Skip to main content
Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging 1/2019

18.09.2018 | Original Article

A prospective study of the feasibility of FDG-PET/CT imaging to quantify radiation-induced lung inflammation in locally advanced non-small cell lung cancer patients receiving proton or photon radiotherapy

verfasst von: Pegah Jahangiri, Kamyar Pournazari, Drew A. Torigian, Thomas J. Werner, Samuel Swisher-McClure, Charles B. Simone II, Abass Alavi

Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging | Ausgabe 1/2019

Einloggen, um Zugang zu erhalten

Abstract

Purpose

This prospective study assessed the feasibility of 18F-2-fluoro-2-deoxy-D-glucose (FDG) positron emission tomography/computed tomography (PET/CT) to quantify radiation-induced lung inflammation in patients with locally advanced non-small cell lung cancer (NSCLC) who received radiotherapy (RT), and compared the differences in inflammation in the ipsilateral and contralateral lungs following proton and photon RT.

Methods

Thirty-nine consecutive patients with NSCLC underwent FDG-PET/CT imaging before and after RT on a prospective study. A novel quantitative approach utilized regions of interest placed around the anatomical boundaries of the lung parenchyma and provided lung mean standardized uptake value (SUVmean), global lung glycolysis (GLG), global lung parenchymal glycolysis (GLPG) and total lung volume (LV). To quantify primary tumor metabolic response to RT, an adaptive contrast-oriented thresholding algorithm was applied to measure metabolically active tumor volume (MTV), tumor uncorrected SUVmean, tumor partial volume corrected SUVmean (tumor-PVC-SUVmean), and total lesion glycolysis (TLG). Parameters of FDG-PET/CT scans before and after RT were compared using two-tailed paired t-tests.

Results

All tumor parameters after either proton or photon RT decreased significantly (p < 0.001). Among the 21 patients treated exclusively with proton RT, no significant increase in PVC-SUVmean or PVC-GLPG was observed in ipsilateral lungs after the PVC parameters of primary tumor were subtracted (p = 0.114 and p = 0.453, respectively). Also, there were no significant increases in SUVmean or GLG of contralateral lungs of patients who received proton RT (p = 0.841, p = 0.241, respectively). In contrast, among the nine patients who received photon RT, there was a statistically significant increase in PVC-GLPG of ipsilateral lung (p < 0.001) and in GLG of contralateral (p = 0.036) lung. In the subset of nine patients who received a combined proton and photon RT, there was a statistically significant increase in PVC-GLPG of ipsilateral lung (p < 0.001).

