossRef Connolly BA, Jones GD, Curtis AA, Murphy PB, Douiri A, Hopkinson NS, et al. Clinical predictive value of manual muscle strength testing during critical illness: an observational cohort study. Crit Care. 2013;17:R229.PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Parry SM, Berney S, Granger CL, Dunlop DL, Murphy L, El-Ansary D, et al. A new two-tier strength assessment approach to the diagnosis of weakness in intensive care: an observational study. Crit Care. 2015;19:52.PubMedPubMedCentralCrossRef Parry SM, Berney S, Granger CL, Dunlop DL, Murphy L, El-Ansary D, et al. A new two-tier strength assessment approach to the diagnosis of weakness in intensive care: an observational study. Crit Care. 2015;19:52.PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat De Jonghe B, Sharshar T, Lefaucheur J-P, Authier F-J, Durand-Zaleski I, Boussarsar M, et al. Paresis acquired in the intensive care unit: a prospective multicenter study. JAMA. 2002;288:2859–67.PubMedCrossRef De Jonghe B, Sharshar T, Lefaucheur J-P, Authier F-J, Durand-Zaleski I, Boussarsar M, et al. Paresis acquired in the intensive care unit: a prospective multicenter study. JAMA. 2002;288:2859–67.PubMedCrossRef
26.
Zurück zum Zitat Vanhoutte EK, Faber CG, van Nes SI, Jacobs BC, van Doorn PA, van Koningsveld R, et al. Modifying the Medical Research Council grading system through Rasch analyses. Brain. 2012;135:1639–49.PubMedCrossRef Vanhoutte EK, Faber CG, van Nes SI, Jacobs BC, van Doorn PA, van Koningsveld R, et al. Modifying the Medical Research Council grading system through Rasch analyses. Brain. 2012;135:1639–49.PubMedCrossRef
27.
Zurück zum Zitat Schmidt D, Coelho AC, Vieira FN, Torres VF, Savi A, Vieira SRR. Critical illness polyneuromyopathy in septic patients: Is it possible to diagnose it in a bedside clinical examination? Arq Neuro Psiquiatr. 2019;77:33–8.CrossRef Schmidt D, Coelho AC, Vieira FN, Torres VF, Savi A, Vieira SRR. Critical illness polyneuromyopathy in septic patients: Is it possible to diagnose it in a bedside clinical examination? Arq Neuro Psiquiatr. 2019;77:33–8.CrossRef
28.
Zurück zum Zitat Van Aerde N, Meersseman P, Debaveye Y, Wilmer A, Gunst J, Casaer MP, et al. Five-year impact of ICU-acquired neuromuscular complications: a prospective, observational study. Intensive Care Med. 2020;46:1184–93.PubMedCrossRef Van Aerde N, Meersseman P, Debaveye Y, Wilmer A, Gunst J, Casaer MP, et al. Five-year impact of ICU-acquired neuromuscular complications: a prospective, observational study. Intensive Care Med. 2020;46:1184–93.PubMedCrossRef
29.
Zurück zum Zitat Sharshar T, Bastuji-Garin S, Stevens RD, Durand M-C, Malissin I, Rodriguez P, et al. Presence and severity of intensive care unit-acquired paresis at time of awakening are associated with increased intensive care unit and hospital mortality. Crit Care Med. 2009;37:3047–53.PubMedCrossRef Sharshar T, Bastuji-Garin S, Stevens RD, Durand M-C, Malissin I, Rodriguez P, et al. Presence and severity of intensive care unit-acquired paresis at time of awakening are associated with increased intensive care unit and hospital mortality. Crit Care Med. 2009;37:3047–53.PubMedCrossRef
30.
Zurück zum Zitat Stevens RD, Marshall SA, Cornblath DR, Hoke A, Needham DM, de Jonghe B, et al. A framework for diagnosing and classifying intensive care unit-acquired weakness. Crit Care Med. 2009;37:S299-308.PubMedCrossRef Stevens RD, Marshall SA, Cornblath DR, Hoke A, Needham DM, de Jonghe B, et al. A framework for diagnosing and classifying intensive care unit-acquired weakness. Crit Care Med. 2009;37:S299-308.PubMedCrossRef
31.
Zurück zum Zitat Roberts HC, Denison HJ, Martin HJ, Patel HP, Syddall H, Cooper C, et al. A review of the measurement of grip strength in clinical and epidemiological studies: towards a standardised approach. Age Ageing. 2011;40:423–9.PubMedCrossRef Roberts HC, Denison HJ, Martin HJ, Patel HP, Syddall H, Cooper C, et al. A review of the measurement of grip strength in clinical and epidemiological studies: towards a standardised approach. Age Ageing. 2011;40:423–9.PubMedCrossRef
32.
Zurück zum Zitat Cottereau G, Dres M, Avenel A, Fichet J, Jacobs FM, Prat D, et al. Handgrip strength predicts difficult weaning but not extubation failure in mechanically ventilated subjects. Respir Care. 2015;60:1097–104.PubMedCrossRef Cottereau G, Dres M, Avenel A, Fichet J, Jacobs FM, Prat D, et al. Handgrip strength predicts difficult weaning but not extubation failure in mechanically ventilated subjects. Respir Care. 2015;60:1097–104.PubMedCrossRef
