Skip to main content
Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging 12/2017

07.08.2017 | Original Article

18F–FDG PET diagnostic and prognostic patterns do not overlap in Alzheimer’s disease (AD) patients at the mild cognitive impairment (MCI) stage

verfasst von: Silvia Morbelli, Matteo Bauckneht, Dario Arnaldi, Agnese Picco, Matteo Pardini, Andrea Brugnolo, Ambra Buschiazzo, Marco Pagani, Nicola Girtler, Alberto Nieri, Andrea Chincarini, Fabrizio De Carli, Gianmario Sambuceti, Flavio Nobili

Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging | Ausgabe 12/2017

Einloggen, um Zugang zu erhalten

Abstract

Purpose

We aimed to identify the cortical regions where hypometabolism can predict the speed of conversion to dementia in mild cognitive impairment due to Alzheimer’s disease (MCI-AD).

Methods

We selected from the clinical database of our tertiary center memory clinic, eighty-two consecutive MCI-AD that underwent 18F–fluorodeoxyglucose (FDG) PET at baseline during the first diagnostic work-up and were followed up at least until their clinical conversion to AD dementia. The whole group of MCI-AD was compared in SPM8 with a group of age-matched healthy controls (CTR) to verify the presence of AD diagnostic-pattern; then the correlation between conversion time and brain metabolism was assessed to identify the prognostic-pattern. Significance threshold was set at p < 0.05 False-Discovery-Rate (FDR) corrected at peak and at cluster level. Each MCI-AD was then compared with CTR by means of a SPM single-subject analysis and grouped according to presence of AD diagnostic-pattern and prognostic-pattern. Kaplan-Meier-analysis was used to evaluate if diagnostic- and/or prognostic-patterns can predict speed of conversion to dementia.

Results

Diagnostic-pattern corresponded to typical posterior hypometabolism (BA 7, 18, 19, 30, 31 and 40) and did not correlate with time to conversion, which was instead correlated with metabolic levels in right middle and inferior temporal gyri as well as in the fusiform gyrus (prognostic-pattern, BA 20, 21 and 38). At Kaplan-Meier analysis, patients with hypometabolism in the prognostic pattern converted to AD-dementia significantly earlier than patients not showing significant hypometabolism in the right middle and inferior temporal cortex (9 versus 19 months; Log rank p < 0.02, Breslow test: p < 0.003, Tarone-Ware test: p < 0.007).

