Skip to main content
Erschienen in: Journal of Medical Systems 5/2016

01.05.2016 | Systems-Level Quality Improvement

A decision support system to improve medical diagnosis using a combination of k-medoids clustering based attribute weighting and SVM

verfasst von: Musa Peker

Erschienen in: Journal of Medical Systems | Ausgabe 5/2016

Einloggen, um Zugang zu erhalten

Abstract

The use of machine learning tools has become widespread in medical diagnosis. The main reason for this is the effective results obtained from classification and diagnosis systems developed to help medical professionals in the diagnosis phase of diseases. The primary objective of this study is to improve the accuracy of classification in medical diagnosis problems. To this end, studies were carried out on 3 different datasets. These datasets are heart disease, Parkinson’s disease (PD) and BUPA liver disorders. Key feature of these datasets is that they have a linearly non-separable distribution. A new method entitled k-medoids clustering-based attribute weighting (kmAW) has been proposed as a data preprocessing method. The support vector machine (SVM) was preferred in the classification phase. In the performance evaluation stage, classification accuracy, specificity, sensitivity analysis, f-measure, kappa statistics value and ROC analysis were used. Experimental results showed that the developed hybrid system entitled kmAW + SVM gave better results compared to other methods described in the literature. Consequently, this hybrid intelligent system can be used as a useful medical decision support tool.
Literatur
1.
Zurück zum Zitat Das, R., Turkoglu, I., and Sengur, A., Diagnosis of valvular heart disease through neural networks ensembles. Comput. Methods Programs Biomed. 93(2):185–191, 2009.CrossRefPubMed Das, R., Turkoglu, I., and Sengur, A., Diagnosis of valvular heart disease through neural networks ensembles. Comput. Methods Programs Biomed. 93(2):185–191, 2009.CrossRefPubMed
3.
Zurück zum Zitat Das, R., and Sengur, A., Evaluation of ensemble methods for diagnosing of valvular heart disease. Expert Syst. Appl. 37(7):5110–5115, 2010.CrossRef Das, R., and Sengur, A., Evaluation of ensemble methods for diagnosing of valvular heart disease. Expert Syst. Appl. 37(7):5110–5115, 2010.CrossRef
5.
Zurück zum Zitat Duch, W., Adamczak, R., and Grabczewski, K., A new methodology of extraction, optimization and application of crisp and fuzzy logical rules. IEEE Trans. Neural Network 12(2):277–306, 2001.CrossRef Duch, W., Adamczak, R., and Grabczewski, K., A new methodology of extraction, optimization and application of crisp and fuzzy logical rules. IEEE Trans. Neural Network 12(2):277–306, 2001.CrossRef
6.
Zurück zum Zitat Sahan, S., Polat, K., Kodaz, H., and Gunes, S., The medical applications of attribute weighted artificial immune system (AWAIS): Diagnosis of heart and diabetes diseases. Lect. Notes Comput. Sci. 3627:456–468, 2005.CrossRef Sahan, S., Polat, K., Kodaz, H., and Gunes, S., The medical applications of attribute weighted artificial immune system (AWAIS): Diagnosis of heart and diabetes diseases. Lect. Notes Comput. Sci. 3627:456–468, 2005.CrossRef
7.
Zurück zum Zitat Polat, K., and Gunes, S., A hybrid approach to medical decision support systems: Combining feature selection, fuzzy weighted pre-processing and AIRS. Comput. Methods Programs Biomed. 88(2):164–174, 2007.CrossRefPubMed Polat, K., and Gunes, S., A hybrid approach to medical decision support systems: Combining feature selection, fuzzy weighted pre-processing and AIRS. Comput. Methods Programs Biomed. 88(2):164–174, 2007.CrossRefPubMed
8.
Zurück zum Zitat Polat, K., Sahan, S., and Gunes, S., Automatic detection of heart disease using an artificial immune recognition system (AIRS) with fuzzy resource allocation mechanism and k-NN (nearest neighbour) based weighting preprocessing. Expert Syst. Appl. 32(2):625–631, 2007.CrossRef Polat, K., Sahan, S., and Gunes, S., Automatic detection of heart disease using an artificial immune recognition system (AIRS) with fuzzy resource allocation mechanism and k-NN (nearest neighbour) based weighting preprocessing. Expert Syst. Appl. 32(2):625–631, 2007.CrossRef
9.
