Skip to main content
Erschienen in: Inflammation 2/2018

01.12.2017 | ORIGINAL ARTICLE

α7-nAChR Activation Has an Opposite Effect on Healing of Covered and Uncovered Wounds

verfasst von: Jiao-Yong Li, Shu-Kun Jiang, Lin-Lin Wang, Meng-Zhou Zhang, Shuai Wang, Zhen-Fei Jiang, Yu-Li Liu, Hao Cheng, Miao Zhang, Rui Zhao, Da-Wei Guan

Erschienen in: Inflammation | Ausgabe 2/2018

Einloggen, um Zugang zu erhalten

Abstract

The α7 nicotinic acetylcholine receptor (α7-nAChR) is associated with inflammation, re-epithelialization, and angiogenesis in wound healing process. A recent study demonstrated that PNU-282987, a selective agonist of α7-nAChR, accelerates the repair of diabetic excisional wounds. Whether α7-nAChR activation promotes non-diabetic wounds healing is unknown. The aim of this study was to evaluate the effects of α7-nAChR activation on non-diabetic wound healing. The effects were evaluated in two wound models. In the first model, the wound was covered with a semi-permeable transparent dressing. In the second model, the wound was left uncovered. In both models, the mice were randomly assigned to two treatment groups: saline or PNU282987 (25 mice in each group). In covered wounds, we found that α7-nAChR activation inhibited re-epithelialization, angiogenesis, and epithelial cells proliferation, promoted neo-epithelial detachment, and suppressed neutrophil infiltration and the expression of interleukin-6 (IL-6) and vascular endothelial growth factor (VEGF). However, in uncovered wounds, we observed that α7-nAChR activation promoted re-epithelialization and angiogenesis, inhibited neutrophil infiltration and the expression of high mobility group box (HMGB)-1, epidermal growth factor (EGF), and VEGF. In conclusion, this data demonstrated that α7-nAChR activation inhibited wound healing in covered wounds but played an opposite role in uncovered wounds. The opposite effect might be primarily due to inhibition of inflammation.
Literatur
1.
Zurück zum Zitat Singer, A.J., and R.A. Clark. 1999. Cutaneous wound healing. New England Journal of Medicine 341: 738–746.CrossRefPubMed Singer, A.J., and R.A. Clark. 1999. Cutaneous wound healing. New England Journal of Medicine 341: 738–746.CrossRefPubMed
2.
Zurück zum Zitat Gurtner, G.C., S. Werner, Y. Barrandon, and M.T. Longaker. 2008. Wound repair and regeneration. Nature 453: 314–321.CrossRefPubMed Gurtner, G.C., S. Werner, Y. Barrandon, and M.T. Longaker. 2008. Wound repair and regeneration. Nature 453: 314–321.CrossRefPubMed
3.
Zurück zum Zitat Werner, S., and R. Grose. 2003. Regulation of wound healing by growth factors and cytokines. Physiological Reviews 83: 835–870.CrossRefPubMed Werner, S., and R. Grose. 2003. Regulation of wound healing by growth factors and cytokines. Physiological Reviews 83: 835–870.CrossRefPubMed
4.
Zurück zum Zitat Pillai, S., and S. Chellappan. 2012. Alpha7 nicotinic acetylcholine receptor subunit in angiogenesis and epithelial to mesenchymal transition. Current Drug Targets 13: 671–679.CrossRefPubMed Pillai, S., and S. Chellappan. 2012. Alpha7 nicotinic acetylcholine receptor subunit in angiogenesis and epithelial to mesenchymal transition. Current Drug Targets 13: 671–679.CrossRefPubMed
5.
Zurück zum Zitat Kurzen, H., I. Wessler, C. Kirkpatrick, K. Kawashima, and S. Grando. 2007. The non-neuronal cholinergic system of human skin. Hormone and Metabolic Research 39: 125–135.CrossRefPubMed Kurzen, H., I. Wessler, C. Kirkpatrick, K. Kawashima, and S. Grando. 2007. The non-neuronal cholinergic system of human skin. Hormone and Metabolic Research 39: 125–135.CrossRefPubMed
6.