Conclusion

Our data suggest less induction of inflammatory response in both the ipsilateral and contralateral lungs of patients treated with proton compared to photon or combined proton-photon RT.
Literatur
2.
Zurück zum Zitat Hardcastle N, Hofman MS, Hicks RJ, Callahan J, Kron T, MacManus MP, et al. Accuracy and utility of deformable image registration in 68 Ga 4D PET/CT assessment of pulmonary perfusion changes during and after lung radiation therapy. Int J Radiat Oncol Biol Phys. 2015;93:196–204.CrossRefPubMed Hardcastle N, Hofman MS, Hicks RJ, Callahan J, Kron T, MacManus MP, et al. Accuracy and utility of deformable image registration in 68 Ga 4D PET/CT assessment of pulmonary perfusion changes during and after lung radiation therapy. Int J Radiat Oncol Biol Phys. 2015;93:196–204.CrossRefPubMed
3.
Zurück zum Zitat Ulaner GA, Lyall A. Identifying and distinguishing treatment effects and complications from malignancy at FDG PET/CT. Radiographics. 2013;33:1817–34.CrossRefPubMed Ulaner GA, Lyall A. Identifying and distinguishing treatment effects and complications from malignancy at FDG PET/CT. Radiographics. 2013;33:1817–34.CrossRefPubMed
4.
Zurück zum Zitat Verma V, Simone CB 2nd, Werner-Wasik M. Acute and late toxicities of concurrent chemoradiotherapy for locally-advanced non-small cell lung cancer. Cancers. 2017;9:120.CrossRefPubMedCentral Verma V, Simone CB 2nd, Werner-Wasik M. Acute and late toxicities of concurrent chemoradiotherapy for locally-advanced non-small cell lung cancer. Cancers. 2017;9:120.CrossRefPubMedCentral
5.
Zurück zum Zitat Higgins KA, O'Connell K, Liu Y, Gillespie TW, McDonald MW, Pillai RN, et al. National Cancer Database analysis of proton versus photon radiation therapy in non-small cell lung cancer. Int J Radiat Oncol Biol Phys. 2017;97:128–37.CrossRefPubMed Higgins KA, O'Connell K, Liu Y, Gillespie TW, McDonald MW, Pillai RN, et al. National Cancer Database analysis of proton versus photon radiation therapy in non-small cell lung cancer. Int J Radiat Oncol Biol Phys. 2017;97:128–37.CrossRefPubMed
6.
Zurück zum Zitat Zhang X-J, Sun J-G, Sun J, Ming H, Wang X-X, Wu L, et al. Prediction of radiation pneumonitis in lung cancer patients: a systematic review. J Cancer Res Clin Oncol. 2012;138:2103–16.CrossRefPubMed Zhang X-J, Sun J-G, Sun J, Ming H, Wang X-X, Wu L, et al. Prediction of radiation pneumonitis in lung cancer patients: a systematic review. J Cancer Res Clin Oncol. 2012;138:2103–16.CrossRefPubMed
7.
Zurück zum Zitat Echeverria AE, McCurdy M, Castillo R, Bernard V, Ramos NV, Buckley W, et al. Proton therapy radiation pneumonitis local dose–response in esophagus cancer patients. Radiother Oncol. 2013;106:124–9.CrossRefPubMed Echeverria AE, McCurdy M, Castillo R, Bernard V, Ramos NV, Buckley W, et al. Proton therapy radiation pneumonitis local dose–response in esophagus cancer patients. Radiother Oncol. 2013;106:124–9.CrossRefPubMed
8.
Zurück zum Zitat Palma DA, Senan S, Tsujino K, Barriger RB, Rengan R, Moreno M, et al. Predicting radiation pneumonitis after chemoradiation therapy for lung cancer: an international individual patient data meta-analysis. Int J Radiat Oncol Biol Phys. 2013;85:444–50.CrossRefPubMed Palma DA, Senan S, Tsujino K, Barriger RB, Rengan R, Moreno M, et al. Predicting radiation pneumonitis after chemoradiation therapy for lung cancer: an international individual patient data meta-analysis. Int J Radiat Oncol Biol Phys. 2013;85:444–50.CrossRefPubMed
