Skip to main content
Erschienen in: BMC Medical Genetics 1/2019

Open Access 01.12.2019 | Research article

A comprehensive analysis of NPHS1 gene mutations in patients with sporadic focal segmental glomerulosclerosis

verfasst von: Ling Zhuo, Lulin Huang, Zhenglin Yang, Guisen Li, Li Wang

Erschienen in: BMC Medical Genetics | Ausgabe 1/2019

Abstract

Background

Focal segmental glomerulosclerosis (FSGS) is still one of the common causes of refractory nephrotic syndrome. Nephrin, encoded by podocyte-specific NPHS1 gene, participated in the pathogenesis of FSGS. The sites of NPHS1 mutations in FSGS is not clarified very well. In this study, we investigated the specific mutations of NPHS1 gene in Chinese patients with sporadic FSGS.

Methods

A total of 309 patients with sporadic FSGS were collected and screened for NPHS1 mutations by second-generation sequencing. The variants were compared with those extracted from 2504 healthy controls in the 1000 Genomes Project. The possible pathogenic roles of missense variants were predicted by three different software. We also compared these candidate causal mutations with those summarized from the previous studies.

Results

Thirty-two genetic mutations of NPHS1 gene were identified in FSGS patients, including 12 synonymous mutations, 17 missense mutations, 1 splicing mutation, and 2 intron mutations, of which c.G3315A (p.S1105S) was the most common variant (261/309). A novel missense mutation c.G2638 T (p.V880F) and a novel splicing mutation 35830957 C > T were identified in FSGS patients. The frequencies of the four synonymous mutations (c.C294T [p.I98I], c.C2223T [p.T741 T], c.C2289T [p.V763 V], c.G3315A [p.S1105S]) were much higher in FSGS patients than in controls. The frequencies of the four missense mutations (c.G349A [p.E117K], c.G1339A [p.E447K], c.G1802C [p.G601A], c.C2398T [p.R800C]) were much higher and one (c.A3230G [p.N1077S]) was lower in FSGS patients than in controls. Five missense mutations, c.C616A (p.P206T), c.G1802C (p.G601A), c.C2309T (p.P770L), c.G2869C (p.V957 L), and c.C3274T (p.R1092C), were predicted to be pathogenic mutations by software analysis.

Conclusions

NPHS1 gene mutations were quite common in sporadic FSGS patients. We strongly recommend mutation analysis of the NPHS1 gene in the clinical management of FSGS patients.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
ACT4
Actin 4
CNF
Congenital nephrotic syndrome of the Finnish type
CNS
Congenital nephrotic syndrome
CsA
Cyclosporin A
Fn III
Fibronectin type III motif
FSGS
Focal segmental glomerulosclerosis
Ig
Immunoglobulin motif
IGSR
International genome sample resource
INF2
Inverted formin 2
MAF
Minor allele frequency
MCNS
Minimal change nephrotic syndrome
NPHS1
Nephrin
NPHS2
Podocin
OMIM
Online mendelian inheritance in man
SD
Slit diaphragm
SNV
Single nucleotide variant
SRNS
Steroid-resistant nephrotic syndrome
TRPC6
Transient receptor potential cation channel, subfamily C, member 6
WT1
Wilms tumor 1

Background

Focal segmental glomerulosclerosis (FSGS) is a syndrome with unique clinical and pathological manifestations. Although new medications continue to emerge, FSGS is still one of the most common causes which contributes to refractory nephrotic syndrome [13]. The previous studies suggested that FSGS could be idiopathic or secondary to a process originating outside the kidneys as well as to a specific genetic mutation [1, 3, 4], including INF2, ACTN4, TRPC6, WT1, NPHS1, NPHS2, etc. [5, 6]. The efficacy of cyclosporin A (CsA) is much better in nonhereditary steroid-resistant nephrotic syndrome (SRNS) than in genetic SRNS [7]. It suggests that genetic mutations not only contribute to the pathogenesis of FSGS but also influence the outcome of clinical treatment. Therefore, it is of great clinical significance to elucidate the characteristics of genetic variation for FSGS patients.
About 8–14% of patients with FSGS could be explained by podocyte-related gene mutations. NPHS1, that relates to congenital nephrotic syndrome (CNS) and SRNS, is one of the most frequently reported genes. Initially, Kestilä described NPHS1 as the pathogenic gene of the congenital nephrotic syndrome of the Finnish type (CNF) [8]. The NPHS1 gene (OMIM *602716) locates in the chromosome 19q13.1 and consists of 29 exons that span a 150 kb region. Nephrin, a transmembrane protein encoded by NPHS1 gene, is one of the important components of slit diaphragm (SD) [9]. As a signaling scaffold via interactions at its short intracellular region, nephrin also serves as the core component of the glomerular filtration barrier [10]. The mutations of NPHS1 gene could lead to the occurrence of different degrees of kidney diseases, however, studies which investigated the relationship between NPHS1 gene mutations and FSGS were limited, especially in China [8, 1113].
Santin et al selected SRNS patients to conduct a series of research of podocyte-associated genes [6]. The patients showed familiar heredity and 57% of them developed FSGS at extremely early ages [6]. NPHS1 gene was the most common mutant gene in these subjects, and patients with NPHS1 mutations were more likely to progress to ESRD than those with other podocyte genes [6]. NPHS1 mutations have exhibited increasing prevalence across the world over recent decades, while most of the reports have only focused on one or several mutations of NPHS1 in relatively small FSGS samples. In this study, we performed an analysis of NPHS1 gene mutations in Chinese patients with sporadic FSGS by direct sequencing of all exons. While comparing these variants with the data from 1000 genome project as well as the mutations reported previously, we hoped to further elucidate the characteristics of NPHS1 gene mutations in sporadic FSGS patients and to provide a profile for future precision medicine and pathogenetic studies of FSGS.

Subjects and methods

Patient and data recruitment

A total of 309 biopsy-proved FSGS patients were enrolled in this study. All patients with secondary FSGS and familial FSGS were excluded. The study was approved by the South West research ethics committee and the institutional review board at each recruiting center. The average age of the patients was 32.0 ± 14.2 years old (from 10 to 71 years old). The percentage of male patients was 62.0% (195 cases). The NPHS1 mutations information of 2504 healthy controls was extracted from the 1000 Genome Project (International Genome Sample Resource, IGSR, www.​internationalgen​ome.​org).
We summarized the data of NPHS1 gene mutations from previous publications. Detailed mutational information in previous references for retrospective analysis was collected from PUBMED database (https://​www.​ncbi.​nlm.​nih.​gov/​pubmed). All the locations of the mutation sites were determined according to the reference sequence of NPHS1 derived from current assembly GRCh38.p11.