Zurück zum Zitat Ozsen, S., and Gunes, S., Effect of feature-type in selecting distance measure for an artificial immune system as a pattern recognizer. Digit. Signal Process. 18(4):635–645, 2008.CrossRef Ozsen, S., and Gunes, S., Effect of feature-type in selecting distance measure for an artificial immune system as a pattern recognizer. Digit. Signal Process. 18(4):635–645, 2008.CrossRef
10.
Zurück zum Zitat Kahramanli, H., and Allahverdi, N., Design of a hybrid system for the diabetes and heart diseases. Expert Syst. Appl. 35(1–2):82–89, 2008.CrossRef Kahramanli, H., and Allahverdi, N., Design of a hybrid system for the diabetes and heart diseases. Expert Syst. Appl. 35(1–2):82–89, 2008.CrossRef
11.
Zurück zum Zitat Polat, K., and Gunes, S., A new feature selection method on classification of medical datasets: Kernel F-score feature selection. Expert Syst. Appl. 36(7):10367–10373, 2009.CrossRef Polat, K., and Gunes, S., A new feature selection method on classification of medical datasets: Kernel F-score feature selection. Expert Syst. Appl. 36(7):10367–10373, 2009.CrossRef
12.
Zurück zum Zitat Das, R., Turkoglu, I., and Sengur, A., Effective diagnosis of heart disease through neural networks ensembles. Expert Syst. Appl. 36(4):7675–7680, 2009.CrossRef Das, R., Turkoglu, I., and Sengur, A., Effective diagnosis of heart disease through neural networks ensembles. Expert Syst. Appl. 36(4):7675–7680, 2009.CrossRef
13.
Zurück zum Zitat Subbulakshmi, C. V., Deepa, S. N., and Malathi, N., Extreme learning machine for two category data classification. In 2012 I.E. International Conference on Advanced Communication Control and Computing Technologies (ICACCCT), pp. 458–461, 2012. Subbulakshmi, C. V., Deepa, S. N., and Malathi, N., Extreme learning machine for two category data classification. In 2012 I.E. International Conference on Advanced Communication Control and Computing Technologies (ICACCCT), pp. 458–461, 2012.
14.
Zurück zum Zitat Mantas, C. J., and Abellán, J., Credal-C4. 5: Decision tree based on imprecise probabilities to classify noisy data. Expert Syst. Appl 41(10):4625–4637, 2014.CrossRef Mantas, C. J., and Abellán, J., Credal-C4. 5: Decision tree based on imprecise probabilities to classify noisy data. Expert Syst. Appl 41(10):4625–4637, 2014.CrossRef
15.
Zurück zum Zitat Shahbaba, B., and Neal, R., Nonlinear models using Dirichlet process mixtures. J. Mach. Learn. Res. 10:1829–1850, 2009. Shahbaba, B., and Neal, R., Nonlinear models using Dirichlet process mixtures. J. Mach. Learn. Res. 10:1829–1850, 2009.
16.
Zurück zum Zitat Das, R., A comparison of multiple classification methods for diagnosis of Parkinson disease. Expert Syst. Appl. 37(2):1568–1572, 2010.CrossRef Das, R., A comparison of multiple classification methods for diagnosis of Parkinson disease. Expert Syst. Appl. 37(2):1568–1572, 2010.CrossRef
17.
Zurück zum Zitat Guo, P. F., Bhattacharya, P., and Kharma, N., Advances in detecting Parkinson’s disease. in Medical Biometrics, vol. 6165 of Lect. Notes Comput. Sci, pp. 306–314, 2010. Guo, P. F., Bhattacharya, P., and Kharma, N., Advances in detecting Parkinson’s disease. in Medical Biometrics, vol. 6165 of Lect. Notes Comput. Sci, pp. 306–314, 2010.
18.
Zurück zum Zitat Sakar, C. O., and Kursun, O., Telediagnosis of Parkinson’s disease using measurements of dysphonia. J. Med. Syst. 34(4):591–599, 2010.CrossRefPubMed Sakar, C. O., and Kursun, O., Telediagnosis of Parkinson’s disease using measurements of dysphonia. J. Med. Syst. 34(4):591–599, 2010.CrossRefPubMed
19.
Zurück zum Zitat Ozcift, A., and Gulten, A., Classifier ensemble construction with rotation forest to improve medical diagnosis performance of machine learning algorithms. Comput. Methods Programs Biomed. 104(3):443–451, 2011.CrossRefPubMed Ozcift, A., and Gulten, A., Classifier ensemble construction with rotation forest to improve medical diagnosis performance of machine learning algorithms. Comput. Methods Programs Biomed. 104(3):443–451, 2011.CrossRefPubMed
20.