9.
Zurück zum Zitat Castillo R, Pham N, Ansari S, Meshkov D, Castillo S, Li M, et al. Pre-radiotherapy FDG PET predicts radiation pneumonitis in lung cancer. Radiat Oncol. 2014;9:74.CrossRefPubMedPubMedCentral Castillo R, Pham N, Ansari S, Meshkov D, Castillo S, Li M, et al. Pre-radiotherapy FDG PET predicts radiation pneumonitis in lung cancer. Radiat Oncol. 2014;9:74.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Simone CB 2nd. Thoracic radiation normal tissue injury. Semin Radiat Oncol. 2017:370–7. Elsevier Simone CB 2nd. Thoracic radiation normal tissue injury. Semin Radiat Oncol. 2017:370–7. Elsevier
11.
Zurück zum Zitat Valdes G, Solberg TD, Heskel M, Ungar L, Simone CB 2nd. Using machine learning to predict radiation pneumonitis in patients with stage I non-small cell lung cancer treated with stereotactic body radiation therapy. Phys Med Biol. 2016;61:6105.CrossRefPubMedPubMedCentral Valdes G, Solberg TD, Heskel M, Ungar L, Simone CB 2nd. Using machine learning to predict radiation pneumonitis in patients with stage I non-small cell lung cancer treated with stereotactic body radiation therapy. Phys Med Biol. 2016;61:6105.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Weller A, O'Brien M, Ahmed M, Popat S, Bhosle J, McDonald F, et al. Mechanism and non-mechanism based imaging biomarkers for assessing biological response to treatment in non-small cell lung cancer. Eur J Cancer. 2016;59:65–78.CrossRefPubMed Weller A, O'Brien M, Ahmed M, Popat S, Bhosle J, McDonald F, et al. Mechanism and non-mechanism based imaging biomarkers for assessing biological response to treatment in non-small cell lung cancer. Eur J Cancer. 2016;59:65–78.CrossRefPubMed
13.
Zurück zum Zitat Abdulla S, Salavati A, Saboury B, Basu S, Torigian DA, Alavi A. Quantitative assessment of global lung inflammation following radiation therapy using FDG PET/CT: a pilot study. Eur J Nucl Med Mol Imaging. 2014;41:350–6.CrossRefPubMed Abdulla S, Salavati A, Saboury B, Basu S, Torigian DA, Alavi A. Quantitative assessment of global lung inflammation following radiation therapy using FDG PET/CT: a pilot study. Eur J Nucl Med Mol Imaging. 2014;41:350–6.CrossRefPubMed
14.
Zurück zum Zitat Mac Manus MP, Ding Z, Hogg A, Herschtal A, Binns D, Ball DL, et al. Association between pulmonary uptake of fluorodeoxyglucose detected by positron emission tomography scanning after radiation therapy for non–small-cell lung cancer and radiation pneumonitis. Int J Radiat Oncol Biol Phys. 2011;80:1365–71.CrossRefPubMed Mac Manus MP, Ding Z, Hogg A, Herschtal A, Binns D, Ball DL, et al. Association between pulmonary uptake of fluorodeoxyglucose detected by positron emission tomography scanning after radiation therapy for non–small-cell lung cancer and radiation pneumonitis. Int J Radiat Oncol Biol Phys. 2011;80:1365–71.CrossRefPubMed
15.
Zurück zum Zitat McCurdy MR, Castillo R, Martinez J, Al Hallack MN, Lichter J, Zouain N, et al. [18 F]-FDG uptake dose–response correlates with radiation pneumonitis in lung cancer patients. Radiother Oncol. 2012;104:52–7.CrossRefPubMedPubMedCentral McCurdy MR, Castillo R, Martinez J, Al Hallack MN, Lichter J, Zouain N, et al. [18 F]-FDG uptake dose–response correlates with radiation pneumonitis in lung cancer patients. Radiother Oncol. 2012;104:52–7.