Conclusion

The present findings support the role of FDG PET as a robust progression biomarker even in a naturalist population of MCI-AD. However, not the AD-typical diagnostic-pattern in posterior regions but the middle and inferior temporal metabolism captures speed of conversion to dementia in MCI-AD since baseline. The highlighted prognostic pattern is a further, independent source of heterogeneity in MCI-AD and affects a primary-endpoint on interventional clinical trials (time of conversion to dementia).
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Jack CR Jr, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW. Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade. Lancet Neurol. 2010;9:119–28.CrossRefPubMedPubMedCentral Jack CR Jr, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW. Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade. Lancet Neurol. 2010;9:119–28.CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Dubois B, Feldman HH, Jacova C, Hampel H, Molinuevo JL, Blennow K. Advancing research diagnostic criteria for Alzheimer's disease: the IWG-2 criteria. Lancet Neurol. 2014;13:614–29.CrossRefPubMed Dubois B, Feldman HH, Jacova C, Hampel H, Molinuevo JL, Blennow K. Advancing research diagnostic criteria for Alzheimer's disease: the IWG-2 criteria. Lancet Neurol. 2014;13:614–29.CrossRefPubMed
3.
Zurück zum Zitat Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Feldman HH, Frisoni GB. A/T/N: an unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology. 2016;87:539–47.CrossRefPubMedPubMedCentral Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Feldman HH, Frisoni GB. A/T/N: an unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology. 2016;87:539–47.CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Albert MS, DeKosky ST. Dickson D et al the diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging and Alzheimer's Association workgroup. Alzheimers Dement. 2011;7:270–9.CrossRefPubMedPubMedCentral Albert MS, DeKosky ST. Dickson D et al the diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging and Alzheimer's Association workgroup. Alzheimers Dement. 2011;7:270–9.CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Ossenkoppele R, van der Flier WM, Verfaillie SC, Vrenken H, Versteeg A, van Schijndel RA. Long-term effects of amyloid, hypometabolism, and atrophy on neuropsychological functions. Neurology. 2014;82:1768–75.CrossRefPubMed Ossenkoppele R, van der Flier WM, Verfaillie SC, Vrenken H, Versteeg A, van Schijndel RA. Long-term effects of amyloid, hypometabolism, and atrophy on neuropsychological functions. Neurology. 2014;82:1768–75.CrossRefPubMed
6.
Zurück zum Zitat Chételat G, Desgranges B, De la Sayette V, Viadre F, Eustache F, Baron JC. Mild cognitive impairment: can FDG-PET predict who is to rapidly convert to Alzheimer’s disease? Neurology. 2003;60:1374–7.CrossRefPubMed Chételat G, Desgranges B, De la Sayette V, Viadre F, Eustache F, Baron JC. Mild cognitive impairment: can FDG-PET predict who is to rapidly convert to Alzheimer’s disease? Neurology. 2003;60:1374–7.CrossRefPubMed
7.
Zurück zum Zitat Anchisi D, Borroni B, Franceschi M, et al. Heterogeneity of brain glucose metabolism in mild cognitive impairment and clinical progression to Alzheimer disease. Arch Neurol. 2005;62:1728–33.CrossRefPubMed Anchisi D, Borroni B, Franceschi M, et al. Heterogeneity of brain glucose metabolism in mild cognitive impairment and clinical progression to Alzheimer disease. Arch Neurol. 2005;62:1728–33.CrossRefPubMed
8.
Zurück zum Zitat Herholz K, Westwood S, Haense C, Dunn G. Evaluation of a calibrated (18)F-FDG PET score as a biomarker for progression in Alzheimer disease and mild cognitive impairment. J Nucl Med. 2011;52:1218–26.CrossRefPubMed Herholz K, Westwood S, Haense C, Dunn G. Evaluation of a calibrated (18)F-FDG PET score as a biomarker for progression in Alzheimer disease and mild cognitive impairment. J Nucl Med. 2011;52:1218–26.CrossRefPubMed