Exome sequencing and variant detection

Genomic DNA was extracted from peripheral blood using standard methods. An exome sequencing for the first 41 FSGS samples was provided by Axeq Technology Inc., Seoul, Republic of Korea. The sequenced sample was prepared according to the Illumina protocols of Sure Select Target Enrichment System Capture Process. Exome sequencing analysis was performed as described previously [14]. The peripheral blood DNA samples of 268 patients with sporadic FSGS were sequenced by next-generation sequencing. Exon regions of NPHS1 gene were selected and the biotinylated 60mer probes were designed to tile along with the exons of the genes. Samples were prepared as an Illumina sequencing library, and in the second step, the sequencing libraries were enriched for the target region related genes using the MyGenostics Target Region Enrichment protocol. The captured libraries were sequenced using Illumina HiSeq 2000 Sequencer.
Then these variants were filtered through a stringent strategy. Firstly, the detected variants were annotated and filtered based on public and in-house databases: (i) variants in dbSNP144 (http://​www.​ncbi.​nlm.​nih.​gov/​projects/​SNP/​); (ii) 1000 Genomes Project (ftp://​ftp.​1000genomes.​ebi.​ac.​uk/​vol1/​ftp); and (iii) ESP6500 (http://​evs.​gs.​washington.​edu/​EVS). Secondly, possible damaging effect of each variant on protein structure/function was predicted by SIFT [15], PolyPhen2 [16] and MutationTaster [17]. For a nonsynonymous single nucleotide variant (SNV), the predicted results of “Probably damaging”, “Possible damaging”, “Damaging”, as well as “Disease-causing”, were recorded.

Mutation analysis

All variants located in the total 29 exons and exon-intron boundaries of NPHS1 were analyzed. All statistical tests were performed on SPSS software Version 17.0 (IBM Corp., USA). Chi-square tests in 2 × 2 tables were conducted to compare the mutation distribution between the FSGS patients and healthy controls. Bonferroni-corrected P values < 0.05 were considered statistically significant.
This study was approved by Institutional Review Boards of the Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital. All patients provided informed written consent for the collection of data and genetic analysis obtained. Written informed consent from legal guardians of those under the age of 18 was collected.

Results

The variant distributions of NPHS1 in FSGS patients

Twenty-two variants of NPHS1 gene were identified in 309 FSGS patients, including 12 synonymous mutations, and 17 missense mutations. Moreover, two mutations were found in introns and one novel splicing mutation 35830957 C > T was found in exon 28. One more novel missense mutation c.G2638 T (p.V880F) was also identified in FSGS patients. All these mutations were annotated in the domains of nephrin protein (Fig. 1). Mutations mostly affected Ig-like domains of the nephrin protein, the extracellular domain, as well as the intracellular domain.

Synonymous mutations and intron mutations

Twelve synonymous mutations were found in FSGS patients. Among them, only three mutations had been investigated in previous reports (Table 1).
Table 1
The synonymous mutations detected in FSGS patients and compared with controls from 1000 Genomes Project
Exon
dbSNP144
Position
Transcript consequence
Protein consequence
Patients(n = 309)
Controls(n = 2504)
P value
Bonferroni-corrected
P value
Nephrin domain
Initial phenotype
2
rs114385015
35851580
c.C151T
p.L51 L
2((0.65%)
9 (0.36%)
0.35
> 0.05
Ig 1
Unknown
3
rs2285450
35851365
c.C294T
p.I98I
93 (30.10%)
157 (6.27%)
2.35 × 10−31
7.51 × 10− 30
Ig 1
Unknown
3
rs181246281
35851266
c.C393T
p.I131I
1 (0.32%)
1 (0.04%)
0.21
> 0.05
Ig 1
Unknown
8
rs763233132
35849136
c.G852A
p.P284P
1 (0.32%)
0
0.11
> 0.05
Ig 3
Unknown
12
rs549535993
35846153
c.G1482A
p.S494S
1 (0.32%)
0
0.11
> 0.05
Ig 5
Unknown
14
rs770065180
35845519
c.A1779C
p.P593P
1 (0.32%)
0
0.11
> 0.05
Ig 6
Unknown
14
rs768531638
35845531
c.C1767G
p.G589G
1 (0.32%)
0
0.11
> 0.05
Ig 6
Unknown
17
rs2073901
35843583
c.C2223T
p.T741 T
47 (15.21%)
31 (1.24%)
7.81 × 10−27
2.50 × 10−25
Ig 7
SRNS [40]
17
rs437168
35843517
c.C2289T
p.V763 V
99 (32.04%)
304 (12.14%)
5.02 × 10−15
1.61 × 10−13
Ig 7
SRNS [40], MCNS [41]
26
rs115670171
35831362
c.G3321A
p.E1107E
3 (0.97%)
1 (0.04%)
4.82 × 10−3
0.16
Cy
Unknown
26
rs780661566
35831296
c.G3387A
p.T1129 T
1 (0.32%)
0
0.11
> 0.05
Cy
Unknown
26
rs2071327
35831368
c.G3315A
p.S1105S
261 (84.47%)
426 (17.01%)
2.20 × 10−14
7.02 × 10−13
Cy
SRNS [40], MCNS [41]
Intron
rs466452
35831607
c.C3286 + 36 T
13 (4.21%)
536 (21.41%)
2.20 × 10− 14
7.04 × 10− 13
Unknown
Intron
rs731934
35831008
c. C3481 + 45 T
21 (6.80%)
425 (16.97%)
1.71 × 10−14
5.48 × 10−13
Unknown
Unknown = Have not seen the relevant report at present. Statistical analysis was done by χ2 test
Cy C-terminal cytoplasmic, Ig immunoglobulin motif
The mutation c.G3315A (p.S1105S) in the exon 26 was the most common variant, the A allele frequency was 84.47% (261/309) in patients and was much higher than the data in controls (84.47% vs. 17.01%, P = 7.02 × 10− 13). The minor allele frequencies of the other three synonymous mutations (c.C294T [p.I98I], 30.10% vs. 6.27%, P = 7.51 × 10− 30; c.C2223T [p.T741 T], 15.21% vs. 1.24%, P = 2.50 × 10− 25; c.C2289T [p.V763 V], 32.04% vs. 12.14%, P = 1.61 × 10− 13) were also much higher in FSGS patients than in controls. The common variant c.C294T (p.I98I) located in Ig-1 domain, c.C2223T (p.T741 T) and c.C2289T (p.V763 V) in Ig-7 domain.
Two mutations were found in intron, c.C3286 + 36 T and c. C3481 + 45 T. The minor allele frequency (MAF) of c.C3286 + 36 T (4.21% vs. 21.41%, P = 7.04 × 10− 13) and c. C3481 + 45 T (6.80% vs. 16.97%, P = 5.48 × 10− 13) in FSGS patients were much lower than in controls.