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Hart JP, McCurdy MR, Ezhil M, Wei W, Khan M, Luo D, et al. Radiation pneumonitis: correlation of toxicity with pulmonary metabolic radiation response. Int J Radiat Oncol Biol Phys. 2008;71:967–71.CrossRefPubMedPubMedCentral Hart JP, McCurdy MR, Ezhil M, Wei W, Khan M, Luo D, et al. Radiation pneumonitis: correlation of toxicity with pulmonary metabolic radiation response. Int J Radiat Oncol Biol Phys. 2008;71:967–71.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Anthony GJ, Cunliffe A, Castillo R, Pham N, Guerrero T, Armato SG, et al. Incorporation of pre-therapy 18F-FDG uptake data with CT texture features into a radiomics model for radiation pneumonitis diagnosis. Med Phys. 2017. Anthony GJ, Cunliffe A, Castillo R, Pham N, Guerrero T, Armato SG, et al. Incorporation of pre-therapy 18F-FDG uptake data with CT texture features into a radiomics model for radiation pneumonitis diagnosis. Med Phys. 2017.
18.
Zurück zum Zitat Rodrigues G, Lock M, D'Souza D, Yu E, Van Dyk J. Prediction of radiation pneumonitis by dose–volume histogram parameters in lung cancer—a systematic review. Radiother Oncol. 2004;71:127–38.CrossRefPubMed Rodrigues G, Lock M, D'Souza D, Yu E, Van Dyk J. Prediction of radiation pneumonitis by dose–volume histogram parameters in lung cancer—a systematic review. Radiother Oncol. 2004;71:127–38.CrossRefPubMed
19.
Zurück zum Zitat Bradley JD, Paulus R, Komaki R, Masters G, Blumenschein G, Schild S, et al. Standard-dose versus high-dose conformal radiotherapy with concurrent and consolidation carboplatin plus paclitaxel with or without cetuximab for patients with stage IIIA or IIIB non-small-cell lung cancer (RTOG 0617): a randomised, two-by-two factorial phase 3 study. Lancet Oncol. 2015;16:187–99.CrossRefPubMedPubMedCentral Bradley JD, Paulus R, Komaki R, Masters G, Blumenschein G, Schild S, et al. Standard-dose versus high-dose conformal radiotherapy with concurrent and consolidation carboplatin plus paclitaxel with or without cetuximab for patients with stage IIIA or IIIB non-small-cell lung cancer (RTOG 0617): a randomised, two-by-two factorial phase 3 study. Lancet Oncol. 2015;16:187–99.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Houshmand S, Boursi B, Salavati A, Simone CB 2nd, Alavi A. Applications of Fluorodeoxyglucose PET/computed tomography in the assessment and prediction of radiation therapy–related complications. PET Clin. 2015;10:555–71.CrossRefPubMed Houshmand S, Boursi B, Salavati A, Simone CB 2nd, Alavi A. Applications of Fluorodeoxyglucose PET/computed tomography in the assessment and prediction of radiation therapy–related complications. PET Clin. 2015;10:555–71.CrossRefPubMed
21.
Zurück zum Zitat Abravan A, Knudtsen IS, Eide HA, Løndalen AM, Helland Å, van Luijk P, et al. A new method to assess pulmonary changes using 18F-fluoro-2-deoxyglucose positron emission tomography for lung cancer patients following radiotherapy. Acta Oncol. 2017:1–7. Abravan A, Knudtsen IS, Eide HA, Løndalen AM, Helland Å, van Luijk P, et al. A new method to assess pulmonary changes using 18F-fluoro-2-deoxyglucose positron emission tomography for lung cancer patients following radiotherapy. Acta Oncol. 2017:1–7.
22.
Zurück zum Zitat Grutters JP, Kessels AG, Pijls-Johannesma M, De Ruysscher D, Joore MA, Lambin P. Comparison of the effectiveness of radiotherapy with photons, protons and carbon-ions for non-small cell lung cancer: a meta-analysis. Radiother Oncol. 2010;95:32–40.CrossRefPubMed Grutters JP, Kessels AG, Pijls-Johannesma M, De Ruysscher D, Joore MA, Lambin P. Comparison of the effectiveness of radiotherapy with photons, protons and carbon-ions for non-small cell lung cancer: a meta-analysis. Radiother Oncol. 2010;95:32–40.CrossRefPubMed