Zurück zum Zitat Astrom, F., and Koker, R., A parallel neural network approach to prediction of Parkinson’s disease. Expert Syst. Appl. 38(10):12470–12474, 2011.CrossRef Astrom, F., and Koker, R., A parallel neural network approach to prediction of Parkinson’s disease. Expert Syst. Appl. 38(10):12470–12474, 2011.CrossRef
21.
Zurück zum Zitat Luukka, P., Feature selection using fuzzy entropy measures with similarity classifier. Expert Syst. Appl. 38(4):4600–4607, 2011.CrossRef Luukka, P., Feature selection using fuzzy entropy measures with similarity classifier. Expert Syst. Appl. 38(4):4600–4607, 2011.CrossRef
22.
Zurück zum Zitat Li, D. C., Liu, C. W., and Hu, S. C., A fuzzy-based data transformation for feature extraction to increase classification performance with small medical data sets. Artif. Intell. Med. 52(1):45–52, 2011.CrossRefPubMed Li, D. C., Liu, C. W., and Hu, S. C., A fuzzy-based data transformation for feature extraction to increase classification performance with small medical data sets. Artif. Intell. Med. 52(1):45–52, 2011.CrossRefPubMed
23.
Zurück zum Zitat Ozcift, A., SVM feature selection based rotation forest ensemble classifiers to improve computer-aided diagnosis of Parkinson disease. J. Med. Syst. 36(4):2141–2147, 2012.CrossRefPubMed Ozcift, A., SVM feature selection based rotation forest ensemble classifiers to improve computer-aided diagnosis of Parkinson disease. J. Med. Syst. 36(4):2141–2147, 2012.CrossRefPubMed
24.
Zurück zum Zitat Polat, K., Classification of Parkinson’s disease using feature weighting method on the basis of fuzzy c-means clustering. Int. J. Syst. Sci. 43(4):597–609, 2012.CrossRef Polat, K., Classification of Parkinson’s disease using feature weighting method on the basis of fuzzy c-means clustering. Int. J. Syst. Sci. 43(4):597–609, 2012.CrossRef
25.
Zurück zum Zitat Daliri, M. R., Chi-square distance kernel of the gaits for the diagnosis of Parkinson’s disease. Biomed. Signal Process. Contr. 8(1):66–70, 2013.CrossRef Daliri, M. R., Chi-square distance kernel of the gaits for the diagnosis of Parkinson’s disease. Biomed. Signal Process. Contr. 8(1):66–70, 2013.CrossRef
26.
Zurück zum Zitat Zuo, W. L., Wang, Z. Y., Liu, T., and Chen, H. L., Effective detection of Parkinson’s disease using an adaptive fuzzy k-nearest neighbor approach. Biomed. Signal Process. Contr. 8(4):364–373, 2013.CrossRef Zuo, W. L., Wang, Z. Y., Liu, T., and Chen, H. L., Effective detection of Parkinson’s disease using an adaptive fuzzy k-nearest neighbor approach. Biomed. Signal Process. Contr. 8(4):364–373, 2013.CrossRef
27.
Zurück zum Zitat Chen, H. L., Huang, C. C., Yu, X. G., Xu, X., Sun, X., Wang, G., and Wang, S. J., An efficient diagnosis system for detection of Parkinson’s disease using fuzzy k-nearest neighbor approach. Expert Syst. Appl. 40(1):263–271, 2013.CrossRef Chen, H. L., Huang, C. C., Yu, X. G., Xu, X., Sun, X., Wang, G., and Wang, S. J., An efficient diagnosis system for detection of Parkinson’s disease using fuzzy k-nearest neighbor approach. Expert Syst. Appl. 40(1):263–271, 2013.CrossRef
28.
Zurück zum Zitat Ma, C., Ouyang, J., Chen, H. L., and Zhao, X. H., An efficient diagnosis system for Parkinson’s disease using kernel-based extreme learning machine with subtractive clustering features weighting approach. Comput Math. Methods Med. 2014. doi:10.1155/2014/985789. Ma, C., Ouyang, J., Chen, H. L., and Zhao, X. H., An efficient diagnosis system for Parkinson’s disease using kernel-based extreme learning machine with subtractive clustering features weighting approach. Comput Math. Methods Med. 2014. doi:10.​1155/​2014/​985789.
29.