Missense mutations and splicing mutations

Seventeen missense mutations and one splicing mutation were detected in sporadic FSGS patients. A novel mutation c.G2638 T (p.V880F; Bonferroni-corrected P > 0.05) in exon 19 at a site of conserved Ig-8 domain, was detected only in one FSGS patient. The splicing mutation 35830957 C > T was also a novel variant and found only in one patient. The detail information of these mutations was listed in Table 2.
Table 2
The missense and splicing mutations detected in FSGS patients and compared with controls from 1000 Genomes Project
Exon
dbSNP144
Position
Transcript consequence
Protein consequence
Patients
(n = 309)
Controls
(n = 2504)
P value
Bonferroni-corrected P value
Nephrin domain
Initial phenotype
Missense
 1
rs191850409
35851824
c.C14T
p.T5M
3 (0.97%)
3 (0.12%)
0.020
> 0.05
Sp
Unknown
 2
rs116617171
35851666
c.C65T
p.A22V
3 (0.97%)
9 (0.36%)
0.14
> 0.05
Ig 1
CNS [42], SRNS [43]
 3
rs3814995
35851310
c.G349A
p.E117K
256 (82.85%)
418 (16.69%)
2.19 × 10−14
7.01 × 10−13
Ig 1
CNS [42], MCNS [41]
SRNS/FSGS [43]
 6
rs201822740
35849646
c.C616A
p.P206T
1 (0.32%)
1 (0.04%)
0.21
> 0.05
Ig 2
Unknown
 7
rs201234008
35849314
c.C762A
p.H254Q
1 (0.32%)
1 (0.04%)
0.21
> 0.05
Ig 3
Unknown
 7
rs115308424
35849273
c.G803A
p.R268Q
5 (1.62%)
11 (0.44%)
0.024
> 0.05
Ig 3
Unknown
 8
rs113825926
35849107
c.C881T
p.T294I
1 (0.32%)
8 (0.32%)
1.00
> 0.05
Ig 3
MCNS [41], SRNS [43]
 10
rs33950747
35848345
c.G1223A
p.R408Q
1 (0.32%)
42 (1.68%)
0.081
> 0.05
Ig 4
CNS [9, 25, 42], MCNS [41], FSGS [44]
 11
rs28939695
35848142
c.G1339A
p.E447K
14 (4.53%)
16 (0.64%)
7.93 × 10−7
2.54 × 10−5
Ig 5
MsPGN/ FSGS/ SRNS [18], CNS [42], CNF [45]
 14
rs114615449
35845496
c.G1802C
p.G601A
8 (2.59%)
9 (0.36%)
1.94 × 10−4
6.19 × 10−3
Ig 6
SRNS [18]
 17
rs777418609
35843557
c.A2249G
p.E750G
1 (0.32%)
0
0.11
> 0.05
Ig 7
Unknown
 17
rs115976159
358434987
c.C2309T
p.P770L
1 (0.32%)
0
0.11
> 0.05
Ig 7
Unknown
 18
rs114896482
35842487
c.C2398T
p.R800C
10 (3.24%)
4 (0.16%)
1.49 × 10−7
4.78 × 10−6
Ig 7
SRNS [18, 40], MCNS [41]
 19
35842149
c.G2638 T
p.V880F
1 (0.32%)
0
0.11
> 0.05
Ig 8
Novel
 21
rs114849139
35839554
c.G2869C
p.V957vL
3 (0.97%)
9 (0.36%)
0.14
> 0.05
Fn
CNS [19, 42, 46]
 24
rs4806213
35831699
c.A3230G
p.N1077S
2 (0.65%)
228 (9.11%)
7.67 × 10−10
2.45 × 10−8
Tm
SRNS [18], CNS [25, 42], CNF [4749], MCNS [41]
 24
rs199646631
35831655
c.C3274T
p.R1092C
1 (0.32%)
1 (0.04%)
0.21
> 0.05
Tm
FSGS [18]
Splicing
35830957
C > T
1 (0.32%)
0
0.11
> 0.05
Unknown
Unknown = Have not seen the relevant report at present. Statistical analysis was done by χ2 test
Tm transmembrane domain, Fn fibronectin type III motif, Ig immunoglobulin motif, Sp signal peptide
The mutation c.G349A, causing a substitution of glutamic acid by lysine at a site of Ig-1 domain (p.E117K), was the most common variants. The MAF of c.G349A was much higher in FSGS patients than in controls (82.85% vs. 16.69%, P = 7.01 × 10− 13). The MAFs of the other three missense mutations, c.G1339A (p.E447K) (4.53% vs. 0.64%, P = 2.54 × 10− 5) in Ig-5 domain, c.G1802C (p.G601A) (2.59% vs. 0.36%, P = 6.19 × 10− 3) in Ig-6 domain, c.C2398T (p.R800C) (3.24% vs. 0.16%, P = 4.78 × 10− 6) in Ig-7 domain, were also much higher in FSGS patients than in controls. One mutation, c.A3230G (p.N1077S), located in the transmembrane domain of nephrin. The MAF of c.A3230G (0.65% vs. 9.11%, P = 2.45 × 10− 8) was lower in FSGS patients than in controls.
Ten of the seventeen missense mutations had been reported previously to be related to CNS, SRNS, MCNS, as well as FSGS. But five of them weren’t significantly different between FSGS patients and controls after Bonferroni correction (Table 2). The remaining five missense mutations were mentioned above in this study, which distributed differently between FSGS patients and controls.

Pathogenic mutations predicted by software

We used SIFT, Polyphen and MutationTaster to predict the pathogenicity of the 17 missense mutations in our study. As shown in Table 3, only five mutations, c.C616A (p.P206T), c.G1802C (p.G601A), c.C2309T (p.P770L), c.G2869C (p.V957 L), and c.C3274T (p.R1092C), were predicted to be disease-causing variants by the three different software at the same time. Of the five mutations, only c.G1802C (p.G601A) distributed differently between FSGS patients and controls. Specifically, c.G1802C (p.G601A) and c.G2869C (p.V957 L) have been reported before, both of them were found in Chinese patients. The former study [18] contained the data for the Sanger sequencing of five different podocyte-expressed genes in 38 Chinese children. NPHS1 showed a higher proportion of mutations, and c.G1802C (p.G601A) was illustrated as “likely pathogenic” with the prediction score. The c.G2869C (p.V957 L) was reported in a Chinese CNS family [19], and three heterozygous mutations were identified in NPHS1 gene. This mutation was predicted as “disease-causing variant” in our study.
Table 3
The pathogenic mutations predicted by three software for the non-synonymous mutations
Dbsnp144
Position
Transcript Consequence
Protein Consequence
SIFT
Polyphen
MutationTaster
rs201822740
35849646
c.C616A
p.P206T
Damaging
Probably damaging
Disease causing
rs114615449
35845496
c.G1802C
p.G601A
Damaging
Probably damaging
Disease causing
rs115976159
358434987
c.C2309T
p.P770L
Damaging
Possibly damaging
Disease causing
rs114849139
35839554
c.G2869C
p.V957 L
Damaging
Probably damaging
Disease causing
rs199646631
35831655
c.C3274T
p.R1092C
Damaging
Possibly damaging
Disease causing
Three different software are used to predict the likelihood of causing disease: SIFT, Polyphen and MutationTaster
The predicted results of the remaining 12 missense mutations were shown in Table 4. The novel mutation c.G2638 T, causing a conservative amino acid substitution of valine by phenylalanine, seemed to be a protective mutation.
Table 4
Pathogenicity predicted by three software for the non-synonymous mutations
Dbsnp144
Position
Transcript Consequence
Protein Consequence
SIFT
Polyphen
MutationTaster
rs191850409
35851824
c.C14T
p.T5M
Tolerated
Benign
Polymorphism
rs116617171
35851666
c.C65T
p.A22V
Damaging
Benign
Polymorphism
rs3814995
35851310
c.G349A
p.E117K
Tolerated
Probably damaging
Polymorphism automatic
rs201234008
35849314
c.C762A
p.H254Q
Tolerated
Benign
Polymorphism
rs115308424
35849273
c.G803A
p.R268Q
Tolerated
Benign
Polymorphism
rs113825926
35849107
c.C881T
p.T294I
Tolerated
Benign
Polymorphism
rs33950747
35848345
c.G1223A
p.R408Q
Tolerated
Probably damaging
Disease causing
rs28939695
35848142
c.G1339A
p.E447K
Tolerated
Probably damaging
Disease causing automatic
rs777418609
35843557
c.A2249G
p.E750G
Damaging
Possibly damaging
Polymorphism
rs114896482
35842487
c.C2398T
p.R800C
Tolerated
Benign
Polymorphism
35842149
c.G2638 T
p.V880F
Tolerated
Benign
Polymorphism
rs4806213
35831699
c.A3230G
p.N1077S
Damaging
Benign
Polymorphism automatic
Three different software are used to predict the likelihood of causing disease: SIFT, Polyphen and MutationTaster