23.
Zurück zum Zitat Shioyama Y, Tokuuye K, Okumura T, Kagei K, Sugahara S, Ohara K, et al. Clinical evaluation of proton radiotherapy for non–small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2003;56:7–13.CrossRefPubMed Shioyama Y, Tokuuye K, Okumura T, Kagei K, Sugahara S, Ohara K, et al. Clinical evaluation of proton radiotherapy for non–small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2003;56:7–13.CrossRefPubMed
24.
Zurück zum Zitat Simone CB 2nd, Rengan R. The use of proton therapy in the treatment of lung cancers. Cancer J. 2014;20:427–32.CrossRefPubMed Simone CB 2nd, Rengan R. The use of proton therapy in the treatment of lung cancers. Cancer J. 2014;20:427–32.CrossRefPubMed
25.
Zurück zum Zitat Chin R Jr, Ward R, Keyes J, Choplin RH, Reed JC, Wallenhaupt S, et al. Mediastinal staging of non-small-cell lung cancer with positron emission tomography. Am J Respir Crit Care Med. 1995;152:2090–6.CrossRefPubMed Chin R Jr, Ward R, Keyes J, Choplin RH, Reed JC, Wallenhaupt S, et al. Mediastinal staging of non-small-cell lung cancer with positron emission tomography. Am J Respir Crit Care Med. 1995;152:2090–6.CrossRefPubMed
26.
Zurück zum Zitat Sazon D, Santiago SM, Soo Hoo G, Khonsary A, Brown C, Mandelkern M, et al. Fluorodeoxyglucose-positron emission tomography in the detection and staging of lung cancer. Am J Respir Crit Care Med. 1996;153:417–21.CrossRefPubMed Sazon D, Santiago SM, Soo Hoo G, Khonsary A, Brown C, Mandelkern M, et al. Fluorodeoxyglucose-positron emission tomography in the detection and staging of lung cancer. Am J Respir Crit Care Med. 1996;153:417–21.CrossRefPubMed
27.
Zurück zum Zitat Vanuytsel LJ, Vansteenkiste JF, Stroobants SG, De Leyn PR, De Wever W, Verbeken EK, et al. The impact of 18 F-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) lymph node staging on the radiation treatment volumes in patients with non-small cell lung cancer. Radiother Oncol. 2000;55:317–24.CrossRefPubMed Vanuytsel LJ, Vansteenkiste JF, Stroobants SG, De Leyn PR, De Wever W, Verbeken EK, et al. The impact of 18 F-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) lymph node staging on the radiation treatment volumes in patients with non-small cell lung cancer. Radiother Oncol. 2000;55:317–24.CrossRefPubMed
28.
Zurück zum Zitat Salavati A, Duan F, Snyder BS, Wei B, Houshmand S, Khiewvan B, et al. Optimal FDG PET/CT volumetric parameters for risk stratification in patients with locally advanced non-small cell lung cancer: results from the ACRIN 6668/RTOG 0235 trial. Eur J Nucl Med Mol Imaging. 2017:1–15. Salavati A, Duan F, Snyder BS, Wei B, Houshmand S, Khiewvan B, et al. Optimal FDG PET/CT volumetric parameters for risk stratification in patients with locally advanced non-small cell lung cancer: results from the ACRIN 6668/RTOG 0235 trial. Eur J Nucl Med Mol Imaging. 2017:1–15.
29.
Zurück zum Zitat Simone CB 2nd, Houshmand S, Kalbasi A, Salavati A, Alavi A. PET-based thoracic radiation oncology. PET Clin. 2016;11:319–32.CrossRefPubMed Simone CB 2nd, Houshmand S, Kalbasi A, Salavati A, Alavi A. PET-based thoracic radiation oncology. PET Clin. 2016;11:319–32.CrossRefPubMed
30.