Zurück zum Zitat Pham, D. T., Dimov, S. S., and Salem, Z., Technique for selecting examples in inductive learning. In European Symposium on Intelligent Techniques (ESIT 2000), pp. 119–127, 2000. Pham, D. T., Dimov, S. S., and Salem, Z., Technique for selecting examples in inductive learning. In European Symposium on Intelligent Techniques (ESIT 2000), pp. 119–127, 2000.
30.
Zurück zum Zitat Van Gestel, T., Suykens, J. A. K., Lanckriet, G., Lambrechts, A., De Moor, B., and Vandewalle, J., Bayesian framework for least squares support vector machine classifiers, Gaussian processes and kernel fisher discriminant analysis. Neural. Comput. 14(5):1115–1147, 2002.CrossRefPubMed Van Gestel, T., Suykens, J. A. K., Lanckriet, G., Lambrechts, A., De Moor, B., and Vandewalle, J., Bayesian framework for least squares support vector machine classifiers, Gaussian processes and kernel fisher discriminant analysis. Neural. Comput. 14(5):1115–1147, 2002.CrossRefPubMed
31.
Zurück zum Zitat Goncalves, L. B., Vellasco, M. B. R., Pacheco, M. A. C., and de Souza, F. J., Inverted hierarchical neuro-fuzzy BSP system: A novel neuro-fuzzy model for pattern classification and rule extraction in databases. IEEE Trans. Syst. Man Cybern. C Appl. Rev. 36(2):236–248, 2006.CrossRef Goncalves, L. B., Vellasco, M. B. R., Pacheco, M. A. C., and de Souza, F. J., Inverted hierarchical neuro-fuzzy BSP system: A novel neuro-fuzzy model for pattern classification and rule extraction in databases. IEEE Trans. Syst. Man Cybern. C Appl. Rev. 36(2):236–248, 2006.CrossRef
32.
Zurück zum Zitat Polat, K., Sahan, S., Kodaz, H., and Gunes, S., Breast cancer and liver disorders classification using artificial immune recognition system (AIRS) with performance evaluation by fuzzy resource allocation mechanism. Expert Syst. Appl. 32(1):172–183, 2007.CrossRef Polat, K., Sahan, S., Kodaz, H., and Gunes, S., Breast cancer and liver disorders classification using artificial immune recognition system (AIRS) with performance evaluation by fuzzy resource allocation mechanism. Expert Syst. Appl. 32(1):172–183, 2007.CrossRef
33.
Zurück zum Zitat Jin, B., Tang, Y. C., and Zhang, Y. Q., Support vector machines with genetic fuzzy feature transformation for biomedical data classification. Inform. Sci. 177(2):476–489, 2007.CrossRef Jin, B., Tang, Y. C., and Zhang, Y. Q., Support vector machines with genetic fuzzy feature transformation for biomedical data classification. Inform. Sci. 177(2):476–489, 2007.CrossRef
34.
Zurück zum Zitat Ozsen, S., and Gunes, S., Attribute weighting via genetic algorithms for attribute weighted artificial immune system (AWAIS) and its application to heart disease and liver disorders problems. Expert Syst. Appl. 36(1):386–392, 2009.CrossRef Ozsen, S., and Gunes, S., Attribute weighting via genetic algorithms for attribute weighted artificial immune system (AWAIS) and its application to heart disease and liver disorders problems. Expert Syst. Appl. 36(1):386–392, 2009.CrossRef
35.
Zurück zum Zitat Lee, Y. J., and Mangasarian, O. L., SSVM: A smooth support vector machine for classification. Comput. Optim. Appl. 20(1):5–22, 2001.CrossRef Lee, Y. J., and Mangasarian, O. L., SSVM: A smooth support vector machine for classification. Comput. Optim. Appl. 20(1):5–22, 2001.CrossRef
36.
Zurück zum Zitat Chen, L. F., Su, C. T., Chen, K. H., and Wang, P. C., Particle swarm optimization for feature selection with application in obstructive sleep apnea diagnosis. Neural Comput. Appl. 21(8):2087–2096, 2012.CrossRef Chen, L. F., Su, C. T., Chen, K. H., and Wang, P. C., Particle swarm optimization for feature selection with application in obstructive sleep apnea diagnosis. Neural Comput. Appl. 21(8):2087–2096, 2012.CrossRef
37.