Discussion

Although NPHS1 was first demonstrated to be the causal gene for congenital nephrotic syndrome of Finnish type [20], subsequent studies have confirmed that it was also a causative gene or susceptibility gene for a variety of kidney diseases, such as SRNS, FSGS, minimal change disease with nephrotic syndrome (MCNS), IgA nephropathy, et al. [9, 11, 12, 2124]. Among them FSGS was one of the most common causes of SRNS and a common type of genetically related kidney disease [18, 24, 25]. Most studies about genetic mutations in FSGS were based mainly on familial FSGS patients and lots of FSGS-causing genes have been identified [1, 5]. Especially in individuals presenting with FSGS or nephrotic syndrome before or at the age of 18 years old, the most common genes in which a mutation was found continues to be limited to only a few genes, including NPHS1 and NPHS2 [2, 23, 2629].
Nephrin was located only in glomerular podocytes, which participated in intercellular junctions of mature podocyte and formations of the slit diaphragms [30]. It was demonstrated by lowering nephrin expression in an inducible model of nephrin deletion that normal nephrin expression was necessary for podocyte intercellular junction in the glomerulus [31]. A low level of nephrin expression could result in progressive proteinuria with glomerular hypertrophy and FSGS of glomeruli [31, 32]. Nephrin-knockdown mice developed more podocyte apoptosis and depletion after doxorubicin challenge [32]. NPHS1 knockout mice subjected to podocyte injury failed to recover from foot process effacement as well as the persistence of proteinuria [31]. Ephrin-B1, a membrane-bound protein, bound to and interacted with nephrin by immunoprecipitation assay [33]. The phosphorylation of ephrin-B1 enhanced the phosphorylation of nephrin and promoted the phosphorylation of c-Jun N-terminal kinase (JNK), which was required for ephrin-B1-promoted cell motility [33]. The interaction of nephrin and ephrin-B1 maintains the structure and barrier function of the slit diaphragm [33]. It suggested that nephrin was required to maintain slit diaphragm integrity and slit diaphragm-mediated signaling, and it played an important role for the maintenance of podocyte function, production of proteinuria and pathogenesis of FSGS.
So far, more than 220 different mutations have been described affecting most exons in NPHS1 [11]. These mutations have been found in various kidney diseases, however, the relationship between NPHS1 mutation and FSGS was relatively less explored [3437]. Santin, et al. found that the mutations of NPHS1 gene were detected in patients with CNF, congenital FSGS, childhood FSGS, as well as adulthood FSGS [37]. A previous study reported that no pathogenic NPHS1 mutations were found in 33 FSGS patients with SRNS [36], but the study only explored the previously reported pathogenic mutations in a small FSGS sample. Another study indicated that gene interactions between NPHS1 and TRPC6 variants have important implications on post-transplantation FSGS [35]. In this study, we focused on sporadic FSGS patients to analyze the NPHS1 mutations. We identified 32 mutations in NPHS1 in a relatively large cohort of FSGS patients in China, including two novel mutations.
Twelve synonymous mutations, 17 missense mutations, one splicing mutation and two intron mutations were found in our study. The MAFs of four synonymous mutations (c.C294T [p.I98I], c.C2223T [p.T741 T], c.C2289T [p.V763 V], c.G3315A [p.S1105S]) and four missense mutations (c.G349A [p.E117K], c.G1339A [p.E447K], c.G1802C [p.G601A], c.C2398T [p.R800C]) were much higher in FSGS patients than the data in controls. The MAFs of a missense mutation (c.A3230G [p.N1077S]) and two intron mutations (c.C3286 + 36 T and c. C3481 + 45 T) were lower in FSGS patients than the data in controls. Interestingly, of the four synonymous and five missense mutations mentioned above, eight other mutations except synonymous mutation c.C294T (p.I98I) have been reported to be associated with SRNS, MCNS or FSGS (Tables 1 and 2). Five missense mutations, c.C616A (p.P206T), c.G1802C (p.G601A), c.C2309T (p.P770L), c.G2869C (p.V957 L), and c.C3274T (p.R1092C), were predicted to be disease-causing variants by three different software.
As listed in Table 1, several synonymous mutations were previously reported to be associated with SRNS, MCNS, or FSGS. But the pathogenesis was still unknown. For the missense mutations, although five mutations in our study were reported previously, the exact pathogenesis of these mutations remained unclear, and no appropriate animal model of these mutations has been established for further study. Nephrin contained eight Ig-like domains, a fibronectin type III-like module (Fn), a transmembrane domain and an intracellular domain [13, 38]. A previous study revealed that most mutations of NPHS1 were observed in Ig-2, Ig-4, and Ig-7 domains [39]. In our study, the differentially distributed mutations in FSGS patients mainly located in Ig-1, Ig-6, Ig-7, and C-terminal cytoplasmic regions. It was also consistent with the concept that Ig-like part of the intracellular domain remained to be crucial for nephrin function [29]. All of the results would be helpful for future pathogenic mechanism research.

Conclusions

It was demonstrated in our study that the mutations of NPHS1 gene are common in Chinese sporadic FSGS patients. A comprehensive evaluation of NPHS1 mutations would be helpful for the management of FSGS. The mutations of NPHS1 gene could play an important role in the pathogenesis of FSGS, and we still needed more researches to clarify the pathogenesis of these mutations.