Zurück zum Zitat Geiger GA, Kim MB, Xanthopoulos EP, Pryma DA, Grover S, Plastaras JP, et al. Stage migration in planning PET/CT scans in patients due to receive radiotherapy for non–small-cell lung cancer. Clin Lung Cancer. 2014;15:79–85.CrossRefPubMed Geiger GA, Kim MB, Xanthopoulos EP, Pryma DA, Grover S, Plastaras JP, et al. Stage migration in planning PET/CT scans in patients due to receive radiotherapy for non–small-cell lung cancer. Clin Lung Cancer. 2014;15:79–85.CrossRefPubMed
31.
Zurück zum Zitat Guerrero T, Johnson V, Hart J, Pan T, Khan M, Luo D, et al. Radiation pneumonitis: local dose versus [18 F]-fluorodeoxyglucose uptake response in irradiated lung. Int J Radiat Oncol Biol Phys. 2007;68:1030–5.CrossRefPubMed Guerrero T, Johnson V, Hart J, Pan T, Khan M, Luo D, et al. Radiation pneumonitis: local dose versus [18 F]-fluorodeoxyglucose uptake response in irradiated lung. Int J Radiat Oncol Biol Phys. 2007;68:1030–5.CrossRefPubMed
32.
Zurück zum Zitat Torigian DA, Lopez R, Alapati S, Bodapati G, Hofheinz F, Saboury B, et al. Feasibility and performance of novel software to quantify metabolically active volumes and 3D partial volume corrected SUV and metabolic volumetric products of spinal bone marrow metastases on 18F-FDG-PET/CT. Hell J Nucl Med. 2011;14:8–14.PubMed Torigian DA, Lopez R, Alapati S, Bodapati G, Hofheinz F, Saboury B, et al. Feasibility and performance of novel software to quantify metabolically active volumes and 3D partial volume corrected SUV and metabolic volumetric products of spinal bone marrow metastases on 18F-FDG-PET/CT. Hell J Nucl Med. 2011;14:8–14.PubMed
33.
Zurück zum Zitat Hofheinz F, Dittrich S, Pötzsch C, Van Den Hoff J. Effects of cold sphere walls in PET phantom measurements on the volume reproducing threshold. Phys Med Biol. 2010;55:1099.CrossRefPubMed Hofheinz F, Dittrich S, Pötzsch C, Van Den Hoff J. Effects of cold sphere walls in PET phantom measurements on the volume reproducing threshold. Phys Med Biol. 2010;55:1099.CrossRefPubMed
34.
Zurück zum Zitat Metser U, Even-Sapir E. Increased 18 F-fluorodeoxyglucose uptake in benign, nonphysiologic lesions found on whole-body positron emission tomography/computed tomography (PET/CT): accumulated data from four years of experience with PET/CT. Semin Nucl Med: 2007:206–22. Elsevier. Metser U, Even-Sapir E. Increased 18 F-fluorodeoxyglucose uptake in benign, nonphysiologic lesions found on whole-body positron emission tomography/computed tomography (PET/CT): accumulated data from four years of experience with PET/CT. Semin Nucl Med: 2007:206–22. Elsevier.
35.
Zurück zum Zitat Hassaballa HA, Cohen ES, Khan AJ, Ali A, Bonomi P, Rubin DB. Positron emission tomography demonstrates radiation-induced changes to nonirradiated lungs in lung cancer patients treated with radiation and chemotherapy. Chest. 2005;128:1448–52.CrossRefPubMed Hassaballa HA, Cohen ES, Khan AJ, Ali A, Bonomi P, Rubin DB. Positron emission tomography demonstrates radiation-induced changes to nonirradiated lungs in lung cancer patients treated with radiation and chemotherapy. Chest. 2005;128:1448–52.CrossRefPubMed
36.
Zurück zum Zitat Kwee TC, Torigian DA, Alavi A. Nononcological applications of positron emission tomography for evaluation of the thorax. J Thorac Imaging. 2013;28:25–39.CrossRefPubMed Kwee TC, Torigian DA, Alavi A. Nononcological applications of positron emission tomography for evaluation of the thorax. J Thorac Imaging. 2013;28:25–39.CrossRefPubMed
37.