33.
Zurück zum Zitat Borges RC, Carvalho CRF, Colombo AS, da Silva Borges MP, Soriano FG. Physical activity, muscle strength, and exercise capacity 3 months after severe sepsis and septic shock. Intensive Care Med. 2015;41:1433–44.PubMedCrossRef Borges RC, Carvalho CRF, Colombo AS, da Silva Borges MP, Soriano FG. Physical activity, muscle strength, and exercise capacity 3 months after severe sepsis and septic shock. Intensive Care Med. 2015;41:1433–44.PubMedCrossRef
34.
Zurück zum Zitat Bragança RD, Ravetti CG, Barreto L, Ataíde TBLS, Carneiro RM, Teixeira AL, et al. Use of handgrip dynamometry for diagnosis and prognosis assessment of intensive care unit acquired weakness: A prospective study. Heart Lung. 2019;48:532–7.PubMedCrossRef Bragança RD, Ravetti CG, Barreto L, Ataíde TBLS, Carneiro RM, Teixeira AL, et al. Use of handgrip dynamometry for diagnosis and prognosis assessment of intensive care unit acquired weakness: A prospective study. Heart Lung. 2019;48:532–7.PubMedCrossRef
35.
Zurück zum Zitat Sidiras G, Patsaki I, Karatzanos E, Dakoutrou M, Kouvarakos A, Mitsiou G, et al. Long term follow-up of quality of life and functional ability in patients with ICU acquired Weakness: a post hoc analysis. J Crit Care. 2019;53:223–30.PubMedCrossRef Sidiras G, Patsaki I, Karatzanos E, Dakoutrou M, Kouvarakos A, Mitsiou G, et al. Long term follow-up of quality of life and functional ability in patients with ICU acquired Weakness: a post hoc analysis. J Crit Care. 2019;53:223–30.PubMedCrossRef
36.
Zurück zum Zitat Borges RC, Soriano FG. Association between muscle wasting and muscle strength in patients who developed severe sepsis and septic shock. SHOCK. 2019;51:312–20.PubMedCrossRef Borges RC, Soriano FG. Association between muscle wasting and muscle strength in patients who developed severe sepsis and septic shock. SHOCK. 2019;51:312–20.PubMedCrossRef
37.
Zurück zum Zitat Jubran A, Grant BJB, Duffner LA, Collins EG, Lanuza DM, Hoffman LA, et al. Long-term outcome after prolonged mechanical ventilation. A long-term acute-care hospital study. Am J Respir Crit Care Med. 2019;199:1508–16.PubMedPubMedCentralCrossRef Jubran A, Grant BJB, Duffner LA, Collins EG, Lanuza DM, Hoffman LA, et al. Long-term outcome after prolonged mechanical ventilation. A long-term acute-care hospital study. Am J Respir Crit Care Med. 2019;199:1508–16.PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Burtin C, Clerckx B, Robbeets C, Ferdinande P, Langer D, Troosters T, et al. Early exercise in critically ill patients enhances short-term functional recovery. Crit Care Med. 2009;37:2499–505.PubMedCrossRef Burtin C, Clerckx B, Robbeets C, Ferdinande P, Langer D, Troosters T, et al. Early exercise in critically ill patients enhances short-term functional recovery. Crit Care Med. 2009;37:2499–505.PubMedCrossRef
39.
Zurück zum Zitat Baldwin CE, Paratz JD, Bersten AD. Muscle strength assessment in critically ill patients with handheld dynamometry: an investigation of reliability, minimal detectable change, and time to peak force generation. J Crit Care. 2013;28:77–86.PubMedCrossRef Baldwin CE, Paratz JD, Bersten AD. Muscle strength assessment in critically ill patients with handheld dynamometry: an investigation of reliability, minimal detectable change, and time to peak force generation. J Crit Care. 2013;28:77–86.PubMedCrossRef
40.
Zurück zum Zitat Baldwin CE, Bersten AD. Alterations in respiratory and limb muscle strength and size in patients with sepsis who are mechanically ventilated. Phys Ther. 2014;94:68–82.PubMedCrossRef Baldwin CE, Bersten AD. Alterations in respiratory and limb muscle strength and size in patients with sepsis who are mechanically ventilated. Phys Ther. 2014;94:68–82.PubMedCrossRef
41.
Zurück zum Zitat Chlan LL, Tracy MF, Guttormson J, Savik K. Peripheral muscle strength and correlates of muscle weakness in patients receiving mechanical ventilation. Am J Crit Care. 2015;24:e91–8.PubMedPubMedCentralCrossRef Chlan LL, Tracy MF, Guttormson J, Savik K. Peripheral muscle strength and correlates of muscle weakness in patients receiving mechanical ventilation. Am J Crit Care. 2015;24:e91–8.PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Bohannon RW. Reference values for extremity muscle strength obtained by hand-held dynamometry from adults aged 20 to 79 years. Arch Phys Med Rehabil. 1997;78:26–32.PubMedCrossRef Bohannon RW. Reference values for extremity muscle strength obtained by hand-held dynamometry from adults aged 20 to 79 years. Arch Phys Med Rehabil. 1997;78:26–32.PubMedCrossRef