Zurück zum Zitat Chernyavsky, A.I., J. Arredondo, J. Qian, V. Galitovskiy, and S.A. Grando. 2009. Coupling of ionic events to protein kinase signaling cascades upon activation of α7 nicotinic receptor: Cooperative regulation of 2-integrin expression and Rho Kinase activity. Journal of Biological Chemistry 284: 22140–22148.CrossRefPubMedPubMedCentral Chernyavsky, A.I., J. Arredondo, J. Qian, V. Galitovskiy, and S.A. Grando. 2009. Coupling of ionic events to protein kinase signaling cascades upon activation of α7 nicotinic receptor: Cooperative regulation of 2-integrin expression and Rho Kinase activity. Journal of Biological Chemistry 284: 22140–22148.CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Grando, S.A., M.R. Pittelkow, and K.U. Schallreuter. 2006. Adrenergic and cholinergic control in the biology of epidermis: physiological and clinical significance. Journal of Investigative Dermatology 126: 1948–1965.CrossRefPubMed Grando, S.A., M.R. Pittelkow, and K.U. Schallreuter. 2006. Adrenergic and cholinergic control in the biology of epidermis: physiological and clinical significance. Journal of Investigative Dermatology 126: 1948–1965.CrossRefPubMed
8.
Zurück zum Zitat Heeschen, C., M. Weis, A. Aicher, S. Dimmeler, and J.P. Cooke. 2002. A novel angiogenic pathway mediated by non-neuronal nicotinic acetylcholine receptors. Journal of Clinical Investigation 110: 527–536.CrossRefPubMedPubMedCentral Heeschen, C., M. Weis, A. Aicher, S. Dimmeler, and J.P. Cooke. 2002. A novel angiogenic pathway mediated by non-neuronal nicotinic acetylcholine receptors. Journal of Clinical Investigation 110: 527–536.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Gallowitsch-Puerta, M. 2005. Immunologic role of the cholinergic anti-inflammatory pathway and the nicotinic acetylcholine α7 receptor. Annals of the New York Academy of Sciences 1062: 209–219.CrossRefPubMed Gallowitsch-Puerta, M. 2005. Immunologic role of the cholinergic anti-inflammatory pathway and the nicotinic acetylcholine α7 receptor. Annals of the New York Academy of Sciences 1062: 209–219.CrossRefPubMed
10.
Zurück zum Zitat Wang, H., M. Yu, M. Ochani, C.A. Amella, M. Tanovic, S. Susarla, J.H. Li, H. Wang, H. Yang, L. Ulloa, Y. Al-Abed, C.J. Czura, and K.J. Tracey. 2003. Nicotinic acetylcholine receptor α7 subunit is an essential regulator of inflammation. Nature 421: 384–388.CrossRefPubMed Wang, H., M. Yu, M. Ochani, C.A. Amella, M. Tanovic, S. Susarla, J.H. Li, H. Wang, H. Yang, L. Ulloa, Y. Al-Abed, C.J. Czura, and K.J. Tracey. 2003. Nicotinic acetylcholine receptor α7 subunit is an essential regulator of inflammation. Nature 421: 384–388.CrossRefPubMed
11.
Zurück zum Zitat Fan, Y., T. Yu, T. Wang, W. Liu, R. Zhao, S. Zhang, W. Ma, J. Zheng, and D.W. Guan. 2011. Nicotinic acetylcholine receptor alpha7 subunit is time-dependently expressed in distinct cell types during skin wound healing in mice. Histochemistry and Cell Biology 135: 375–387.CrossRefPubMed Fan, Y., T. Yu, T. Wang, W. Liu, R. Zhao, S. Zhang, W. Ma, J. Zheng, and D.W. Guan. 2011. Nicotinic acetylcholine receptor alpha7 subunit is time-dependently expressed in distinct cell types during skin wound healing in mice. Histochemistry and Cell Biology 135: 375–387.CrossRefPubMed
12.
Zurück zum Zitat Jacinto, A., A. Martinez-Arias, and P. Martin. 2001. Mechanisms of epithelial fusion and repair. Nature Cell Biology 3: E117–E123.CrossRefPubMed Jacinto, A., A. Martinez-Arias, and P. Martin. 2001. Mechanisms of epithelial fusion and repair. Nature Cell Biology 3: E117–E123.CrossRefPubMed
13.