Zurück zum Zitat Dehuri, S., Roy, R., Cho, S. B., and Ghosh, A., An improved swarm optimized functional link artificial neural network (ISO-FLANN) for classification. J. Syst. Software 85(6):1333–1345, 2012.CrossRef Dehuri, S., Roy, R., Cho, S. B., and Ghosh, A., An improved swarm optimized functional link artificial neural network (ISO-FLANN) for classification. J. Syst. Software 85(6):1333–1345, 2012.CrossRef
38.
Zurück zum Zitat Shao, Y. H., and Deng, N. Y., A coordinate descent margin based-twin support vector machine for classification. Neural Network 25:114–121, 2012.CrossRef Shao, Y. H., and Deng, N. Y., A coordinate descent margin based-twin support vector machine for classification. Neural Network 25:114–121, 2012.CrossRef
39.
Zurück zum Zitat Savitha, R., Suresh, S., Sundararajan, N., and Kim, H. J., A fully complex-valued radial basis function classifier for real-valued classification problems. Neurocomputing 78(1):104–110, 2012.CrossRef Savitha, R., Suresh, S., Sundararajan, N., and Kim, H. J., A fully complex-valued radial basis function classifier for real-valued classification problems. Neurocomputing 78(1):104–110, 2012.CrossRef
40.
Zurück zum Zitat López, F. M., Puertas, S. M., and Arriaza, J. T., Training of support vector machine with the use of multivariate normalization. Appl. Soft Comput. 24:1105–1111, 2014.CrossRef López, F. M., Puertas, S. M., and Arriaza, J. T., Training of support vector machine with the use of multivariate normalization. Appl. Soft Comput. 24:1105–1111, 2014.CrossRef
41.
Zurück zum Zitat Gunes, S., Polat, K., and Yosunkaya, S., Efficient sleep stage recognition system based on EEG signal using k-means clustering based feature weighting. Expert Syst. Appl. 37(12):7922–7928, 2010.CrossRef Gunes, S., Polat, K., and Yosunkaya, S., Efficient sleep stage recognition system based on EEG signal using k-means clustering based feature weighting. Expert Syst. Appl. 37(12):7922–7928, 2010.CrossRef
42.
Zurück zum Zitat Han, J., Kamber, M., and Pei, J., Data mining: Concepts and techniques. Morgan Kaufmann, 2006. Han, J., Kamber, M., and Pei, J., Data mining: Concepts and techniques. Morgan Kaufmann, 2006.
43.
Zurück zum Zitat Polat, K., and Gunes, S., A hybrid medical decision making system based on principles component analysis, k-NN based weighted pre-processing and adaptive neuro-fuzzy inference system. Digit. Signal Process. 16(6):913–921, 2006.CrossRef Polat, K., and Gunes, S., A hybrid medical decision making system based on principles component analysis, k-NN based weighted pre-processing and adaptive neuro-fuzzy inference system. Digit. Signal Process. 16(6):913–921, 2006.CrossRef
44.
Zurück zum Zitat Tahir, M. A., Bouridane, A., and Kurugollu, F., Simultaneous feature selection and feature weighting using hybrid tabu search/k-nearest neighbor classifier. Pattern Recogn. Lett. 28(4):438–446, 2007.CrossRef Tahir, M. A., Bouridane, A., and Kurugollu, F., Simultaneous feature selection and feature weighting using hybrid tabu search/k-nearest neighbor classifier. Pattern Recogn. Lett. 28(4):438–446, 2007.CrossRef
45.
Zurück zum Zitat Sun, Y., Iterative RELIEF for feature weighting: Algorithms, theories, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 29(6):1035–1051, 2007.CrossRefPubMed Sun, Y., Iterative RELIEF for feature weighting: Algorithms, theories, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 29(6):1035–1051, 2007.CrossRefPubMed
46.
Zurück zum Zitat Polat, K., Latifoglu, F., Kara, S., and Gunes, S., Usage of novel similarity based weighting method to diagnose the Atherosclerosis from carotid artery Doppler signals. Med. Biol. Eng. Comput. 46:353–362, 2008.CrossRefPubMed Polat, K., Latifoglu, F., Kara, S., and Gunes, S., Usage of novel similarity based weighting method to diagnose the Atherosclerosis from carotid artery Doppler signals. Med. Biol. Eng. Comput. 46:353–362, 2008.CrossRefPubMed
47.
Zurück zum Zitat Dua, S., Singh, H., and Thompson, H. W., Associative classification of mammograms using weighted rules. Expert Syst. Appl. 36(5):9250–9259, 2009.CrossRefPubMedPubMedCentral Dua, S., Singh, H., and Thompson, H. W., Associative classification of mammograms using weighted rules. Expert Syst. Appl. 36(5):9250–9259, 2009.CrossRefPubMedPubMedCentral
48.