43.
Zurück zum Zitat Vanpee G, Hermans G, Segers J, Gosselink R. Assessment of limb muscle strength in critically ill patients: a systematic review. Crit Care Med. 2014;42:701–11.PubMedCrossRef Vanpee G, Hermans G, Segers J, Gosselink R. Assessment of limb muscle strength in critically ill patients: a systematic review. Crit Care Med. 2014;42:701–11.PubMedCrossRef
44.
Zurück zum Zitat Lee JJ, Waak K, Grosse-Sundrup M, Xue F, Lee J, Chipman D, et al. Global muscle strength but not grip strength predicts mortality and length of stay in a general population in a surgical intensive care unit. Phys Ther. 2012;92:1546–55.PubMedCrossRef Lee JJ, Waak K, Grosse-Sundrup M, Xue F, Lee J, Chipman D, et al. Global muscle strength but not grip strength predicts mortality and length of stay in a general population in a surgical intensive care unit. Phys Ther. 2012;92:1546–55.PubMedCrossRef
45.
Zurück zum Zitat Dietrich C, Cardoso JR, Vargas F, Sanchez EC, Dutra FH, Moreira C, et al. Functional ability in younger and older elderlies after discharge from the intensive care unit. A prospective cohort. Rev Bras Ter Intensiva. 2017;29:293–302.PubMedPubMedCentralCrossRef Dietrich C, Cardoso JR, Vargas F, Sanchez EC, Dutra FH, Moreira C, et al. Functional ability in younger and older elderlies after discharge from the intensive care unit. A prospective cohort. Rev Bras Ter Intensiva. 2017;29:293–302.PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Günther CM, Bürger A, Rickert M, Crispin A, Schulz CU. Grip strength in healthy caucasian adults: reference values. J Hand Surg. 2008;33:558–65.CrossRef Günther CM, Bürger A, Rickert M, Crispin A, Schulz CU. Grip strength in healthy caucasian adults: reference values. J Hand Surg. 2008;33:558–65.CrossRef
47.
Zurück zum Zitat Schlüssel MM, dos Anjos LA, de Vasconcellos MTL, Kac G. Reference values of handgrip dynamometry of healthy adults: a population-based study. Clin Nutr. 2008;27:601–7.PubMedCrossRef Schlüssel MM, dos Anjos LA, de Vasconcellos MTL, Kac G. Reference values of handgrip dynamometry of healthy adults: a population-based study. Clin Nutr. 2008;27:601–7.PubMedCrossRef
48.
Zurück zum Zitat Bohannon RW, Peolsson A, Massy-Westropp N, Desrosiers J, Bear-Lehman J. Reference values for adult grip strength measured with a Jamar dynamometer: a descriptive meta-analysis. Physiotherapy. 2006;92:11–5.CrossRef Bohannon RW, Peolsson A, Massy-Westropp N, Desrosiers J, Bear-Lehman J. Reference values for adult grip strength measured with a Jamar dynamometer: a descriptive meta-analysis. Physiotherapy. 2006;92:11–5.CrossRef
49.
Zurück zum Zitat Samosawala NR, Vaishali K, Kalyana BC. Measurement of muscle strength with handheld dynamometer in Intensive Care Unit. Indian J Crit Care Med. 2016;20:21–6.PubMedPubMedCentralCrossRef Samosawala NR, Vaishali K, Kalyana BC. Measurement of muscle strength with handheld dynamometer in Intensive Care Unit. Indian J Crit Care Med. 2016;20:21–6.PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Morris PE, Berry MJ, Files DC, Thompson JC, Hauser J, Flores L, et al. Standardized rehabilitation and hospital length of stay among patients with acute respiratory failure: a randomized clinical trial. JAMA Am Med Assoc. 2016;315:2694–702.CrossRef Morris PE, Berry MJ, Files DC, Thompson JC, Hauser J, Flores L, et al. Standardized rehabilitation and hospital length of stay among patients with acute respiratory failure: a randomized clinical trial. JAMA Am Med Assoc. 2016;315:2694–702.CrossRef
51.
Zurück zum Zitat Segaran E, Wandrag L, Stotz M, Terblanche M, Hickson M. Does body mass index impact on muscle wasting and recovery following critical illness? A pilot feasibility observational study. J Hum Nutr Diet. 2017;30:227–35.PubMedCrossRef Segaran E, Wandrag L, Stotz M, Terblanche M, Hickson M. Does body mass index impact on muscle wasting and recovery following critical illness? A pilot feasibility observational study. J Hum Nutr Diet. 2017;30:227–35.PubMedCrossRef
52.
Zurück zum Zitat Millet GY, Martin V, Martin A, Vergès S. Electrical stimulation for testing neuromuscular function: from sport to pathology. Eur J Appl Physiol. 2011;111:2489–500.PubMedCrossRef Millet GY, Martin V, Martin A, Vergès S. Electrical stimulation for testing neuromuscular function: from sport to pathology. Eur J Appl Physiol. 2011;111:2489–500.PubMedCrossRef
54.