Acknowledgments

Thanks to 1000 Genomes Project and all people who contribute to this project.
This study was approved by Institutional Review Boards of the Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, and informed consent was obtained before study. Written informed consent for the study was obtained from all patients. If the patients were less than 18 years old, the legal guardians of participants under 18 provided written consent.
Not applicable

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat D'Agati VD, Kaskel FJ, Falk RJ. Focal segmental glomerulosclerosis. N Engl J Med. 2011;365(25):2398–411.CrossRef D'Agati VD, Kaskel FJ, Falk RJ. Focal segmental glomerulosclerosis. N Engl J Med. 2011;365(25):2398–411.CrossRef
2.
Zurück zum Zitat Philippe A, Nevo F, Esquivel EL, Reklaityte D, Gribouval O, Tete MJ, Loirat C, Dantal J, Fischbach M, Pouteil-Noble C, et al. Nephrin mutations can cause childhood-onset steroid-resistant nephrotic syndrome. J Am Soc Nephrol. 2008;19(10):1871–8.CrossRef Philippe A, Nevo F, Esquivel EL, Reklaityte D, Gribouval O, Tete MJ, Loirat C, Dantal J, Fischbach M, Pouteil-Noble C, et al. Nephrin mutations can cause childhood-onset steroid-resistant nephrotic syndrome. J Am Soc Nephrol. 2008;19(10):1871–8.CrossRef
3.
Zurück zum Zitat De Vriese AS, Sethi S, Nath KA, Glassock RJ, Fervenza FC. Differentiating primary, genetic, and secondary FSGS in adults: a Clinicopathologic approach. J Am Soc Nephrol. 2018;29(3):759–74.PubMedPubMedCentral De Vriese AS, Sethi S, Nath KA, Glassock RJ, Fervenza FC. Differentiating primary, genetic, and secondary FSGS in adults: a Clinicopathologic approach. J Am Soc Nephrol. 2018;29(3):759–74.PubMedPubMedCentral
4.
Zurück zum Zitat de Mik SM, Hoogduijn MJ, de Bruin RW, Dor FJ. Pathophysiology and treatment of focal segmental glomerulosclerosis: the role of animal models. BMC Nephrol. 2013;14:74.CrossRef de Mik SM, Hoogduijn MJ, de Bruin RW, Dor FJ. Pathophysiology and treatment of focal segmental glomerulosclerosis: the role of animal models. BMC Nephrol. 2013;14:74.CrossRef
5.
Zurück zum Zitat Rood IM, Deegens JK, Wetzels JF. Genetic causes of focal segmental glomerulosclerosis: implications for clinical practice. Nephrol Dial Transplant. 2012;27(3):882–90.CrossRef Rood IM, Deegens JK, Wetzels JF. Genetic causes of focal segmental glomerulosclerosis: implications for clinical practice. Nephrol Dial Transplant. 2012;27(3):882–90.CrossRef
6.
Zurück zum Zitat Santin S, Bullich G, Tazon-Vega B, Garcia-Maset R, Gimenez I, Silva I, Ruiz P, Ballarin J, Torra R, Ars E. Clinical utility of genetic testing in children and adults with steroid-resistant nephrotic syndrome. Clin J Am Soc Nephrol. 2011;6(5):1139–48.CrossRef Santin S, Bullich G, Tazon-Vega B, Garcia-Maset R, Gimenez I, Silva I, Ruiz P, Ballarin J, Torra R, Ars E. Clinical utility of genetic testing in children and adults with steroid-resistant nephrotic syndrome. Clin J Am Soc Nephrol. 2011;6(5):1139–48.CrossRef
7.
Zurück zum Zitat Buscher AK, Beck BB, Melk A, Hoefele J, Kranz B, Bamborschke D, Baig S, Lange-Sperandio B, Jungraithmayr T, Weber LT, et al. Rapid response to Cyclosporin a and favorable renal outcome in nongenetic versus genetic steroid-resistant nephrotic syndrome. Clin J Am Soc Nephrol. 2016;11(2):245–53.CrossRef Buscher AK, Beck BB, Melk A, Hoefele J, Kranz B, Bamborschke D, Baig S, Lange-Sperandio B, Jungraithmayr T, Weber LT, et al. Rapid response to Cyclosporin a and favorable renal outcome in nongenetic versus genetic steroid-resistant nephrotic syndrome. Clin J Am Soc Nephrol. 2016;11(2):245–53.CrossRef
8.
Zurück zum Zitat Kestila M, Lenkkeri U, Mannikko M, Lamerdin J, McCready P, Putaala H, Ruotsalainen V, Morita T, Nissinen M, Herva R, et al. Positionally cloned gene for a novel glomerular protein--nephrin--is mutated in congenital nephrotic syndrome. Mol Cell. 1998;1(4):575–82.CrossRef Kestila M, Lenkkeri U, Mannikko M, Lamerdin J, McCready P, Putaala H, Ruotsalainen V, Morita T, Nissinen M, Herva R, et al. Positionally cloned gene for a novel glomerular protein--nephrin--is mutated in congenital nephrotic syndrome. Mol Cell. 1998;1(4):575–82.CrossRef
9.
Zurück zum Zitat Lenkkeri U, Mannikko M, McCready P, Lamerdin J, Gribouval O, Niaudet PM, Antignac CK, Kashtan CE, Homberg C, Olsen A, et al. Structure of the gene for congenital nephrotic syndrome of the finnish type (NPHS1) and characterization of mutations. Am J Hum Genet. 1999;64(1):51–61.CrossRef Lenkkeri U, Mannikko M, McCready P, Lamerdin J, Gribouval O, Niaudet PM, Antignac CK, Kashtan CE, Homberg C, Olsen A, et al. Structure of the gene for congenital nephrotic syndrome of the finnish type (NPHS1) and characterization of mutations. Am J Hum Genet. 1999;64(1):51–61.CrossRef
10.
Zurück zum Zitat Martin CE, Jones N. Nephrin signaling in the podocyte: an updated view of signal regulation at the slit diaphragm and beyond. Front Endocrinol. 2018;9:302.CrossRef Martin CE, Jones N. Nephrin signaling in the podocyte: an updated view of signal regulation at the slit diaphragm and beyond. Front Endocrinol. 2018;9:302.CrossRef
11.
Zurück zum Zitat Nguyen TK, Pham VD, Nguyen TH, Pham TK, Nguyen TQ, Nguyen HH. Three novel mutations in the NPHS1 gene in Vietnamese patients with congenital nephrotic syndrome. Case Rep Genet. 2017;2017:2357282.PubMedPubMedCentral Nguyen TK, Pham VD, Nguyen TH, Pham TK, Nguyen TQ, Nguyen HH. Three novel mutations in the NPHS1 gene in Vietnamese patients with congenital nephrotic syndrome. Case Rep Genet. 2017;2017:2357282.PubMedPubMedCentral
12.