9.
Zurück zum Zitat Drzezga A, Grimmer T, Rimenschneider M, Lautenschlager N, Siebner H, Alexopoulus P, et al. Prediction of individual clinical outcome in MCI by means o genetic assessment and (18)F-FDG PET. J Nucl Med. 2005;46:1625–32.PubMed Drzezga A, Grimmer T, Rimenschneider M, Lautenschlager N, Siebner H, Alexopoulus P, et al. Prediction of individual clinical outcome in MCI by means o genetic assessment and (18)F-FDG PET. J Nucl Med. 2005;46:1625–32.PubMed
10.
Zurück zum Zitat Morbelli S, Garibotto V, Van De Giessen E, et al. A Cochrane review on brain [18F]FDG PET in dementia: limitations and future perspectives. Eur J Nucl Med Mol Imaging. 2015;42:1487–91.CrossRefPubMed Morbelli S, Garibotto V, Van De Giessen E, et al. A Cochrane review on brain [18F]FDG PET in dementia: limitations and future perspectives. Eur J Nucl Med Mol Imaging. 2015;42:1487–91.CrossRefPubMed
11.
Zurück zum Zitat Pagani M, Dessi B, Morbelli S, et al. MCI patients declining and not-declining at mid-term follow-up: FDG-PET findings. Curr Alzheimer Res. 2010;7:287–94.CrossRefPubMed Pagani M, Dessi B, Morbelli S, et al. MCI patients declining and not-declining at mid-term follow-up: FDG-PET findings. Curr Alzheimer Res. 2010;7:287–94.CrossRefPubMed
12.
Zurück zum Zitat Doyle OM, Westman E, Marquand AF, et al. Predicting progression of Alzheimer's disease using ordinal regression. PLoS One. 2014;20(9):e105542.CrossRef Doyle OM, Westman E, Marquand AF, et al. Predicting progression of Alzheimer's disease using ordinal regression. PLoS One. 2014;20(9):e105542.CrossRef
13.
Zurück zum Zitat Pagani M, Giuliani A, Öberg J, De Carli F, Morbelli S, Girtler N, Arnaldi D, Accardo J, Bauckneht M, Bongioanni F, Chincarini A, Sambuceti G, Jonsson C, Nobili F. Progressive disintegration of brain networking from normal aging to Alzheimer Disease: Analysis of Independent Components of (18)F-FDG PET Data. J Nucl Med. 2017;58:1132–1139. Pagani M, Giuliani A, Öberg J, De Carli F, Morbelli S, Girtler N, Arnaldi D, Accardo J, Bauckneht M, Bongioanni F, Chincarini A, Sambuceti G, Jonsson C, Nobili F. Progressive disintegration of brain networking from normal aging to Alzheimer Disease: Analysis of Independent Components of (18)F-FDG PET Data. J Nucl Med. 2017;58:1132–1139.
14.
Zurück zum Zitat McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 2011;7:263–9.CrossRefPubMedPubMedCentral McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 2011;7:263–9.CrossRefPubMedPubMedCentral
15.
16.
Zurück zum Zitat Pagani M, Giuliani A, Öberg J, et al. Predicting the transition from normal aging to Alzheimer's disease: a statistical mechanistic evaluation of FDG-PET data. NeuroImage. 2016;141:282–90.CrossRefPubMed Pagani M, Giuliani A, Öberg J, et al. Predicting the transition from normal aging to Alzheimer's disease: a statistical mechanistic evaluation of FDG-PET data. NeuroImage. 2016;141:282–90.CrossRefPubMed
17.
Zurück zum Zitat Varrone A, Asenbaum S, Vander Borght T, et al. EANM procedure guidelines for PET brain imaging using [ 18F]FDG, version 2. EJNMMI. 2009;36:2103–10. Varrone A, Asenbaum S, Vander Borght T, et al. EANM procedure guidelines for PET brain imaging using [ 18F]FDG, version 2. EJNMMI. 2009;36:2103–10.
18.
Zurück zum Zitat Della Rosa PA, Cerami C, Gallivanone F, et al. A standardized [18F]-FDG-PET template for spatial normalization in statistical parametric mapping of dementia. Neuroinformatics. 2014;12(4):575–93.CrossRefPubMed Della Rosa PA, Cerami C, Gallivanone F, et al. A standardized [18F]-FDG-PET template for spatial normalization in statistical parametric mapping of dementia. Neuroinformatics. 2014;12(4):575–93.CrossRefPubMed
19.
Zurück zum Zitat Friston KJ, Frith CD, Liddle PF, Frackowiak RS. Functional connectivity: the principal-component analysis of large (PET) data sets. J Cereb Blood Flow Metab. 1993;13:5–14.CrossRefPubMed Friston KJ, Frith CD, Liddle PF, Frackowiak RS. Functional connectivity: the principal-component analysis of large (PET) data sets. J Cereb Blood Flow Metab. 1993;13:5–14.CrossRefPubMed
