Skip to main content
Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging 7/2011

01.07.2011 | Original Article

[68Ga]NODAGA-RGD for imaging αvβ3 integrin expression

verfasst von: Peter A. Knetsch, Milos Petrik, Christoph M. Griessinger, Christine Rangger, Melpomeni Fani, Christian Kesenheimer, Elisabeth von Guggenberg, Bernd J. Pichler, Irene Virgolini, Clemens Decristoforo, Roland Haubner

Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging | Ausgabe 7/2011

Einloggen, um Zugang zu erhalten

Abstract

Purpose

A molecular target involved in the angiogenic process is the αvβ3 integrin. It has been demonstrated in preclinical as well as in clinical studies that radiolabelled RGD peptides and positron emission tomography (PET) allow noninvasive monitoring of αvβ3 expression. Here we introduce a 68Ga-labelled NOTA-conjugated RGD peptide ([68Ga]NODAGA-RGD) and compare its imaging properties with [68Ga]DOTA-RGD using small animal PET.

Methods

Synthesis of c(RGDfK(NODAGA)) was based on solid phase peptide synthesis protocols using the Fmoc strategy. The 68Ga labelling protocol was optimized concerning temperature, peptide concentration and reaction time. For in vitro characterization, partition coefficient, protein binding properties, serum stability, αvβ3 binding affinity and cell uptake were determined. To characterize the in vivo properties, biodistribution studies and microPET imaging were carried out. For both in vitro and in vivo evaluation, αvβ3-positive human melanoma M21 and αvβ3-negative M21-L cells were used.

Results

[68Ga]NODAGA-RGD can be produced within 5 min at room temperature with high radiochemical yield and purity (> 96%). In vitro evaluation showed high αvβ3 binding affinity (IC50 = 4.7 ± 1.6 nM) and receptor-specific uptake. The radiotracer was stable in phosphate-buffered saline, pH 7.4, FeCl3 solution, and human serum. Protein-bound activity after 180 min incubation was found to be 12-fold lower than for [68Ga]DOTA-RGD. Biodistribution data 60 min post-injection confirmed receptor-specific tumour accumulation. The activity concentration of [68Ga]NODAGA-RGD was lower than [68Ga]DOTA-RGD in all organs and tissues investigated, leading to an improved tumour to blood ratio ([68Ga]NODAGA-RGD: 11, [68Ga]DOTA-RGD: 4). MicroPET imaging confirmed the improved imaging properties of [68Ga]NODAGA-RGD compared to [68Ga]DOTA-RGD.