Zurück zum Zitat Dovi, J.V., A.M. Szpaderska, and L.A. DiPietro. 2004. Neutrophil function in the healing wound: adding insult to injury? Thrombosis and Haemostasis 92: 275–280.PubMed Dovi, J.V., A.M. Szpaderska, and L.A. DiPietro. 2004. Neutrophil function in the healing wound: adding insult to injury? Thrombosis and Haemostasis 92: 275–280.PubMed
14.
Zurück zum Zitat Fang, Y., and K.K.H. Svoboda. 2005. Nicotine inhibits human gingival fibroblast migration via modulation of Rac signalling pathways. Journal of Clinical Periodontology 32: 1200–1207.CrossRefPubMedPubMedCentral Fang, Y., and K.K.H. Svoboda. 2005. Nicotine inhibits human gingival fibroblast migration via modulation of Rac signalling pathways. Journal of Clinical Periodontology 32: 1200–1207.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Kurzen, H., C. Henrich, D. Booken, N. Poenitz, A. Gratchev, C. Klemke, M. Engstner, S. Goerdt, and N. Maas-Szabowski. 2006. Functional characterization of the epidermal cholinergic system in vitro. Journal of Investigative Dermatology 126: 2458–2472.CrossRefPubMed Kurzen, H., C. Henrich, D. Booken, N. Poenitz, A. Gratchev, C. Klemke, M. Engstner, S. Goerdt, and N. Maas-Szabowski. 2006. Functional characterization of the epidermal cholinergic system in vitro. Journal of Investigative Dermatology 126: 2458–2472.CrossRefPubMed
16.
Zurück zum Zitat Arredondo, J. 2002. Central role of alpha7 nicotinic receptor in differentiation of the stratified squamous epithelium. The Journal of Cell Biology 159: 325–336.CrossRefPubMedPubMedCentral Arredondo, J. 2002. Central role of alpha7 nicotinic receptor in differentiation of the stratified squamous epithelium. The Journal of Cell Biology 159: 325–336.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Chernyavsky, A.I. 2004. Differential regulation of keratinocyte chemokinesis and chemotaxis through distinct nicotinic receptor subtypes. Journal of Cell Science 117: 5665–5679.CrossRefPubMed Chernyavsky, A.I. 2004. Differential regulation of keratinocyte chemokinesis and chemotaxis through distinct nicotinic receptor subtypes. Journal of Cell Science 117: 5665–5679.CrossRefPubMed
18.
Zurück zum Zitat Arredondo, J., V.T. Nguyen, A.I. Chernyavsky, D. Bercovich, A. Orr-Urtreger, D.E. Vetter, and S.A. Grando. 2003. Functional role of alpha7 nicotinic receptor in physiological control of cutaneous homeostasis. Life Sciences 72: 2063–2067.CrossRefPubMed Arredondo, J., V.T. Nguyen, A.I. Chernyavsky, D. Bercovich, A. Orr-Urtreger, D.E. Vetter, and S.A. Grando. 2003. Functional role of alpha7 nicotinic receptor in physiological control of cutaneous homeostasis. Life Sciences 72: 2063–2067.CrossRefPubMed
19.
Zurück zum Zitat Chernyavsky, A.I., J. Arredondo, E. Karlsson, I. Wessler, and S.A. Grando. 2005. The Ras/Raf-1/MEK1/ERK signaling pathway coupled to integrin expression mediates cholinergic regulation of keratinocyte directional migration. Journal of Biological Chemistry 280: 39220–39228.CrossRefPubMed Chernyavsky, A.I., J. Arredondo, E. Karlsson, I. Wessler, and S.A. Grando. 2005. The Ras/Raf-1/MEK1/ERK signaling pathway coupled to integrin expression mediates cholinergic regulation of keratinocyte directional migration. Journal of Biological Chemistry 280: 39220–39228.CrossRefPubMed
20.
Zurück zum Zitat Costa, F., and R. Soares. 2009. Nicotine: a pro-angiogenic factor. Life Sciences 84: 785–790.CrossRefPubMed Costa, F., and R. Soares. 2009. Nicotine: a pro-angiogenic factor. Life Sciences 84: 785–790.CrossRefPubMed
21.