20.
Zurück zum Zitat Dukart J, Mueller K, Horstmann A, et al. Differential effects of global and cerebellar normalization on detection and differentiation of dementia in FDG-PET studies. NeuroImage. 2010;49:1490–5.CrossRefPubMed Dukart J, Mueller K, Horstmann A, et al. Differential effects of global and cerebellar normalization on detection and differentiation of dementia in FDG-PET studies. NeuroImage. 2010;49:1490–5.CrossRefPubMed
21.
Zurück zum Zitat Oishi N, Udaka F, Kameyama M, Sawamoto N, Hashikawa K, Fukuyama H. Regional cerebral blood flow in Parkinson disease with nonpsychotic visual hallucinations. Neurology. 2005;65:1708–15.CrossRefPubMed Oishi N, Udaka F, Kameyama M, Sawamoto N, Hashikawa K, Fukuyama H. Regional cerebral blood flow in Parkinson disease with nonpsychotic visual hallucinations. Neurology. 2005;65:1708–15.CrossRefPubMed
22.
Zurück zum Zitat Kaplan EL, Meier P. Nonparametric estimation from incomplete observations. J Amer Statist Assn. 1958;53:457–81.CrossRef Kaplan EL, Meier P. Nonparametric estimation from incomplete observations. J Amer Statist Assn. 1958;53:457–81.CrossRef
23.
Zurück zum Zitat Morbelli S, Drzezga A, Perneczky R, et al. Resting metabolic connectivity in prodromal Alzheimer's disease. A European Alzheimer disease consortium (EADC) project. Neurobiol Aging. 2012;33:2533–50.CrossRefPubMed Morbelli S, Drzezga A, Perneczky R, et al. Resting metabolic connectivity in prodromal Alzheimer's disease. A European Alzheimer disease consortium (EADC) project. Neurobiol Aging. 2012;33:2533–50.CrossRefPubMed
24.
Zurück zum Zitat Mosconi L. Brain glucose metabolism in the early and specific diagnosis of Alzheimer's disease. FDG-PET studies in MCI and AD. Eur J Nucl Med Mol Imaging. 2005;32:486–510.CrossRefPubMed Mosconi L. Brain glucose metabolism in the early and specific diagnosis of Alzheimer's disease. FDG-PET studies in MCI and AD. Eur J Nucl Med Mol Imaging. 2005;32:486–510.CrossRefPubMed
25.
Zurück zum Zitat Nobili F, Salmaso D, Morbelli S, et al. Principal component analysis of FDG PET in amnestic MCI. Eur J Nucl Med Mol Imaging. 2008;35:2191–202.CrossRefPubMed Nobili F, Salmaso D, Morbelli S, et al. Principal component analysis of FDG PET in amnestic MCI. Eur J Nucl Med Mol Imaging. 2008;35:2191–202.CrossRefPubMed
26.
Zurück zum Zitat Morbelli S, Piccardo A, Villavecchia G, Dessi B, Brugnolo A, Piccini A, et al. Mapping brain morphological and functional conversion patterns in amnestic MCI: a voxel-based MRI and FDG-PET study. Eur J Nucl Med Mol Imaging. 2010;37:36–45.CrossRefPubMed Morbelli S, Piccardo A, Villavecchia G, Dessi B, Brugnolo A, Piccini A, et al. Mapping brain morphological and functional conversion patterns in amnestic MCI: a voxel-based MRI and FDG-PET study. Eur J Nucl Med Mol Imaging. 2010;37:36–45.CrossRefPubMed
27.
Zurück zum Zitat Ossenkoppele R, Schonhaut DR, Schöll M, et al. Tau PET patterns mirror clinical and neuroanatomical variability in Alzheimer's disease. Brain. 2016;139:1551–67.CrossRefPubMedPubMedCentral Ossenkoppele R, Schonhaut DR, Schöll M, et al. Tau PET patterns mirror clinical and neuroanatomical variability in Alzheimer's disease. Brain. 2016;139:1551–67.CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Ishiki A, Okamura N, Furukawa K, et al. Longitudinal assessment of tau pathology in patients with Alzheimer's disease using [18F]THK-5117 positron emission tomography. PLoS One. 2015;10:e0140311.CrossRefPubMedPubMedCentral Ishiki A, Okamura N, Furukawa K, et al. Longitudinal assessment of tau pathology in patients with Alzheimer's disease using [18F]THK-5117 positron emission tomography. PLoS One. 2015;10:e0140311.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Chiotis K, Saint-Aubert L, Savitcheva I, et al. Imaging in-vivo tau pathology in Alzheimer's disease with THK5317 PET in a multimodal paradigm. Eur J Nucl Med Mol Imaging. 