Zurück zum Zitat Polat, K., and Durduran, S. S., Subtractive clustering attribute weighting (SCAW) to discriminate the traffic accidents on Konya–Afyonkarahisar highway in Turkey with the help of GIS: A case study. Adv. Eng. Software 42(7):491–500, 2011.CrossRef Polat, K., and Durduran, S. S., Subtractive clustering attribute weighting (SCAW) to discriminate the traffic accidents on Konya–Afyonkarahisar highway in Turkey with the help of GIS: A case study. Adv. Eng. Software 42(7):491–500, 2011.CrossRef
49.
Zurück zum Zitat Unal, Y., Polat, K., and Kocer, H. E., Pairwise FCM based feature weighting for improved classification of vertebral column disorders. Comput. Biol. Med. 46:61–70, 2014.CrossRefPubMed Unal, Y., Polat, K., and Kocer, H. E., Pairwise FCM based feature weighting for improved classification of vertebral column disorders. Comput. Biol. Med. 46:61–70, 2014.CrossRefPubMed
50.
Zurück zum Zitat MacQueen, J. B., Some methods for classification and analysis of multivariate observations. In Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297, 1967. MacQueen, J. B., Some methods for classification and analysis of multivariate observations. In Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297, 1967.
51.
Zurück zum Zitat Bezdek, J. C., Pattern recognition with fuzzy objective function algorithms. Plenum Press, New York, 1981.CrossRef Bezdek, J. C., Pattern recognition with fuzzy objective function algorithms. Plenum Press, New York, 1981.CrossRef
52.
Zurück zum Zitat Yager, R. R., and Filev, D. P., Generation of fuzzy rules by mountain clustering. J. Intell. Fuzzy Syst. 24:209–219, 1994. Yager, R. R., and Filev, D. P., Generation of fuzzy rules by mountain clustering. J. Intell. Fuzzy Syst. 24:209–219, 1994.
53.
Zurück zum Zitat Chiu, S. L., Fuzzy model identification based on cluster estimation. J. Intell. Fuzzy Syst. 2:267–278, 1994.CrossRef Chiu, S. L., Fuzzy model identification based on cluster estimation. J. Intell. Fuzzy Syst. 2:267–278, 1994.CrossRef
54.
Zurück zum Zitat Kaufman, L., and Rousseeuw, P., Clustering by means of medoids. North-Holland, 1987. Kaufman, L., and Rousseeuw, P., Clustering by means of medoids. North-Holland, 1987.
55.
Zurück zum Zitat Kaufman, L., and Rousseeuw, P. J., Finding groups in data: An introduction to cluster analysis. Wiley, Hoboken, NJ, 1990.CrossRef Kaufman, L., and Rousseeuw, P. J., Finding groups in data: An introduction to cluster analysis. Wiley, Hoboken, NJ, 1990.CrossRef
56.
Zurück zum Zitat Vapnik, V. N., The nature of statistical learning theory. Springer, NewYork, 1995.CrossRef Vapnik, V. N., The nature of statistical learning theory. Springer, NewYork, 1995.CrossRef
57.
Zurück zum Zitat Berikol, G. B., Yildiz, O., and Ozcan, I. T., Diagnosis of acute coronary syndrome with a support vector machine. J. Med. Syst. 40(4):1–8, 2016.CrossRef Berikol, G. B., Yildiz, O., and Ozcan, I. T., Diagnosis of acute coronary syndrome with a support vector machine. J. Med. Syst. 40(4):1–8, 2016.CrossRef
58.
Zurück zum Zitat Su, L., Shi, T., Xu, Z., Lu, X., and Liao, G., Defect inspection of flip chip solder bumps using an ultrasonic transducer. Sensors 13(12):16281–16291, 2013.CrossRefPubMedCentral Su, L., Shi, T., Xu, Z., Lu, X., and Liao, G., Defect inspection of flip chip solder bumps using an ultrasonic transducer. Sensors 13(12):16281–16291, 2013.CrossRefPubMedCentral
59.
Zurück zum Zitat Cortes, C., and Vapnik, V., Support vector network. Mach. Learn. 20(3):273–297, 1995. Cortes, C., and Vapnik, V., Support vector network. Mach. Learn. 20(3):273–297, 1995.
60.