Zurück zum Zitat Ng, M.K., J. Wu, E. Chang, B.Y. Wang, R. Katzenberg-Clark, A. Ishii-Watabe, and J.P. Cooke. 2007. A central role for nicotinic cholinergic regulation of growth factor-induced endothelial cell migration. Arteriosclerosis, Thrombosis, and Vascular Biology 27: 106–112.CrossRefPubMed Ng, M.K., J. Wu, E. Chang, B.Y. Wang, R. Katzenberg-Clark, A. Ishii-Watabe, and J.P. Cooke. 2007. A central role for nicotinic cholinergic regulation of growth factor-induced endothelial cell migration. Arteriosclerosis, Thrombosis, and Vascular Biology 27: 106–112.CrossRefPubMed
22.
Zurück zum Zitat Heeschen, C., E. Chang, A. Aicher, and J.P. Cooke. 2006. Endothelial progenitor cells participate in nicotine-mediated angiogenesis. Journal of the American College of Cardiology 48: 2553–2560.CrossRefPubMed Heeschen, C., E. Chang, A. Aicher, and J.P. Cooke. 2006. Endothelial progenitor cells participate in nicotine-mediated angiogenesis. Journal of the American College of Cardiology 48: 2553–2560.CrossRefPubMed
23.
Zurück zum Zitat Park, Y.J., T. Lee, J. Ha, I.M. Jung, J.K. Chung, and S.J. Kim. 2008. Effect of nicotine on human umbilical vein endothelial cells (HUVECs) migration and angiogenesis. Vascular Pharmacology 49: 32–36.CrossRefPubMed Park, Y.J., T. Lee, J. Ha, I.M. Jung, J.K. Chung, and S.J. Kim. 2008. Effect of nicotine on human umbilical vein endothelial cells (HUVECs) migration and angiogenesis. Vascular Pharmacology 49: 32–36.CrossRefPubMed
24.
Zurück zum Zitat Heeschen, C., J.J. Jang, M. Weis, A. Pathak, S. Kaji, R.S. Hu, P.S. Tsao, F.L. Johnson, and J.P. Cooke. 2001. Nicotine stimulates angiogenesis and promotes tumor growth and atherosclerosis. Nature Medicine 7: 833–839.CrossRefPubMed Heeschen, C., J.J. Jang, M. Weis, A. Pathak, S. Kaji, R.S. Hu, P.S. Tsao, F.L. Johnson, and J.P. Cooke. 2001. Nicotine stimulates angiogenesis and promotes tumor growth and atherosclerosis. Nature Medicine 7: 833–839.CrossRefPubMed
25.
Zurück zum Zitat Egleton, R.D., K.C. Brown, and P. Dasgupta. 2009. Angiogenic activity of nicotinic acetylcholine receptors: implications in tobacco-related vascular diseases. Pharmacology & Therapeutics 121: 205–223.CrossRef Egleton, R.D., K.C. Brown, and P. Dasgupta. 2009. Angiogenic activity of nicotinic acetylcholine receptors: implications in tobacco-related vascular diseases. Pharmacology & Therapeutics 121: 205–223.CrossRef
26.
Zurück zum Zitat Pena, V.B., I.C. Bonini, S.S. Antollini, T. Kobayashi, and F.J. Barrantes. 2011. Alpha 7-type acetylcholine receptor localization and its modulation by nicotine and cholesterol in vascular endothelial cells. Journal of Cellular Biochemistry 112: 3276–3288.CrossRefPubMed Pena, V.B., I.C. Bonini, S.S. Antollini, T. Kobayashi, and F.J. Barrantes. 2011. Alpha 7-type acetylcholine receptor localization and its modulation by nicotine and cholesterol in vascular endothelial cells. Journal of Cellular Biochemistry 112: 3276–3288.CrossRefPubMed
27.
Zurück zum Zitat Li, X., and H. Wang. 2006. Non-neuronal nicotinic alpha 7 receptor, a new endothelial target for revascularization. Life Sciences 78: 1863–1870.CrossRefPubMed Li, X., and H. Wang. 2006. Non-neuronal nicotinic alpha 7 receptor, a new endothelial target for revascularization. Life Sciences 78: 1863–1870.CrossRefPubMed
28.