Zurück zum Zitat Heeringa SF, Vlangos CN, Chernin G, Hinkes B, Gbadegesin R, Liu J, Hoskins BE, Ozaltin F, Hildebrandt F. Thirteen novel NPHS1 mutations in a large cohort of children with congenital nephrotic syndrome. Nephrol Dial Transplant. 2008;23(11):3527–33.CrossRef Heeringa SF, Vlangos CN, Chernin G, Hinkes B, Gbadegesin R, Liu J, Hoskins BE, Ozaltin F, Hildebrandt F. Thirteen novel NPHS1 mutations in a large cohort of children with congenital nephrotic syndrome. Nephrol Dial Transplant. 2008;23(11):3527–33.CrossRef
13.
Zurück zum Zitat Liu L, Done SC, Khoshnoodi J, Bertorello A, Wartiovaara J, Berggren PO, Tryggvason K. Defective nephrin trafficking caused by missense mutations in the NPHS1 gene: insight into the mechanisms of congenital nephrotic syndrome. Hum Mol Genet. 2001;10(23):2637–44.CrossRef Liu L, Done SC, Khoshnoodi J, Bertorello A, Wartiovaara J, Berggren PO, Tryggvason K. Defective nephrin trafficking caused by missense mutations in the NPHS1 gene: insight into the mechanisms of congenital nephrotic syndrome. Hum Mol Genet. 2001;10(23):2637–44.CrossRef
14.
Zurück zum Zitat Zhou Y, Tao S, Chen H, Huang L, Zhu X, Li Y, Wang Z, Lin H, Hao F, Yang Z, et al. Exome sequencing analysis identifies compound heterozygous mutation in ABCA4 in a Chinese family with Stargardt disease. PLoS One. 2014;9(3):e91962.CrossRef Zhou Y, Tao S, Chen H, Huang L, Zhu X, Li Y, Wang Z, Lin H, Hao F, Yang Z, et al. Exome sequencing analysis identifies compound heterozygous mutation in ABCA4 in a Chinese family with Stargardt disease. PLoS One. 2014;9(3):e91962.CrossRef
15.
Zurück zum Zitat Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc. 2009;4(7):1073–81.CrossRef Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc. 2009;4(7):1073–81.CrossRef
16.
Zurück zum Zitat Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7(4):248–9.CrossRef Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7(4):248–9.CrossRef
17.
Zurück zum Zitat Schwarz JM, Cooper DN, Schuelke M, Seelow D. MutationTaster2: mutation prediction for the deep-sequencing age. Nat Methods. 2014;11(4):361–2.CrossRef Schwarz JM, Cooper DN, Schuelke M, Seelow D. MutationTaster2: mutation prediction for the deep-sequencing age. Nat Methods. 2014;11(4):361–2.CrossRef
18.
Zurück zum Zitat Wang Y, Dang X, He Q, Zhen Y, He X, Yi Z, Zhu K. Mutation spectrum of genes associated with steroid-resistant nephrotic syndrome in Chinese children. Gene. 2017;625:15–20.CrossRef Wang Y, Dang X, He Q, Zhen Y, He X, Yi Z, Zhu K. Mutation spectrum of genes associated with steroid-resistant nephrotic syndrome in Chinese children. Gene. 2017;625:15–20.CrossRef
19.
Zurück zum Zitat Shi Y, Ding J, Liu JC, Wang H, Bu DF. NPHS1 mutations in a Chinese family with congenital nephrotic syndrome. Zhonghua Er Ke Za Zhi. 2005;43(11):805–9.PubMed Shi Y, Ding J, Liu JC, Wang H, Bu DF. NPHS1 mutations in a Chinese family with congenital nephrotic syndrome. Zhonghua Er Ke Za Zhi. 2005;43(11):805–9.PubMed
20.
Zurück zum Zitat Hallman N, Norio R, Kouvalainen K. Main features of the congenital nephrotic syndrome. Acta Paediatr Scand. 1967;56((S173):Suppl 172):175. Hallman N, Norio R, Kouvalainen K. Main features of the congenital nephrotic syndrome. Acta Paediatr Scand. 1967;56((S173):Suppl 172):175.
21.
Zurück zum Zitat Hinkes BG, Mucha B, Vlangos CN, Gbadegesin R, Liu J, Hasselbacher K, Hangan D, Ozaltin F, Zenker M, Hildebrandt F. Nephrotic syndrome in the first year of life: two thirds of cases are caused by mutations in 4 genes (NPHS1, NPHS2, WT1, and LAMB2). Pediatrics. 2007;119(4):e907–19.CrossRef Hinkes BG, Mucha B, Vlangos CN, Gbadegesin R, Liu J, Hasselbacher K, Hangan D, Ozaltin F, Zenker M, Hildebrandt F. Nephrotic syndrome in the first year of life: two thirds of cases are caused by mutations in 4 genes (NPHS1, NPHS2, WT1, and LAMB2). Pediatrics. 2007;119(4):e907–19.CrossRef
22.
Zurück zum Zitat Ismaili K, Pawtowski A, Boyer O, Wissing KM, Janssen F, Hall M. Genetic forms of nephrotic syndrome: a single-center experience in Brussels. Pediatr Nephrol (Berlin, Germany). 2009;24(2):287–94.CrossRef Ismaili K, Pawtowski A, Boyer O, Wissing KM, Janssen F, Hall M. Genetic forms of nephrotic syndrome: a single-center experience in Brussels. Pediatr Nephrol (Berlin, Germany). 2009;24(2):287–94.CrossRef
23.
Zurück zum Zitat Schoeb DS, Chernin G, Heeringa SF, Matejas V, Held S, Vega-Warner V, Bockenhauer D, Vlangos CN, Moorani KN, Neuhaus TJ, et al. Nineteen novel NPHS1 mutations in a worldwide cohort of patients with congenital nephrotic syndrome (CNS). Nephrol Dial Transplant. 2010;25(9):2970–6.CrossRef Schoeb DS, Chernin G, Heeringa SF, Matejas V, Held S, Vega-Warner V, Bockenhauer D, Vlangos CN, Moorani KN, Neuhaus TJ, et al. Nineteen novel NPHS1 mutations in a worldwide cohort of patients with congenital nephrotic syndrome (CNS). Nephrol Dial Transplant. 2010;25(9):2970–6.CrossRef
24.
Zurück zum Zitat Lin F, Bian F, Zou J, Wu X, Shan J, Lu W, Yao Y, Jiang G, Gale DP. Whole exome sequencing reveals novel COL4A3 and COL4A4 mutations and resolves diagnosis in Chinese families with kidney disease. BMC Nephrol. 2014;15:175.CrossRef Lin F, Bian F, Zou J, Wu X, Shan J, Lu W, Yao Y, Jiang G, Gale DP. Whole exome sequencing reveals novel COL4A3 and COL4A4 mutations and resolves diagnosis in Chinese families with kidney disease. BMC Nephrol. 2014;15:175.CrossRef
25.
Zurück zum Zitat Cil O, Besbas N, Duzova A, Topaloglu R, Peco-Antic A, Korkmaz E, Ozaltin F. Genetic abnormalities and prognosis in patients with congenital and infantile nephrotic syndrome. Pediatr Nephrol (Berlin, Germany). 2015;30(8):1279–87.CrossRef Cil O, Besbas N, Duzova A, Topaloglu R, Peco-Antic A, Korkmaz E, Ozaltin F. Genetic abnormalities and prognosis in patients with congenital and infantile nephrotic syndrome. Pediatr Nephrol (Berlin, Germany). 2015;30(8):1279–87.CrossRef