2016;43:1686–9.CrossRefPubMedPubMedCentral Chiotis K, Saint-Aubert L, Savitcheva I, et al. Imaging in-vivo tau pathology in Alzheimer's disease with THK5317 PET in a multimodal paradigm. Eur J Nucl Med Mol Imaging. 2016;43:1686–9.CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Minoshima S, Giordani B, Berent S, Frey KA, Foster NL, Kuhl DE. Metabolic reduction in the posterior cingulate cortex in very early Alzheimer's disease. Ann Neurol. 1997;42:85–94.CrossRefPubMed Minoshima S, Giordani B, Berent S, Frey KA, Foster NL, Kuhl DE. Metabolic reduction in the posterior cingulate cortex in very early Alzheimer's disease. Ann Neurol. 1997;42:85–94.CrossRefPubMed
31.
Zurück zum Zitat Meguro K, Blaizot X, Kondoh Y, Le Mestric C, Baron JC, Chavoix C. Neocortical and hippocampal glucose hypometabolism following neurotoxic lesions of the entorhinal and perirhinal cortices in the non-human primate as shown by PET. Implications for Alzheimer's disease. Brain. 1999;122:1519–31.CrossRefPubMed Meguro K, Blaizot X, Kondoh Y, Le Mestric C, Baron JC, Chavoix C. Neocortical and hippocampal glucose hypometabolism following neurotoxic lesions of the entorhinal and perirhinal cortices in the non-human primate as shown by PET. Implications for Alzheimer's disease. Brain. 1999;122:1519–31.CrossRefPubMed
32.
Zurück zum Zitat Teipel S, Grothe MJ. Alzheimer’s Disease Neuroimaging Initiative. Does posterior cingulate hypometabolism result from disconnection or local pathology across preclinical and clinical stages of Alzheimer's disease? Eur J Nucl Med Mol Imaging. 2016;43:526–36.CrossRefPubMed Teipel S, Grothe MJ. Alzheimer’s Disease Neuroimaging Initiative. Does posterior cingulate hypometabolism result from disconnection or local pathology across preclinical and clinical stages of Alzheimer's disease? Eur J Nucl Med Mol Imaging. 2016;43:526–36.CrossRefPubMed
33.
Zurück zum Zitat Morbelli S, Arnaldi D, Capitanio S, Picco A, Buschiazzo A. Nobili F. Resting metabolic connectivity in Alzheimer’s disease. Clin Transl Imaging. 2013;1:271–8.CrossRef Morbelli S, Arnaldi D, Capitanio S, Picco A, Buschiazzo A. Nobili F. Resting metabolic connectivity in Alzheimer’s disease. Clin Transl Imaging. 2013;1:271–8.CrossRef
34.
Zurück zum Zitat Pagani M, De Carli F, Morbelli S, et al. Volume of interest-based [18F]fluorodeoxyglucose PET discriminates MCI converting to Alzheimer's disease from healthy controls. A European Alzheimer's disease consortium (EADC) study. Neuroimage Clin. 2014;7:34–42.CrossRefPubMedPubMedCentral Pagani M, De Carli F, Morbelli S, et al. Volume of interest-based [18F]fluorodeoxyglucose PET discriminates MCI converting to Alzheimer's disease from healthy controls. A European Alzheimer's disease consortium (EADC) study. Neuroimage Clin. 2014;7:34–42.CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Morbelli S, Brugnolo A, Bossert I, et al. Visual versus semi-quantitative analysis of 18F-FDG-PET in amnestic MCI: an European Alzheimer's disease consortium (EADC) project. J Alzheimers Dis. 2015;44:815–26.PubMed Morbelli S, Brugnolo A, Bossert I, et al. Visual versus semi-quantitative analysis of 18F-FDG-PET in amnestic MCI: an European Alzheimer's disease consortium (EADC) project. J Alzheimers Dis. 2015;44:815–26.PubMed
36.
Zurück zum Zitat Ossenkoppele R, Tolboom N, Foster-Dingley JC, et al. Longitudinal imaging of Alzheimer pathology using [11C]PIB, [18F]FDDNP and [18F]FDG PET. Eur J Nucl Med Mol Imaging. 2012;39:990–1000.CrossRefPubMed Ossenkoppele R, Tolboom N, Foster-Dingley JC, et al. Longitudinal imaging of Alzheimer pathology using [11C]PIB, [18F]FDDNP and [18F]FDG PET. Eur J Nucl Med Mol Imaging. 2012;39:990–1000.CrossRefPubMed
37.