Zurück zum Zitat Subramanian DR, Jenkins L, Edgar R, Quraishi N, Stockley RA, Parr DG. Assessment of pulmonary neutrophilic inflammation in emphysema by quantitative positron emission tomography. Am J Respir Crit Care Med. 2012;186:1125–32.CrossRefPubMed Subramanian DR, Jenkins L, Edgar R, Quraishi N, Stockley RA, Parr DG. Assessment of pulmonary neutrophilic inflammation in emphysema by quantitative positron emission tomography. Am J Respir Crit Care Med. 2012;186:1125–32.CrossRefPubMed
38.
Zurück zum Zitat Torigian DA, Dam V, Chen X, Saboury B, Udupa JK, Rashid A, et al. In vivo quantification of pulmonary inflammation in relation to emphysema severity via partial volume corrected (18) F-FDG-PET using computer-assisted analysis of diagnostic chest CT. Hell J Nucl Med. 2013;16:12–8.PubMed Torigian DA, Dam V, Chen X, Saboury B, Udupa JK, Rashid A, et al. In vivo quantification of pulmonary inflammation in relation to emphysema severity via partial volume corrected (18) F-FDG-PET using computer-assisted analysis of diagnostic chest CT. Hell J Nucl Med. 2013;16:12–8.PubMed
39.
Zurück zum Zitat Liao Z, Lee JJ, Komaki R, Gomez DR, O’Reilly MS, Fossella FV, et al. Bayesian adaptive randomization trial of passive scattering proton therapy and intensity-modulated photon radiotherapy for locally advanced non–small-cell lung cancer. J Clin Oncol. 2018. Liao Z, Lee JJ, Komaki R, Gomez DR, O’Reilly MS, Fossella FV, et al. Bayesian adaptive randomization trial of passive scattering proton therapy and intensity-modulated photon radiotherapy for locally advanced non–small-cell lung cancer. J Clin Oncol. 2018.
40.
Zurück zum Zitat Mazeron R, Etienne-Mastroianni B, Pérol D, Arpin D, Vincent M, Falchero L, et al. Predictive factors of late radiation fibrosis: a prospective study in non–small cell lung cancer. Int J Radiat Oncol Biol Phys. 2010;77:38–43.CrossRefPubMed Mazeron R, Etienne-Mastroianni B, Pérol D, Arpin D, Vincent M, Falchero L, et al. Predictive factors of late radiation fibrosis: a prospective study in non–small cell lung cancer. Int J Radiat Oncol Biol Phys. 2010;77:38–43.CrossRefPubMed
41.
Zurück zum Zitat Hicks RJ, Mac Manus MP, Matthews JP, Hogg A, Binns D, Rischin D, et al. Early FDG-PET imaging after radical radiotherapy for non–small-cell lung cancer: inflammatory changes in normal tissues correlate with tumor response and do not confound therapeutic response evaluation. Int J Radiat Oncol Biol Phys. 2004;60:412–8.CrossRefPubMed Hicks RJ, Mac Manus MP, Matthews JP, Hogg A, Binns D, Rischin D, et al. Early FDG-PET imaging after radical radiotherapy for non–small-cell lung cancer: inflammatory changes in normal tissues correlate with tumor response and do not confound therapeutic response evaluation. Int J Radiat Oncol Biol Phys. 2004;60:412–8.CrossRefPubMed
42.
Zurück zum Zitat Marks LB, Spencer DP, Bentel GC, Ray SK, Sherouse GW, Sontag MR, et al. The utility of SPECT lung perfusion scans in minimizing and assessing the physiologic consequences of thoracic irradiation. Int J Radiat Oncol Biol Phys. 1993;26:659–68.CrossRefPubMed Marks LB, Spencer DP, Bentel GC, Ray SK, Sherouse GW, Sontag MR, et al. The utility of SPECT lung perfusion scans in minimizing and assessing the physiologic consequences of thoracic irradiation. Int J Radiat Oncol Biol Phys. 1993;26:659–68.CrossRefPubMed
43.