Zurück zum Zitat Jacobi, J., J.J. Jang, U. Sundram, H. Dayoub, L.F. Fajardo, and J.P. Cooke. 2002. Nicotine accelerates angiogenesis and wound healing in genetically diabetic mice. The American Journal of Pathology 161: 97–104.CrossRefPubMedPubMedCentral Jacobi, J., J.J. Jang, U. Sundram, H. Dayoub, L.F. Fajardo, and J.P. Cooke. 2002. Nicotine accelerates angiogenesis and wound healing in genetically diabetic mice. The American Journal of Pathology 161: 97–104.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Dong, M.W., M. Li, J. Chen, T.T. Fu, K.Z. Lin, G.H. Ye, J.G. Han, X.P. Feng, X.B. Li, L.S. Yu, and Y.Y. Fan. 2016. Activation of alpha7nAChR promotes diabetic wound healing by suppressing AGE-induced TNF-alpha production. Inflammation 39: 687–699.CrossRefPubMed Dong, M.W., M. Li, J. Chen, T.T. Fu, K.Z. Lin, G.H. Ye, J.G. Han, X.P. Feng, X.B. Li, L.S. Yu, and Y.Y. Fan. 2016. Activation of alpha7nAChR promotes diabetic wound healing by suppressing AGE-induced TNF-alpha production. Inflammation 39: 687–699.CrossRefPubMed
30.
Zurück zum Zitat Su, X., J.W. Lee, Z.A. Matthay, G. Mednick, T. Uchida, X. Fang, N. Gupta, and M.A. Matthay. 2007. Activation of the α7 nAChR reduces acid-induced acute lung injury in mice and rats. American Journal of Respiratory Cell and Molecular Biology 37: 186–192.CrossRefPubMedPubMedCentral Su, X., J.W. Lee, Z.A. Matthay, G. Mednick, T. Uchida, X. Fang, N. Gupta, and M.A. Matthay. 2007. Activation of the α7 nAChR reduces acid-induced acute lung injury in mice and rats. American Journal of Respiratory Cell and Molecular Biology 37: 186–192.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Grando, S.A. 2006. Cholinergic control of epidermal cohesion. Experimental Dermatology 15: 265–282.CrossRefPubMed Grando, S.A. 2006. Cholinergic control of epidermal cohesion. Experimental Dermatology 15: 265–282.CrossRefPubMed
32.
Zurück zum Zitat Morimoto, N., S. Takemoto, T. Kawazoe, and S. Suzuki. 2008. Nicotine at a low concentration promotes wound healing. Journal of Surgical Research 145: 199–204.CrossRefPubMed Morimoto, N., S. Takemoto, T. Kawazoe, and S. Suzuki. 2008. Nicotine at a low concentration promotes wound healing. Journal of Surgical Research 145: 199–204.CrossRefPubMed
33.
Zurück zum Zitat Liem, P.H., N. Morimoto, R. Ito, K. Kawai, and S. Suzuki. 2013. Treating a collagen scaffold with a low concentration of nicotine promoted angiogenesis and wound healing. Journal of Surgical Research 182: 353–361.CrossRefPubMed Liem, P.H., N. Morimoto, R. Ito, K. Kawai, and S. Suzuki. 2013. Treating a collagen scaffold with a low concentration of nicotine promoted angiogenesis and wound healing. Journal of Surgical Research 182: 353–361.CrossRefPubMed
34.
Zurück zum Zitat Kloeters, O., C. Schierle, A. Tandara, and T.A. Mustoe. 2008. The use of a semiocclusive dressing reduces epidermal inflammatory cytokine expression and mitigates dermal proliferation and inflammation in a rat incisional model. Wound Repair and Regeneration 16: 568–575.CrossRefPubMedPubMedCentral Kloeters, O., C. Schierle, A. Tandara, and T.A. Mustoe. 2008. The use of a semiocclusive dressing reduces epidermal inflammatory cytokine expression and mitigates dermal proliferation and inflammation in a rat incisional model. Wound Repair and Regeneration 16: 568–575.CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Dyson, M., S. Young, C.L. Pendle, D.F. Webster, and S.M. Lang. 1988. Comparison of the effects of moist and dry conditions on dermal repair. Journal of Investigative Dermatology 91: 434–439.CrossRefPubMed Dyson, M., S. Young, C.L. Pendle, D.F. Webster, and S.M. Lang. 1988. Comparison of the effects of moist and dry conditions on dermal repair. Journal of Investigative Dermatology 91: 434–439.CrossRefPubMed
36.