Zurück zum Zitat Drzezga A, Lautenschlager N, Siebner H, et al. Cerebral metabolic changes accompanying conversion of mild cognitive impairment into Alzheimer's disease: a PET follow-up study. Eur J Nucl Med Mol Imaging. 2003;30:1104–13.CrossRefPubMed Drzezga A, Lautenschlager N, Siebner H, et al. Cerebral metabolic changes accompanying conversion of mild cognitive impairment into Alzheimer's disease: a PET follow-up study. Eur J Nucl Med Mol Imaging. 2003;30:1104–13.CrossRefPubMed
38.
Zurück zum Zitat Pagani M, Nobili F, Morbelli S, Arnaldi D, Giuliani A, Öberg J, Girtler N, Brugnolo A, Picco A, Bauckneht M, Piva R, Chincarini A, Sambuceti G, Jonsson C, De Carli F. Early identification of MCI converting to AD: a FDG PET study. Eur J Nucl Med Mol Imaging. 2017. doi: 10.1007/s00259-017-3761-x. Pagani M, Nobili F, Morbelli S, Arnaldi D, Giuliani A, Öberg J, Girtler N, Brugnolo A, Picco A, Bauckneht M, Piva R, Chincarini A, Sambuceti G, Jonsson C, De Carli F. Early identification of MCI converting to AD: a FDG PET study. Eur J Nucl Med Mol Imaging. 2017. doi: 10.​1007/​s00259-017-3761-x.
39.
Zurück zum Zitat Fouquet M, Desgranges B, Landeau B, et al. Longitudinal brain metabolic changes from amnestic mild cognitive impairment to Alzheimer's disease. Brain. 2009;132:2058–67.CrossRefPubMedPubMedCentral Fouquet M, Desgranges B, Landeau B, et al. Longitudinal brain metabolic changes from amnestic mild cognitive impairment to Alzheimer's disease. Brain. 2009;132:2058–67.CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Marshall GA, Rentz DM, Frey MT, Locascio JJ, Johnson KA, Sperling RA. Executive function and instrumental activities of daily living in mild cognitive impairment and Alzheimer's disease. Alzheimers Dement. 2011;7:300–8.CrossRefPubMedPubMedCentral Marshall GA, Rentz DM, Frey MT, Locascio JJ, Johnson KA, Sperling RA. Executive function and instrumental activities of daily living in mild cognitive impairment and Alzheimer's disease. Alzheimers Dement. 2011;7:300–8.CrossRefPubMedPubMedCentral
41.
Zurück zum Zitat Roy K, Pepin LC, Philiossaint M, et al. Regional fluorodeoxyglucose metabolism and instrumental activities of daily living across the Alzheimer's disease spectrum. J Alzheimers Dis. 2014;42:291–300.PubMedPubMedCentral Roy K, Pepin LC, Philiossaint M, et al. Regional fluorodeoxyglucose metabolism and instrumental activities of daily living across the Alzheimer's disease spectrum. J Alzheimers Dis. 2014;42:291–300.PubMedPubMedCentral
42.
Zurück zum Zitat Torosyan N, Mason K, Dahlbom M. Silverman DHS; Alzheimer’sDisease neuroimaging initiative. Value of FDG-PET scans of non-demented patients in predicting rates of future cognitive and functional decline. Eur J Nucl Med Mol Imaging. 2017;44(8):1355–63.CrossRefPubMed Torosyan N, Mason K, Dahlbom M. Silverman DHS; Alzheimer’sDisease neuroimaging initiative. Value of FDG-PET scans of non-demented patients in predicting rates of future cognitive and functional decline. Eur J Nucl Med Mol Imaging. 2017;44(8):1355–63.CrossRefPubMed
43.
Zurück zum Zitat Drzezga A, Riemenschneider M, Strassner BA, et al. Cerebral glucose metabolism in patients with AD and different APOE genotypes. Neurology. 2005;64:102–7.CrossRefPubMed Drzezga A, Riemenschneider M, Strassner BA, et al. Cerebral glucose metabolism in patients with AD and different APOE genotypes. Neurology. 2005;64:102–7.CrossRefPubMed
Metadaten
Titel
18F–FDG PET diagnostic and prognostic patterns do not overlap in Alzheimer’s disease (AD) patients at the mild cognitive impairment (MCI) stage
verfasst von
Silvia Morbelli
Matteo Bauckneht
Dario Arnaldi
Agnese Picco
Matteo Pardini
Andrea Brugnolo
Ambra Buschiazzo
Marco Pagani
Nicola Girtler
Alberto Nieri
Andrea Chincarini
Fabrizio De Carli
Gianmario Sambuceti
Flavio Nobili
Publikationsdatum
07.08.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
European Journal of Nuclear Medicine and Molecular Imaging / Ausgabe 12/2017
Print ISSN: 1619-7070
Elektronische ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-017-3790-5

Weitere Artikel der Ausgabe 12/2017

European Journal of Nuclear Medicine and Molecular Imaging 12/2017 Zur Ausgabe