Conclusion

The introduced [68Ga]NODAGA-RGD combines easy accessibility with high stability and good imaging properties making it an interesting alternative to the 18F-labelled RGD peptides currently used for imaging αvβ3 expression.
Literatur
1.
Zurück zum Zitat Szekanecz Z, Besenyei T, Szentpétery A, Koch AE. Angiogenesis and vasculogenesis in rheumatoid arthritis. Curr Opin Rheumatol 2010;22:299–306.PubMedCrossRef Szekanecz Z, Besenyei T, Szentpétery A, Koch AE. Angiogenesis and vasculogenesis in rheumatoid arthritis. Curr Opin Rheumatol 2010;22:299–306.PubMedCrossRef
2.
Zurück zum Zitat Heidenreich R, Röcken M, Ghoreschi K. Angiogenesis drives psoriasis pathogenesis. Int J Exp Pathol 2009;90:232–48.PubMedCrossRef Heidenreich R, Röcken M, Ghoreschi K. Angiogenesis drives psoriasis pathogenesis. Int J Exp Pathol 2009;90:232–48.PubMedCrossRef
3.
Zurück zum Zitat Langer HF, Haubner R, Pichler BJ, Gawaz M. Radionuclide imaging: a molecular key to the atherosclerotic plaque. J Am Coll Cardiol 2008;52:1–12.PubMedCrossRef Langer HF, Haubner R, Pichler BJ, Gawaz M. Radionuclide imaging: a molecular key to the atherosclerotic plaque. J Am Coll Cardiol 2008;52:1–12.PubMedCrossRef
4.
Zurück zum Zitat Folkman J. Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov 2007;6:273–86.PubMedCrossRef Folkman J. Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov 2007;6:273–86.PubMedCrossRef
5.
Zurück zum Zitat Sheldrake HM, Patterson LH. Function and antagonism of beta3 integrins in the development of cancer therapy. Curr Cancer Drug Targets 2009;9:519–40.PubMedCrossRef Sheldrake HM, Patterson LH. Function and antagonism of beta3 integrins in the development of cancer therapy. Curr Cancer Drug Targets 2009;9:519–40.PubMedCrossRef
6.
Zurück zum Zitat Haubner R, Decristoforo C. Radiolabelled RGD peptides and peptidomimetics for tumour targeting. Front Biosci 2009;14:872–86.PubMedCrossRef Haubner R, Decristoforo C. Radiolabelled RGD peptides and peptidomimetics for tumour targeting. Front Biosci 2009;14:872–86.PubMedCrossRef
7.
Zurück zum Zitat Ruoslahti E, Pierschbacher MD. New perspectives in cell adhesion: RGD and integrins. Science 1987;238:491–7.PubMedCrossRef Ruoslahti E, Pierschbacher MD. New perspectives in cell adhesion: RGD and integrins. Science 1987;238:491–7.PubMedCrossRef
8.
Zurück zum Zitat Haubner R, Wester HJ, Reuning U, Senekowitsch-Schmidtke R, Diefenbach B, Kessler H, et al. Radiolabeled alpha(v)beta3 antagonists: a new class of tracers for tumor targeting. J Nucl Med 1999;40:1061–71.PubMed Haubner R, Wester HJ, Reuning U, Senekowitsch-Schmidtke R, Diefenbach B, Kessler H, et al. Radiolabeled alpha(v)beta3 antagonists: a new class of tracers for tumor targeting. J Nucl Med 1999;40:1061–71.PubMed
9.
Zurück zum Zitat Haubner R, Beer A, Wang H, Chen X. Positron emission tomography tracers for imaging angiogenesis. Eur J Nucl Med Mol Imaging 2010;37 Suppl 1:S86–103.PubMedCrossRef Haubner R, Beer A, Wang H, Chen X. Positron emission tomography tracers for imaging angiogenesis. Eur J Nucl Med Mol Imaging 2010;37 Suppl 1:S86–103.PubMedCrossRef
10.
Zurück zum Zitat Haubner R, Kuhnast B, Mang C, Weber WA, Kessler H, Wester HJ, et al. [18F]Galacto-RGD: synthesis, radiolabeling, metabolic stability, and radiation dose estimates. Bioconjug Chem 2004;15:61–9.PubMedCrossRef Haubner R, Kuhnast B, Mang C, Weber WA, Kessler H, Wester HJ, et al. [18F]Galacto-RGD: synthesis, radiolabeling, metabolic stability, and radiation dose estimates. Bioconjug Chem 2004;15:61–9.PubMedCrossRef
11.
Zurück zum Zitat Decristoforo C, Hernandez Gonzalez I, Carlsen J, Rupprich M, Huisman M, Virgolini I, et al. (68)Ga- and (111)In-labelled DOTA-RGD peptides for imaging of alphavbeta3 integrin expression. Eur J Nucl Med Mol Imaging 2008;35:1507–15.PubMedCrossRef Decristoforo C, Hernandez Gonzalez I, Carlsen J, Rupprich M, Huisman M, Virgolini I, et al. (68)Ga- and (111)In-labelled DOTA-RGD peptides for imaging of alphavbeta3 integrin expression. Eur J Nucl Med Mol Imaging 2008;35:1507–15.PubMedCrossRef
12.
Zurück zum Zitat Sun Y, Anderson CJ, Pajeau TS, Reichert DE, Hancock RD, Motekaitis RJ, et al. Indium(III) and gallium(III) complexes of bis(aminoethanethiol) ligands with different denticities: stabilities, molecular modeling, and in vivo behavior. J Med Chem 1996;39:458–70.PubMedCrossRef Sun Y, Anderson CJ, Pajeau TS, Reichert DE, Hancock RD, Motekaitis RJ, et al. Indium(III) and gallium(III) complexes of bis(aminoethanethiol) ligands with different denticities: stabilities, molecular modeling, and in vivo behavior. J Med Chem 1996;39:458–70.PubMedCrossRef
13.
