Skip to main content
Erschienen in: Neurology and Therapy 1/2017

Open Access 01.07.2017 | Review

A Review of Biomarkers for Alzheimer’s Disease in Down Syndrome

verfasst von: Ni-Chung Lee, Yin-Hsiu Chien, Wuh-Liang Hwu

Erschienen in: Neurology and Therapy | Sonderheft 1/2017

Abstract

Down syndrome (Trisomy 21; DS) is a unique disease known to be associated with early-onset Alzheimer’s disease (AD). The initial presentation of AD in DS is usually difficult to recognize, owing to the underlying intellectual disabilities. Using biomarkers as a prediction tool for detecting AD in at-risk people with DS may benefit patient care. The objective of this review is to discuss the utility of biomarkers in DS on the basis of the pathophysiology of the disease and to provide an update on recent studies in this field. Only through the comprehensive assessment of clinical symptoms, imaging studies, and biomarker analyses can people with DS who are at risk for AD be diagnosed early. Studies for biomarkers of AD in DS have focused on the common pathophysiology of AD in people with DS and in the general population. The most extensively studied biomarkers are amyloid and tau. Owing to the nature of amyloid precursor protein overproduction in DS, the baseline β-amyloid (Aβ) plasma levels are higher than those in controls. Hence, the changes in Aβ are considered to be a predictive marker for AD in DS. In addition, other markers related to telomere length, neuroinflammation, and methylation have been investigated for their correlation with AD progression. Future studies including different ethnic groups may be helpful to collect sufficient data to monitor drug safety and efficacy, stratify patients at risk for AD, and quantify the benefit of treatment.
Hinweise

Enhanced content

To view enhanced content for this article go to http://​www.​medengine.​com/​Redeem/​CAD8F06039796B6E​.

Introduction

Down syndrome (DS) is the most common aneuploidy associated with intellectual disability, with an incidence of approximately 1 in 800 live births [1, 2]. Children with DS often have multi-systemic manifestations, including intellectual disabilities, short stature, facial dysmorphism, congenital heart disease, thyroid dysfunction, leukemia, and various other congenital malformations [3]. With improvements in medical care, the life expectancy of this cohort has increased to the fifties and sixties [4]. People with DS who live into adulthood face additional problems other than those occurring in childhood. A general acceleration of the aging process usually occurs starting at 30 years of age involving premature menopause, presbycusis, alopecia, premature graying of hair, Alzheimer’s disease (AD), congestive heart failure, atherosclerosis, diabetes, hypercholesterolemia, autoimmune disease hypertension, and cataracts [58]. Among the clinical presentations of accelerated aging, AD is the most significant. The prevalence of AD among patients with DS increases from 8% in the age range of 35–49 years to 55% in the age range of 50–59 years and 75% above the age of 60 years [9], thus further highlighting the importance of AD in DS. This article is based on previously conducted studies and does not describe any new studies on humans or animal subjects performed by any of the authors.