Zurück zum Zitat Chang JY, Jabbour SK, De Ruysscher D, Schild SE, Simone CB 2nd, Rengan R, et al. Consensus statement on proton therapy in early-stage and locally advanced non–small cell lung cancer. Int J Radiat Oncol Biol Phys. 2016;95:505–16.CrossRefPubMed Chang JY, Jabbour SK, De Ruysscher D, Schild SE, Simone CB 2nd, Rengan R, et al. Consensus statement on proton therapy in early-stage and locally advanced non–small cell lung cancer. Int J Radiat Oncol Biol Phys. 2016;95:505–16.CrossRefPubMed
44.
Zurück zum Zitat Chang JY, Zhang X, Wang X, Kang Y, Riley B, Bilton S, et al. Significant reduction of normal tissue dose by proton radiotherapy compared with three-dimensional conformal or intensity-modulated radiation therapy in stage I or stage III non–small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2006;65:1087–96.CrossRefPubMed Chang JY, Zhang X, Wang X, Kang Y, Riley B, Bilton S, et al. Significant reduction of normal tissue dose by proton radiotherapy compared with three-dimensional conformal or intensity-modulated radiation therapy in stage I or stage III non–small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2006;65:1087–96.CrossRefPubMed
45.
Zurück zum Zitat Chang JY, Li H, Zhu XR, Liao Z, Zhao L, Liu A, et al. Clinical implementation of intensity modulated proton therapy for thoracic malignancies. Int J Radiat Oncol Biol Phys. 2014;90:809–18.CrossRefPubMedPubMedCentral Chang JY, Li H, Zhu XR, Liao Z, Zhao L, Liu A, et al. Clinical implementation of intensity modulated proton therapy for thoracic malignancies. Int J Radiat Oncol Biol Phys. 2014;90:809–18.CrossRefPubMedPubMedCentral
46.
Zurück zum Zitat Kocak Z, Evans ES, Zhou S-M, Miller KL, Folz RJ, Shafman TD, et al. Challenges in defining radiation pneumonitis in patients with lung cancer. Int J Radiat Oncol Biol Phys. 2005;62:635–8.CrossRefPubMed Kocak Z, Evans ES, Zhou S-M, Miller KL, Folz RJ, Shafman TD, et al. Challenges in defining radiation pneumonitis in patients with lung cancer. Int J Radiat Oncol Biol Phys. 2005;62:635–8.CrossRefPubMed
47.
Zurück zum Zitat Yirmibesoglu E, Higginson DS, Fayda M, Rivera MP, Halle J, Rosenman J, et al. Challenges scoring radiation pneumonitis in patients irradiated for lung cancer. Lung Cancer. 2012;76:350–3.CrossRefPubMed Yirmibesoglu E, Higginson DS, Fayda M, Rivera MP, Halle J, Rosenman J, et al. Challenges scoring radiation pneumonitis in patients irradiated for lung cancer. Lung Cancer. 2012;76:350–3.CrossRefPubMed
48.
Zurück zum Zitat Houshmand S, Salavati A, Hess S, Werner TJ, Alavi A, Zaidi H. An update on novel quantitative techniques in the context of evolving whole-body PET imaging. PET Clin. 2015;10:45–58.CrossRefPubMed Houshmand S, Salavati A, Hess S, Werner TJ, Alavi A, Zaidi H. An update on novel quantitative techniques in the context of evolving whole-body PET imaging. PET Clin. 2015;10:45–58.CrossRefPubMed
Metadaten
Titel
A prospective study of the feasibility of FDG-PET/CT imaging to quantify radiation-induced lung inflammation in locally advanced non-small cell lung cancer patients receiving proton or photon radiotherapy
verfasst von
Pegah Jahangiri
Kamyar Pournazari
Drew A. Torigian
Thomas J. Werner
Samuel Swisher-McClure
Charles B. Simone II
Abass Alavi
Publikationsdatum
18.09.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
European Journal of Nuclear Medicine and Molecular Imaging / Ausgabe 1/2019
Print ISSN: 1619-7070
Elektronische ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-018-4154-5

Weitere Artikel der Ausgabe 1/2019

European Journal of Nuclear Medicine and Molecular Imaging 1/2019 Zur Ausgabe