Zurück zum Zitat Eisenwiener KP, Prata MI, Buschmann I, Zhang HW, Santos AC, Wenger S, et al. NODAGATOC, a new chelator-coupled somatostatin analogue labeled with [67/68Ga] and [111In] for SPECT, PET, and targeted therapeutic applications of somatostatin receptor (hsst2) expressing tumors. Bioconjug Chem 2002;13:530–41.PubMedCrossRef Eisenwiener KP, Prata MI, Buschmann I, Zhang HW, Santos AC, Wenger S, et al. NODAGATOC, a new chelator-coupled somatostatin analogue labeled with [67/68Ga] and [111In] for SPECT, PET, and targeted therapeutic applications of somatostatin receptor (hsst2) expressing tumors. Bioconjug Chem 2002;13:530–41.PubMedCrossRef
14.
Zurück zum Zitat Haubner R, Wester HJ, Burkhart F, Senekowitsch-Schmidtke R, Weber W, Goodman SL, et al. Glycosylated RGD-containing peptides: tracer for tumor targeting and angiogenesis imaging with improved biokinetics. J Nucl Med 2001;42:326–36.PubMed Haubner R, Wester HJ, Burkhart F, Senekowitsch-Schmidtke R, Weber W, Goodman SL, et al. Glycosylated RGD-containing peptides: tracer for tumor targeting and angiogenesis imaging with improved biokinetics. J Nucl Med 2001;42:326–36.PubMed
15.
Zurück zum Zitat Decristoforo C, Santos I, Pietzsch HJ, Kuenstler JU, Duatti A, Smith CJ, et al. Comparison of in vitro and in vivo properties of [99mTc]cRGD peptides labeled using different novel Tc-cores. Q J Nucl Med Mol Imaging 2007;51:33–41.PubMed Decristoforo C, Santos I, Pietzsch HJ, Kuenstler JU, Duatti A, Smith CJ, et al. Comparison of in vitro and in vivo properties of [99mTc]cRGD peptides labeled using different novel Tc-cores. Q J Nucl Med Mol Imaging 2007;51:33–41.PubMed
16.
Zurück zum Zitat Kurtaran A, Müller C, Novacek G, Kaserer K, Mentes M, Raderer M, et al. Distinction between hepatic focal nodular hyperplasia and malignant liver lesions using technetium-99m-galactosyl-neoglycoalbumin. J Nucl Med 1997;38:1912–5.PubMed Kurtaran A, Müller C, Novacek G, Kaserer K, Mentes M, Raderer M, et al. Distinction between hepatic focal nodular hyperplasia and malignant liver lesions using technetium-99m-galactosyl-neoglycoalbumin. J Nucl Med 1997;38:1912–5.PubMed
17.
Zurück zum Zitat Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 1976;32:751–67.CrossRef Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 1976;32:751–67.CrossRef
18.
Zurück zum Zitat Reichert D, Lewis J, Anderson C. Metal complexes as diagnostic tools. Coord Chem Rev 1999;184:3–66.CrossRef Reichert D, Lewis J, Anderson C. Metal complexes as diagnostic tools. Coord Chem Rev 1999;184:3–66.CrossRef
19.
Zurück zum Zitat Haubner R, Wester HJ, Weber WA, Mang C, Ziegler SI, Goodman SL, et al. Noninvasive imaging of αvβ3 integrin expression using 18F-labeled RGD-containing glycopeptide and positron emission tomography. Cancer Res 2001;61:1781–5.PubMed Haubner R, Wester HJ, Weber WA, Mang C, Ziegler SI, Goodman SL, et al. Noninvasive imaging of αvβ3 integrin expression using 18F-labeled RGD-containing glycopeptide and positron emission tomography. Cancer Res 2001;61:1781–5.PubMed
20.
Zurück zum Zitat Jeong JM, Hong MK, Chang YS, Lee YS, Kim YJ, Cheon GJ, et al. Preparation of a promising angiogenesis PET imaging agent: 68Ga-labeled c(RGDyK)-isothiocyanatobenzyl-1,4,7-triazacyclononane-1,4,7-triacetic acid and feasibility studies in mice. J Nucl Med 2008;49:830–6.PubMedCrossRef Jeong JM, Hong MK, Chang YS, Lee YS, Kim YJ, Cheon GJ, et al. Preparation of a promising angiogenesis PET imaging agent: 68Ga-labeled c(RGDyK)-isothiocyanatobenzyl-1,4,7-triazacyclononane-1,4,7-triacetic acid and feasibility studies in mice. J Nucl Med 2008;49:830–6.PubMedCrossRef
21.
Zurück zum Zitat Li ZB, Chen K, Chen X. (68)Ga-labeled multimeric RGD peptides for microPET imaging of integrin alpha(v)beta (3) expression. Eur J Nucl Med Mol Imaging 2008;35:1100–8.PubMedCrossRef Li ZB, Chen K, Chen X. (68)Ga-labeled multimeric RGD peptides for microPET imaging of integrin alpha(v)beta (3) expression. Eur J Nucl Med Mol Imaging 2008;35:1100–8.PubMedCrossRef
22.
Zurück zum Zitat Liu S, Liu Z, Chen K, Yan Y, Watzlowik P, Wester HJ, et al. (18)F-Labeled Galacto and PEGylated RGD dimers for PET imaging of αvβ3 integrin expression. Mol Imaging Biol 2010;12:530–8.PubMedCrossRef Liu S, Liu Z, Chen K, Yan Y, Watzlowik P, Wester HJ, et al. (18)F-Labeled Galacto and PEGylated RGD dimers for PET imaging of αvβ3 integrin expression. Mol Imaging Biol 2010;12:530–8.PubMedCrossRef
Metadaten
Titel
[68Ga]NODAGA-RGD for imaging αvβ3 integrin expression
verfasst von
Peter A. Knetsch
Milos Petrik
Christoph M. Griessinger
Christine Rangger
Melpomeni Fani
Christian Kesenheimer
Elisabeth von Guggenberg
Bernd J. Pichler
Irene Virgolini
Clemens Decristoforo
Roland Haubner
Publikationsdatum
01.07.2011
Verlag
Springer-Verlag
Erschienen in
European Journal of Nuclear Medicine and Molecular Imaging / Ausgabe 7/2011
Print ISSN: 1619-7070
Elektronische ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-011-1778-0

Weitere Artikel der Ausgabe 7/2011

European Journal of Nuclear Medicine and Molecular Imaging 7/2011 Zur Ausgabe