26.
Zurück zum Zitat Sharif B, Barua M. Advances in molecular diagnosis and therapeutics in nephrotic syndrome and focal and segmental glomerulosclerosis. Curr Opin Nephrol Hypertens. 2018;27(3):194–200.PubMed Sharif B, Barua M. Advances in molecular diagnosis and therapeutics in nephrotic syndrome and focal and segmental glomerulosclerosis. Curr Opin Nephrol Hypertens. 2018;27(3):194–200.PubMed
27.
Zurück zum Zitat Trautmann A, Bodria M, Ozaltin F, Gheisari A, Melk A, Azocar M, Anarat A, Caliskan S, Emma F, Gellermann J, et al. Spectrum of steroid-resistant and congenital nephrotic syndrome in children: the PodoNet registry cohort. Clin J Am Soc Nephrol. 2015;10(4):592–600.CrossRef Trautmann A, Bodria M, Ozaltin F, Gheisari A, Melk A, Azocar M, Anarat A, Caliskan S, Emma F, Gellermann J, et al. Spectrum of steroid-resistant and congenital nephrotic syndrome in children: the PodoNet registry cohort. Clin J Am Soc Nephrol. 2015;10(4):592–600.CrossRef
28.
Zurück zum Zitat Aya K, Shimizu J, Ohtomo Y, Satomura K, Suzuki H, Yan K, Sado Y, Morishima T, Tanaka H. NPHS1 gene mutation in Japanese patients with congenital nephrotic syndrome. Nephrol Dial Transplant. 2009;24(8):2411–4.CrossRef Aya K, Shimizu J, Ohtomo Y, Satomura K, Suzuki H, Yan K, Sado Y, Morishima T, Tanaka H. NPHS1 gene mutation in Japanese patients with congenital nephrotic syndrome. Nephrol Dial Transplant. 2009;24(8):2411–4.CrossRef
29.
Zurück zum Zitat Beltcheva O, Martin P, Lenkkeri U, Tryggvason K. Mutation spectrum in the nephrin gene (NPHS1) in congenital nephrotic syndrome. Hum Mutat. 2001;17(5):368–73.CrossRef Beltcheva O, Martin P, Lenkkeri U, Tryggvason K. Mutation spectrum in the nephrin gene (NPHS1) in congenital nephrotic syndrome. Hum Mutat. 2001;17(5):368–73.CrossRef
30.
Zurück zum Zitat Holzman LB, St John PL, Kovari IA, Verma R, Holthofer H, Abrahamson DR. Nephrin localizes to the slit pore of the glomerular epithelial cell. Kidney Int. 1999;56(4):1481–91.CrossRef Holzman LB, St John PL, Kovari IA, Verma R, Holthofer H, Abrahamson DR. Nephrin localizes to the slit pore of the glomerular epithelial cell. Kidney Int. 1999;56(4):1481–91.CrossRef
31.
Zurück zum Zitat Verma R, Venkatareddy M, Kalinowski A, Li T, Kukla J, Mollin A, Cara-Fuentes G, Patel SR, Garg P. Nephrin is necessary for podocyte recovery following injury in an adult mature glomerulus. PLoS One. 2018;13(6):e0198013.CrossRef Verma R, Venkatareddy M, Kalinowski A, Li T, Kukla J, Mollin A, Cara-Fuentes G, Patel SR, Garg P. Nephrin is necessary for podocyte recovery following injury in an adult mature glomerulus. PLoS One. 2018;13(6):e0198013.CrossRef
32.
Zurück zum Zitat Li X, Chuang PY, D'Agati VD, Dai Y, Yacoub R, Fu J, Xu J, Taku O, Premsrirut PK, Holzman LB, et al. Nephrin preserves podocyte viability and glomerular structure and function in adult kidneys. J Am Soc Nephrol. 2015;26(10):2361–77.CrossRef Li X, Chuang PY, D'Agati VD, Dai Y, Yacoub R, Fu J, Xu J, Taku O, Premsrirut PK, Holzman LB, et al. Nephrin preserves podocyte viability and glomerular structure and function in adult kidneys. J Am Soc Nephrol. 2015;26(10):2361–77.CrossRef
33.
Zurück zum Zitat Fukusumi Y, Zhang Y, Yamagishi R, Oda K, Watanabe T, Matsui K, Kawachi H. Nephrin-binding Ephrin-B1 at the slit diaphragm controls podocyte function through the JNK pathway. J Am Soc Nephrol. 2018;29(5):1462–74.CrossRef Fukusumi Y, Zhang Y, Yamagishi R, Oda K, Watanabe T, Matsui K, Kawachi H. Nephrin-binding Ephrin-B1 at the slit diaphragm controls podocyte function through the JNK pathway. J Am Soc Nephrol. 2018;29(5):1462–74.CrossRef
34.
Zurück zum Zitat Edwards JK. Glomerular disease: TRPC6 and NPHS1 mediate FSGS risk. Nat Rev Nephrol. 2015;11(9):505.PubMed Edwards JK. Glomerular disease: TRPC6 and NPHS1 mediate FSGS risk. Nat Rev Nephrol. 2015;11(9):505.PubMed
35.
Zurück zum Zitat Sun ZJ, Ng KH, Liao P, Zhang Y, Ng JL, Liu ID, Tan PH, Chong SS, Chan YH, Liu J, et al. Genetic interactions between TRPC6 and NPHS1 variants affect Posttransplant risk of recurrent focal segmental glomerulosclerosis. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg. 2015;15(12):3229–38.CrossRef Sun ZJ, Ng KH, Liao P, Zhang Y, Ng JL, Liu ID, Tan PH, Chong SS, Chan YH, Liu J, et al. Genetic interactions between TRPC6 and NPHS1 variants affect Posttransplant risk of recurrent focal segmental glomerulosclerosis. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg. 2015;15(12):3229–38.CrossRef
36.
Zurück zum Zitat Binczak-Kuleta A, Rubik J, Litwin M, Ryder M, Lewandowska K, Taryma-Lesniak O, Clark JS, Grenda R, Ciechanowicz A. Retrospective mutational analysis of NPHS1, NPHS2, WT1 and LAMB2 in children with steroid-resistant focal segmental glomerulosclerosis - a single-Centre experience. Bosn J Basic Med Sci. 2014;14(2):89–93.CrossRef Binczak-Kuleta A, Rubik J, Litwin M, Ryder M, Lewandowska K, Taryma-Lesniak O, Clark JS, Grenda R, Ciechanowicz A. Retrospective mutational analysis of NPHS1, NPHS2, WT1 and LAMB2 in children with steroid-resistant focal segmental glomerulosclerosis - a single-Centre experience. Bosn J Basic Med Sci. 2014;14(2):89–93.CrossRef
37.
Zurück zum Zitat Edwards JK. TRPC6 and NPHS1 mediate FSGS risk. Nat Rev Nephrol. 2015;11:505.PubMed Edwards JK. TRPC6 and NPHS1 mediate FSGS risk. Nat Rev Nephrol. 2015;11:505.PubMed
38.
Zurück zum Zitat Bierzynska A, Soderquest K, Koziell A. Genes and podocytes - new insights into mechanisms of podocytopathy. Front Endocrinol. 2014;5:226. Bierzynska A, Soderquest K, Koziell A. Genes and podocytes - new insights into mechanisms of podocytopathy. Front Endocrinol. 2014;5:226.
39.