Zurück zum Zitat Hien, N.T., S.E. Prawer, and H.I. Katz. 1988. Facilitated wound healing using transparent film dressing following Mohs micrographic surgery. Archives of Dermatology 124: 903–906.CrossRefPubMed Hien, N.T., S.E. Prawer, and H.I. Katz. 1988. Facilitated wound healing using transparent film dressing following Mohs micrographic surgery. Archives of Dermatology 124: 903–906.CrossRefPubMed
37.
Zurück zum Zitat Park, S.A., L.B. Teixeira, V.K. Raghunathan, J. Covert, R.R. Dubielzig, R.R. Isseroff, M. Schurr, N.L. Abbott, J. McAnulty, and C.J. Murphy. 2014. Full-thickness splinted skin wound healing models in db/db and heterozygous mice: implications for wound healing impairment. Wound Repair and Regeneration 22: 368–380.CrossRefPubMed Park, S.A., L.B. Teixeira, V.K. Raghunathan, J. Covert, R.R. Dubielzig, R.R. Isseroff, M. Schurr, N.L. Abbott, J. McAnulty, and C.J. Murphy. 2014. Full-thickness splinted skin wound healing models in db/db and heterozygous mice: implications for wound healing impairment. Wound Repair and Regeneration 22: 368–380.CrossRefPubMed
38.
Zurück zum Zitat Eming, S.A., T. Krieg, and J.M. Davidson. 2007. Inflammation in wound repair: molecular and cellular mechanisms. Journal of Investigative Dermatology 127: 514–525.CrossRefPubMed Eming, S.A., T. Krieg, and J.M. Davidson. 2007. Inflammation in wound repair: molecular and cellular mechanisms. Journal of Investigative Dermatology 127: 514–525.CrossRefPubMed
39.
Zurück zum Zitat Dovi, J.V., L.K. He, and L.A. DiPietro. 2003. Accelerated wound closure in neutrophil-depleted mice. Journal of Leukocyte Biology 73: 448–455.CrossRefPubMed Dovi, J.V., L.K. He, and L.A. DiPietro. 2003. Accelerated wound closure in neutrophil-depleted mice. Journal of Leukocyte Biology 73: 448–455.CrossRefPubMed
40.
Zurück zum Zitat Weiss, S.J. 1989. Tissue destruction by neutrophils. New England Journal of Medicine 320: 365–376.CrossRefPubMed Weiss, S.J. 1989. Tissue destruction by neutrophils. New England Journal of Medicine 320: 365–376.CrossRefPubMed
41.
Zurück zum Zitat Martin, P., D. D'Souza, J. Martin, R. Grose, L. Cooper, R. Maki, and S.R. McKercher. 2003. Wound healing in the PU.1 null mouse—tissue repair is not dependent on inflammatory cells. Current Biology 13: 1122–1128.CrossRefPubMed Martin, P., D. D'Souza, J. Martin, R. Grose, L. Cooper, R. Maki, and S.R. McKercher. 2003. Wound healing in the PU.1 null mouse—tissue repair is not dependent on inflammatory cells. Current Biology 13: 1122–1128.CrossRefPubMed
42.
Zurück zum Zitat Stramer, B.M., R. Mori, and P. Martin. 2007. The inflammation-fibrosis link? A Jekyll and Hyde role for blood cells during wound repair. Journal of Investigative Dermatology 127: 1009–1017.CrossRefPubMed Stramer, B.M., R. Mori, and P. Martin. 2007. The inflammation-fibrosis link? A Jekyll and Hyde role for blood cells during wound repair. Journal of Investigative Dermatology 127: 1009–1017.CrossRefPubMed
43.
Zurück zum Zitat Wong, S.L., M. Demers, K. Martinod, M. Gallant, Y. Wang, A.B. Goldfine, C.R. Kahn, and D.D. Wagner. 2015. Diabetes primes neutrophils to undergo NETosis, which impairs wound healing. Nature Medicine 21: 815–819.CrossRefPubMedPubMedCentral Wong, S.L., M. Demers, K. Martinod, M. Gallant, Y. Wang, A.B. Goldfine, C.R. Kahn, and D.D. Wagner. 2015. Diabetes primes neutrophils to undergo NETosis, which impairs wound healing. Nature Medicine 21: 815–819.CrossRefPubMedPubMedCentral
44.