Zurück zum Zitat Swallow EB, Gosker HR, Ward KA, Moore AJ, Dayer MJ, Hopkinson NS, et al. A novel technique for nonvolitional assessment of quadriceps muscle endurance in humans. J Appl Physiol. 2007;103:739–46.PubMedCrossRef Swallow EB, Gosker HR, Ward KA, Moore AJ, Dayer MJ, Hopkinson NS, et al. A novel technique for nonvolitional assessment of quadriceps muscle endurance in humans. J Appl Physiol. 2007;103:739–46.PubMedCrossRef
55.
Zurück zum Zitat Eikermann M, Koch G, Gerwig M, Ochterbeck C, Beiderlinden M, Koeppen S, et al. Muscle force and fatigue in patients with sepsis and multiorgan failure. Intensive Care Med. 2006;32:251–9.PubMedCrossRef Eikermann M, Koch G, Gerwig M, Ochterbeck C, Beiderlinden M, Koeppen S, et al. Muscle force and fatigue in patients with sepsis and multiorgan failure. Intensive Care Med. 2006;32:251–9.PubMedCrossRef
56.
Zurück zum Zitat Ginz HF, Iaizzo PA, Girard T, Urwyler A, Pargger H. Decreased isometric skeletal muscle force in critically ill patients. Swiss Med Wkly. 2005;135:555–61.PubMed Ginz HF, Iaizzo PA, Girard T, Urwyler A, Pargger H. Decreased isometric skeletal muscle force in critically ill patients. Swiss Med Wkly. 2005;135:555–61.PubMed
57.
Zurück zum Zitat Vivodtzev I, Flore P, Lévy P, Wuyam B. Voluntary activation during knee extensions in severely deconditioned patients with chronic obstructive pulmonary disease: benefit of endurance training. Muscle Nerve. 2008;37:27–35.PubMedCrossRef Vivodtzev I, Flore P, Lévy P, Wuyam B. Voluntary activation during knee extensions in severely deconditioned patients with chronic obstructive pulmonary disease: benefit of endurance training. Muscle Nerve. 2008;37:27–35.PubMedCrossRef
58.
Zurück zum Zitat Laghi F, Khan N, Schnell T, Alexonis D, Hammond K, Shaikh H, et al. New device for non-volitional evaluation of quadriceps force in ventilated patients. Muscle Nerve. 2018;57:784–91.PubMedCrossRef Laghi F, Khan N, Schnell T, Alexonis D, Hammond K, Shaikh H, et al. New device for non-volitional evaluation of quadriceps force in ventilated patients. Muscle Nerve. 2018;57:784–91.PubMedCrossRef
60.
Zurück zum Zitat Ginz HF, Iaizzo PA, Urwyler A, Pargger H. Use of non-invasive-stimulated muscle force assessment in long-term critically ill patients: a future standard in the intensive care unit? Acta Anaesthesiol Scand. 2008;52:20–7.PubMed Ginz HF, Iaizzo PA, Urwyler A, Pargger H. Use of non-invasive-stimulated muscle force assessment in long-term critically ill patients: a future standard in the intensive care unit? Acta Anaesthesiol Scand. 2008;52:20–7.PubMed
61.
Zurück zum Zitat Vivodtzev I, Devost A-A, Saey D, Villeneuve S, Boilard G, Gagnon P, et al. Severe and early quadriceps weakness in mechanically ventilated patients. Crit Care. 2014;18:431.PubMedPubMedCentralCrossRef Vivodtzev I, Devost A-A, Saey D, Villeneuve S, Boilard G, Gagnon P, et al. Severe and early quadriceps weakness in mechanically ventilated patients. Crit Care. 2014;18:431.PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Tomazin K, Verges S, Decorte N, Oulerich A, Maffiuletti NA, Millet GY. Fat tissue alters quadriceps response to femoral nerve magnetic stimulation. Clin Neurophysiol. 2011;122:842–7.PubMedCrossRef Tomazin K, Verges S, Decorte N, Oulerich A, Maffiuletti NA, Millet GY. Fat tissue alters quadriceps response to femoral nerve magnetic stimulation. Clin Neurophysiol. 2011;122:842–7.PubMedCrossRef
63.
Zurück zum Zitat Poulsen JB, Møller K, Jensen CV, Weisdorf S, Kehlet H, Perner A. Effect of transcutaneous electrical muscle stimulation on muscle volume in patients with septic shock. Crit Care Med. 2011;39:456–61.PubMedCrossRef Poulsen JB, Møller K, Jensen CV, Weisdorf S, Kehlet H, Perner A. Effect of transcutaneous electrical muscle stimulation on muscle volume in patients with septic shock. Crit Care Med. 2011;39:456–61.PubMedCrossRef
64.
Zurück zum Zitat Maffiuletti NA. Physiological and methodological considerations for the use of neuromuscular electrical stimulation. Eur J Appl Physiol. 2010;110:223–34.PubMedCrossRef Maffiuletti NA. Physiological and methodological considerations for the use of neuromuscular electrical stimulation. Eur J Appl Physiol. 2010;110:223–34.PubMedCrossRef
65.
Metadaten
Titel
Bedside voluntary and evoked forces evaluation in intensive care unit patients: a narrative review
verfasst von
Djahid Kennouche
Eric Luneau
Thomas Lapole
Jérome Morel
Guillaume Y. Millet
Julien Gondin
Publikationsdatum
01.12.2021
Verlag
BioMed Central
Erschienen in
Critical Care / Ausgabe 1/2021
Elektronische ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-021-03567-9