Zurück zum Zitat Elbaz, A., Bower, J. H., Maraganore, D. M., McDonnell, S. K., Peterson, B. J., Ahlskog, J. E., Schaid, D. J., and Rocca, W. A., Risk tables for Parkinsonism and Parkinson’s disease. J. Clin. Epidemiol. 55:25–31, 2002.CrossRefPubMed Elbaz, A., Bower, J. H., Maraganore, D. M., McDonnell, S. K., Peterson, B. J., Ahlskog, J. E., Schaid, D. J., and Rocca, W. A., Risk tables for Parkinsonism and Parkinson’s disease. J. Clin. Epidemiol. 55:25–31, 2002.CrossRefPubMed
61.
Zurück zum Zitat Little, M. A., McSharry, P. E., Hunter, E. J., and Ramig, L. O., Suitability of dysphonia measurements for telemonitoring of Parkinson’s disease. IEEE Trans. Biomed. Eng. 56:1015–1022, 2009.CrossRefPubMedPubMedCentral Little, M. A., McSharry, P. E., Hunter, E. J., and Ramig, L. O., Suitability of dysphonia measurements for telemonitoring of Parkinson’s disease. IEEE Trans. Biomed. Eng. 56:1015–1022, 2009.CrossRefPubMedPubMedCentral
62.
Zurück zum Zitat Bergstra, J., and Bengio, Y., Random search for hyper-parameter optimization. The J. Mach. Learn. Res. 13(1):281–305, 2012. Bergstra, J., and Bengio, Y., Random search for hyper-parameter optimization. The J. Mach. Learn. Res. 13(1):281–305, 2012.
64.
Zurück zum Zitat Cohen, J., A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 20(1):37–46, 1960.CrossRef Cohen, J., A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 20(1):37–46, 1960.CrossRef
65.
Zurück zum Zitat Kocer, S., and Canal, M. R., Classifying epilepsy diseases using artificial neural networks and genetic algorithm. J. Med. Syst. 35(4):489–498, 2011.CrossRefPubMed Kocer, S., and Canal, M. R., Classifying epilepsy diseases using artificial neural networks and genetic algorithm. J. Med. Syst. 35(4):489–498, 2011.CrossRefPubMed
66.
Zurück zum Zitat Alickovic, E., and Subasi, A., Medical decision support system for diagnosis of heart arrhythmia using DWT and random forests classifier. J. Med. Syst. 40(4):1–12, 2016.CrossRef Alickovic, E., and Subasi, A., Medical decision support system for diagnosis of heart arrhythmia using DWT and random forests classifier. J. Med. Syst. 40(4):1–12, 2016.CrossRef
67.
Zurück zum Zitat Ozsen, S., Gunes, S., Kara, S., and Latifoglu, F., Use of kernel functions in artificial immune systems for the nonlinear classification problems. IEEE Trans. Inform. Tech. Biomed. 13(4):621–628, 2009.CrossRef Ozsen, S., Gunes, S., Kara, S., and Latifoglu, F., Use of kernel functions in artificial immune systems for the nonlinear classification problems. IEEE Trans. Inform. Tech. Biomed. 13(4):621–628, 2009.CrossRef
68.
Zurück zum Zitat Tian, J., Li, M., and Chen, F., A hybrid classification algorithm based on coevolutionary EBFNN and domain covering method. Neural Comput. Appl. 18(3):293–308, 2009.CrossRef Tian, J., Li, M., and Chen, F., A hybrid classification algorithm based on coevolutionary EBFNN and domain covering method. Neural Comput. Appl. 18(3):293–308, 2009.CrossRef
69.
Zurück zum Zitat Torun, Y., and Tohumoglu, G., Designing simulated annealing and subtractive clustering based fuzzy classifier. Appl. Soft Comput. 11(2):2193–2201, 2011.CrossRef Torun, Y., and Tohumoglu, G., Designing simulated annealing and subtractive clustering based fuzzy classifier. Appl. Soft Comput. 11(2):2193–2201, 2011.CrossRef
70.
Zurück zum Zitat Al-Obeidat, F., Belacela, N., Carretero, J. A., and Mahanti, P., An evolutionary framework using particle swarm optimization for classification method PROAFTN. Appl. Soft Comput. 11(8):4971–4980, 2011.CrossRef Al-Obeidat, F., Belacela, N., Carretero, J. A., and Mahanti, P., An evolutionary framework using particle swarm optimization for classification method PROAFTN. Appl. Soft Comput. 11(8):4971–4980, 2011.CrossRef
71.