Zurück zum Zitat Koziell A, Grech V, Hussain S, Lee G, Lenkkeri U, Tryggvason K, Scambler P. Genotype/phenotype correlations of NPHS1 and NPHS2 mutations in nephrotic syndrome advocate a functional inter-relationship in glomerular filtration. Hum Mol Genet. 2002;11(4):379–88.CrossRef Koziell A, Grech V, Hussain S, Lee G, Lenkkeri U, Tryggvason K, Scambler P. Genotype/phenotype correlations of NPHS1 and NPHS2 mutations in nephrotic syndrome advocate a functional inter-relationship in glomerular filtration. Hum Mol Genet. 2002;11(4):379–88.CrossRef
40.
Zurück zum Zitat Mao J, Zhang Y, Du L, Dai Y, Gu W, Liu A, Shang S, Liang L. NPHS1 and NPHS2 gene mutations in Chinese children with sporadic nephrotic syndrome. Pediatr Res. 2007;61(1):117–22.CrossRef Mao J, Zhang Y, Du L, Dai Y, Gu W, Liu A, Shang S, Liang L. NPHS1 and NPHS2 gene mutations in Chinese children with sporadic nephrotic syndrome. Pediatr Res. 2007;61(1):117–22.CrossRef
41.
Zurück zum Zitat Lahdenkari AT, Kestila M, Holmberg C, Koskimies O, Jalanko H. Nephrin gene (NPHS1) in patients with minimal change nephrotic syndrome (MCNS). Kidney Int. 2004;65(5):1856–63.CrossRef Lahdenkari AT, Kestila M, Holmberg C, Koskimies O, Jalanko H. Nephrin gene (NPHS1) in patients with minimal change nephrotic syndrome (MCNS). Kidney Int. 2004;65(5):1856–63.CrossRef
42.
Zurück zum Zitat Yang F, Chen Y, Zhang Y, Qiu L, Chen Y, Zhou J. Novel NPHS1 gene mutations in a Chinese family with congenital nephrotic syndrome. J Genet. 2016;95(1):161–6.CrossRef Yang F, Chen Y, Zhang Y, Qiu L, Chen Y, Zhou J. Novel NPHS1 gene mutations in a Chinese family with congenital nephrotic syndrome. J Genet. 2016;95(1):161–6.CrossRef
43.
Zurück zum Zitat Suvanto M, Patrakka J, Jahnukainen T, Sjostrom PM, Nuutinen M, Arikoski P, Kataja J, Kestila M, Jalanko H. Novel NPHS2 variant in patients with familial steroid-resistant nephrotic syndrome with early onset, slow progression and dominant inheritance pattern. Clin Exp Nephrol. 2017;21(4):677–84.CrossRef Suvanto M, Patrakka J, Jahnukainen T, Sjostrom PM, Nuutinen M, Arikoski P, Kataja J, Kestila M, Jalanko H. Novel NPHS2 variant in patients with familial steroid-resistant nephrotic syndrome with early onset, slow progression and dominant inheritance pattern. Clin Exp Nephrol. 2017;21(4):677–84.CrossRef
44.
Zurück zum Zitat Lovric S, Fang H, Vega-Warner V, Sadowski CE, Gee HY, Halbritter J, Ashraf S, Saisawat P, Soliman NA, Kari JA, et al. Rapid detection of monogenic causes of childhood-onset steroid-resistant nephrotic syndrome. Clin J Am Soc Nephrol. 2014;9(6):1109–16.CrossRef Lovric S, Fang H, Vega-Warner V, Sadowski CE, Gee HY, Halbritter J, Ashraf S, Saisawat P, Soliman NA, Kari JA, et al. Rapid detection of monogenic causes of childhood-onset steroid-resistant nephrotic syndrome. Clin J Am Soc Nephrol. 2014;9(6):1109–16.CrossRef
45.
Zurück zum Zitat Aya K, Tanaka H, Seino Y. Novel mutation in the nephrin gene of a Japanese patient with congenital nephrotic syndrome of the Finnish type. Kidney Int. 2000;57(2):401–4.CrossRef Aya K, Tanaka H, Seino Y. Novel mutation in the nephrin gene of a Japanese patient with congenital nephrotic syndrome of the Finnish type. Kidney Int. 2000;57(2):401–4.CrossRef
46.
Zurück zum Zitat Spahiu L, Merovci B, Jashari H, Kepuska AB, Rugova BE. Congenital nephrotic syndrome - finish type. Med Arch (Sarajevo, Bosnia and Herzegovina). 2016;70(3):232–4. Spahiu L, Merovci B, Jashari H, Kepuska AB, Rugova BE. Congenital nephrotic syndrome - finish type. Med Arch (Sarajevo, Bosnia and Herzegovina). 2016;70(3):232–4.
47.
Zurück zum Zitat Guaragna MS, Cleto TL, Souza ML, Lutaif AC, de Castro LC, Penido MG, Maciel-Guerra AT, Belangero VM, Guerra-Junior G, De Mello MP. NPHS1 gene mutations confirm congenital nephrotic syndrome in four Brazilian cases: A novel mutation is described. Nephrology (Carlton, Vic). 2016;21(9):753–7.CrossRef Guaragna MS, Cleto TL, Souza ML, Lutaif AC, de Castro LC, Penido MG, Maciel-Guerra AT, Belangero VM, Guerra-Junior G, De Mello MP. NPHS1 gene mutations confirm congenital nephrotic syndrome in four Brazilian cases: A novel mutation is described. Nephrology (Carlton, Vic). 2016;21(9):753–7.CrossRef
48.
Zurück zum Zitat Caridi G, Gigante M, Ravani P, Trivelli A, Barbano G, Scolari F, Dagnino M, Murer L, Murtas C, Edefonti A, et al. Clinical features and long-term outcome of nephrotic syndrome associated with heterozygous NPHS1 and NPHS2 mutations. Clin J Am Soc Nephrol. 2009;4(6):1065–72.CrossRef Caridi G, Gigante M, Ravani P, Trivelli A, Barbano G, Scolari F, Dagnino M, Murer L, Murtas C, Edefonti A, et al. Clinical features and long-term outcome of nephrotic syndrome associated with heterozygous NPHS1 and NPHS2 mutations. Clin J Am Soc Nephrol. 2009;4(6):1065–72.CrossRef
49.
Zurück zum Zitat Gigante M, Monno F, Roberto R, Laforgia N, Assael MB, Livolti S, Caringella A, La Manna A, Masella L, Iolascon A. Congenital nephrotic syndrome of the finnish type in Italy: a molecular approach. J Nephrol. 2002;15(6):696–702.PubMed Gigante M, Monno F, Roberto R, Laforgia N, Assael MB, Livolti S, Caringella A, La Manna A, Masella L, Iolascon A. Congenital nephrotic syndrome of the finnish type in Italy: a molecular approach. J Nephrol. 2002;15(6):696–702.PubMed
Metadaten
Titel
A comprehensive analysis of NPHS1 gene mutations in patients with sporadic focal segmental glomerulosclerosis
verfasst von
Ling Zhuo
Lulin Huang
Zhenglin Yang
Guisen Li
Li Wang
Publikationsdatum
01.12.2019
Verlag
BioMed Central
Erschienen in
BMC Medical Genetics / Ausgabe 1/2019
Elektronische ISSN: 1471-2350
DOI
https://doi.org/10.1186/s12881-019-0845-4

Weitere Artikel der Ausgabe 1/2019

BMC Medical Genetics 1/2019 Zur Ausgabe