Zurück zum Zitat Falanga, V. 2005. Wound healing and its impairment in the diabetic foot. Lancet 366: 1736–1743.CrossRefPubMed Falanga, V. 2005. Wound healing and its impairment in the diabetic foot. Lancet 366: 1736–1743.CrossRefPubMed
45.
Zurück zum Zitat Lan, C.C., C.S. Wu, S.M. Huang, I.H. Wu, and G.S. Chen. 2013. High-glucose environment enhanced oxidative stress and increased interleukin-8 secretion from keratinocytes: new insights into impaired diabetic wound healing. Diabetes 62: 2530–2538.CrossRefPubMedPubMedCentral Lan, C.C., C.S. Wu, S.M. Huang, I.H. Wu, and G.S. Chen. 2013. High-glucose environment enhanced oxidative stress and increased interleukin-8 secretion from keratinocytes: new insights into impaired diabetic wound healing. Diabetes 62: 2530–2538.CrossRefPubMedPubMedCentral
46.
Zurück zum Zitat Baltzis, D., I. Eleftheriadou, and A. Veves. 2014. Pathogenesis and treatment of impaired wound healing in diabetes mellitus: new insights. Advances in Therapy 31: 817–836.CrossRefPubMed Baltzis, D., I. Eleftheriadou, and A. Veves. 2014. Pathogenesis and treatment of impaired wound healing in diabetes mellitus: new insights. Advances in Therapy 31: 817–836.CrossRefPubMed
47.
Zurück zum Zitat Xu, F., C. Zhang, and D.T. Graves. 2013. Abnormal cell responses and role of TNF-alpha in impaired diabetic wound healing. BioMed Research International 2013: 754802.PubMedPubMedCentral Xu, F., C. Zhang, and D.T. Graves. 2013. Abnormal cell responses and role of TNF-alpha in impaired diabetic wound healing. BioMed Research International 2013: 754802.PubMedPubMedCentral
48.
Zurück zum Zitat Leavy, O. 2014. Tumour immunology: inflaming tumour spread. Nature Reviews Immunology 14: 212.CrossRefPubMed Leavy, O. 2014. Tumour immunology: inflaming tumour spread. Nature Reviews Immunology 14: 212.CrossRefPubMed
49.
Zurück zum Zitat Razani-Boroujerdi, S., S.P. Singh, C. Knall, F.F. Hahn, J.C. Peña-Philippides, R. Kalra, R.J. Langley, and M.L. Sopori. 2004. Chronic nicotine inhibits inflammation and promotes influenza infection. Cellular Immunology 230: 1–9.CrossRefPubMed Razani-Boroujerdi, S., S.P. Singh, C. Knall, F.F. Hahn, J.C. Peña-Philippides, R. Kalra, R.J. Langley, and M.L. Sopori. 2004. Chronic nicotine inhibits inflammation and promotes influenza infection. Cellular Immunology 230: 1–9.CrossRefPubMed
50.
Zurück zum Zitat Kishibe, M., T.M. Griffin, and K.A. Radek. 2015. Keratinocyte nicotinic acetylcholine receptor activation modulates early TLR2-mediated wound healing responses. International Immunopharmacology 29: 63–70.CrossRefPubMedPubMedCentral Kishibe, M., T.M. Griffin, and K.A. Radek. 2015. Keratinocyte nicotinic acetylcholine receptor activation modulates early TLR2-mediated wound healing responses. International Immunopharmacology 29: 63–70.CrossRefPubMedPubMedCentral
Metadaten
Titel
α7-nAChR Activation Has an Opposite Effect on Healing of Covered and Uncovered Wounds
verfasst von
Jiao-Yong Li
Shu-Kun Jiang
Lin-Lin Wang
Meng-Zhou Zhang
Shuai Wang
Zhen-Fei Jiang
Yu-Li Liu
Hao Cheng
Miao Zhang
Rui Zhao
Da-Wei Guan
Publikationsdatum
01.12.2017
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 2/2018
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-017-0703-5

Weitere Artikel der Ausgabe 2/2018

Inflammation 2/2018 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.