Zurück zum Zitat Jaganathan, P., and Kuppuchamy, R., A threshold fuzzy entropy based featureselection for medical database classification. Comput. Biol. Med. 43:2222–2229, 2013.CrossRefPubMed Jaganathan, P., and Kuppuchamy, R., A threshold fuzzy entropy based featureselection for medical database classification. Comput. Biol. Med. 43:2222–2229, 2013.CrossRefPubMed
72.
Zurück zum Zitat Lim, C. K., and Chan, C. S., A weighted inference engine based on interval valued fuzzy relational theory. Expert Syst. Appl. 42:3410–3419, 2015.CrossRef Lim, C. K., and Chan, C. S., A weighted inference engine based on interval valued fuzzy relational theory. Expert Syst. Appl. 42:3410–3419, 2015.CrossRef
73.
Zurück zum Zitat Yang, C. Y., Chou, J. J., and Lian, F. L., Robust classifier learning with fuzzy class labels for large-margin support vector machines. Neurocomputing 99:1–14, 2013.CrossRef Yang, C. Y., Chou, J. J., and Lian, F. L., Robust classifier learning with fuzzy class labels for large-margin support vector machines. Neurocomputing 99:1–14, 2013.CrossRef
74.
Zurück zum Zitat Ahmad, F., Isa, N. A. M., Hussain, Z., and Osman, M. K., Intelligent medical disease diagnosis using improved hybrid genetic algorithm-multilayer perceptron network. J. Med. Syst. 37(2):1–8, 2013.CrossRef Ahmad, F., Isa, N. A. M., Hussain, Z., and Osman, M. K., Intelligent medical disease diagnosis using improved hybrid genetic algorithm-multilayer perceptron network. J. Med. Syst. 37(2):1–8, 2013.CrossRef
75.
Zurück zum Zitat Ibrikci, T., Ustun, D., and Kaya, I. E., Diagnosis of several diseases by using combined kernels with support vector machine. J. Med. Syst. 36(3):1831–1840, 2012.CrossRefPubMed Ibrikci, T., Ustun, D., and Kaya, I. E., Diagnosis of several diseases by using combined kernels with support vector machine. J. Med. Syst. 36(3):1831–1840, 2012.CrossRefPubMed
76.
Zurück zum Zitat Psorakis, I., Damoulas, T., and Girolami, M. A., Multiclass relevance vector machines: Sparsity and accuracy. IEEE Trans. Neural Network 21(10):1588–1598, 2010.CrossRef Psorakis, I., Damoulas, T., and Girolami, M. A., Multiclass relevance vector machines: Sparsity and accuracy. IEEE Trans. Neural Network 21(10):1588–1598, 2010.CrossRef
77.
Zurück zum Zitat Lin, J. J., and Chang, P. C., A particle swarm optimization based classifier for liver disorders classification, in: International Conference on Computational Problem-Solving (ICCP), pp. 3–5, 2010. Lin, J. J., and Chang, P. C., A particle swarm optimization based classifier for liver disorders classification, in: International Conference on Computational Problem-Solving (ICCP), pp. 3–5, 2010.
78.
Zurück zum Zitat Wang, J., Belatreche, A., Maguire, L., and McGinnity, T. M., An online supervised learning method for spiking neural networks with adaptive structure. Neurocomputing 144:526–536, 2014.CrossRef Wang, J., Belatreche, A., Maguire, L., and McGinnity, T. M., An online supervised learning method for spiking neural networks with adaptive structure. Neurocomputing 144:526–536, 2014.CrossRef
79.
Zurück zum Zitat Ozsen, S., and Yucelbas, C., On the evolution of ellipsoidal recognition regions in artificial immune systems. Appl. Soft Comput. 31:210–222, 2015.CrossRef Ozsen, S., and Yucelbas, C., On the evolution of ellipsoidal recognition regions in artificial immune systems. Appl. Soft Comput. 31:210–222, 2015.CrossRef
Metadaten
Titel
A decision support system to improve medical diagnosis using a combination of k-medoids clustering based attribute weighting and SVM
verfasst von
Musa Peker
Publikationsdatum
01.05.2016
Verlag
Springer US
Erschienen in
Journal of Medical Systems / Ausgabe 5/2016
Print ISSN: 0148-5598
Elektronische ISSN: 1573-689X
DOI
https://doi.org/10.1007/s10916-016-0477-6

Weitere Artikel der Ausgabe 5/2016

Journal of Medical Systems 5/2016 Zur Ausgabe