Weitere Artikel der Ausgabe 1/2021

Critical Care 1/2021 Zur Ausgabe

Blutdrucksenkung schon im Rettungswagen bei akutem Schlaganfall?

31.05.2024 Apoplex Nachrichten

Der optimale Ansatz für die Blutdruckkontrolle bei Patientinnen und Patienten mit akutem Schlaganfall ist noch nicht gefunden. Ob sich eine frühzeitige Therapie der Hypertonie noch während des Transports in die Klinik lohnt, hat jetzt eine Studie aus China untersucht.

Ähnliche Überlebensraten nach Reanimation während des Transports bzw. vor Ort

29.05.2024 Reanimation im Kindesalter Nachrichten

Laut einer Studie aus den USA und Kanada scheint es bei der Reanimation von Kindern außerhalb einer Klinik keinen Unterschied für das Überleben zu machen, ob die Wiederbelebungsmaßnahmen während des Transports in die Klinik stattfinden oder vor Ort ausgeführt werden. Jedoch gibt es dabei einige Einschränkungen und eine wichtige Ausnahme.

Nicht Creutzfeldt Jakob, sondern Abführtee-Vergiftung

29.05.2024 Hyponatriämie Nachrichten

Eine ältere Frau trinkt regelmäßig Sennesblättertee gegen ihre Verstopfung. Der scheint plötzlich gut zu wirken. Auf Durchfall und Erbrechen folgt allerdings eine Hyponatriämie. Nach deren Korrektur kommt es plötzlich zu progredienten Kognitions- und Verhaltensstörungen.

Häusliche Gewalt in der orthopädischen Notaufnahme oft nicht erkannt

28.05.2024 Häusliche Gewalt Nachrichten

In der Notaufnahme wird die Chance, Opfer von häuslicher Gewalt zu identifizieren, von Orthopäden und Orthopädinnen offenbar zu wenig genutzt. Darauf deuten die Ergebnisse einer Fragebogenstudie an der Sahlgrenska-Universität in Schweden hin.

Update AINS

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.