Pathophysiology of Alzheimer’s Disease in Down Syndrome

The neuropathological changes in DS with AD have been described as being similar to those in the general population with AD [10]. However, the timing of the amyloid deposition occurs decades earlier [11]. Postmortem DS brains have been reported to show neurofibrillary tangles, cerebrovascular pathology, white matter pathology, oxidative damage, neuroinflammation, and neuron loss [1215]. On the basis of the above observations, a multifactorial hypothesis explaining the pathophysiology of AD in DS, in which the two diseases are linked by the amyloid theory, cholesterol metabolism, oxidative stress, immune response, amyloid precursor protein (APP) processing and clearance, and neuroinflammation, has been proposed [16, 17]. This hypothesis suggests that the link between these two diseases indicates a common etiological pathway.
After the discovery of β-amyloid (Aβ) as the major constituent of amyloid plaques, the APP gene, located on chromosome 21, was considered the key component in the amyloid cascade hypothesis [16]. The accumulation of Aβ in the brains of DS patients may be explained by the hypothesis of the “gene dosage effect”. In a DS fetal brain, the expression of APP genes is 1.6 times higher than that in a euploid brain [18]. Overexpression of APP contributes to the accumulation of diffuse, extracellular deposits of Aβ in the brain during the second and third decades of life in DS patients [6]. Subsequently, formation of fibrillar plaques by the end of the fourth decade has been observed [19]. Neurofibrillary degeneration results in impaired neuron function and eventual cell destruction, with patterns similar to that in AD [6]. Recently, researchers have suggested that the neurotoxicity of Aβ comes directly from the induction of oxidative stress and indirectly from the activation of microglia [9]. According to the evidence suggesting that oxidative stress and energy depletion induce intracellular accumulation of Aβ, alterations in mitochondrial energy metabolism and reactive oxygen species (ROS) production might be involved in the pathogenesis of neuro-degeneration in DS [2022]. However, the location of Aβ deposition is different between normal subjects and those with DS. The Aβ deposits in early onset AD begin in the basal cortex, whereas Aβ deposits in DS occur in the hippocampus [16, 23]. This observation has been explained by differences in the aggregation kinetics of Aβ in DS due to the higher concentration of the Aβ peptide [16]. In addition, the overexpression of the APP gene as well as factors involved in APP gene expression (ETS2), post-translational modification (SUMO3, DYRK1A, SNC27, and miR-155), and APP protein processing and clearance (PICALM, SORL1, BACE1, and BACE2) are considered to modify the aggregation and deposition of Aβ plaques, thus further affecting the age of onset of AD in DS [16, 2430].
The formation of neurofibrillary tangles is correlated with cognitive decline [16, 31]. In addition to tau, other genes involved in neurofibrillary tangle formation in AD have been proposed on the basis of studies in the general population. The APOE genotype may affect the development of cognitive abilities that tend to be preserved in early stages of AD in DS [32]. For example, the APOE ε4 polymorphism has been demonstrated to be significantly associated with AD and DS [33, 34]. Furthermore, ESR2 rs4986938 allele C and CYP19 rs1870049 heterozygous (C/T) have been reported [33, 35, 36].

Neuroinflammation

Approximately 12 genes involved in inflammation are located on chromosome 21 (CXADR, ADAMTS1, ADAMTS5, TIAM1, SOD1, IFNAR1, IFNAR2, IFNGR2, RIPK4, CBS, S100B, and PRMT2) [37]. The triplication of these genes is considered to affect the inflammatory response to stimuli in microglia/macrophages [37]. Markers for microglia activation, including M2a (CHI3L3, LI-Ra), M2b (CD86), and M2c (TGFB), are elevated in the brains of DS subjects [38], thus resulting in a neurotoxic environment that causes neuronal damage. Furthermore, chromosome 21 carries 299 long non-coding genes and 29 microRNAs, and these microRNAs may also contribute to the onset of dementia in DS [39]. Researchers have hypothesized that the abnormal expression of microRNA (miR-21, miR-103a-1, miR-13a-2, miR-107, miR-9, miR-34, miR-266, miR-101, miR-124, and miR-34b/c) may play a crucial role in the pathological process of AD [40, 41].

Diagnosis of Alzheimer’s Disease in Down Syndrome

The diagnosis of AD in DS is challenging because people with DS already have an intellectual disability that hampers the clinical presentation of cognitive decline. Thus, the routine evaluation batteries used in AD, such as the Mini-Mental State Exam (MMSE), are not applicable for people with DS. Assessing DS in people at a very early stage of AD is more difficult, because the most commonly observed initial changes in DS with AD are usually subtle rather than the cognitive decline or changes in activities of daily living (ADLs) associated with AD in the general population [42, 43]. Before the diagnosis of AD, people with DS may present with behavioral/mood changes for a long time; these changes are usually defined as behavioral and psychological symptoms in dementia (BPSD) [42, 44]. BPSD may present with various behavior and psychological symptoms, including activity disturbance, affective disturbance, apathy, isolation, depression, agitation, aggressiveness, anxiety, phobias, diurnal rhythm disturbance, sleep disorders, psychosis, hallucination, paranoia, delusions, appetite and eating abnormalities, disinhibition, and euphoria [42]. However, the clinical diagnosis of BPSD is also challenging because of the underlying intellectual disability, and the prediction of the transformation of BPSD into dementia is also difficult. In this situation, use of other tools, such as clinical assessment tools, neuroimaging, or biomarkers, to evaluate the pathological changes of AD in DS may be an alternative.
The tools used for the clinical assessment of AD in people with DS must be different from those used for AD in the general population, owing to the underlying intellectual disability. A variety of testing batteries have been reported to evaluate changes in DS, including the Adaptive Behavior Dementia Questionnaire (ABDQ), the Dementia Scale for Down Syndrome (DSDS), the Dementia Screening Questionnaire for Individuals with Intellectual Disabilities (DSQIID), the Dementia Questionnaire for Mentally Retarded Persons (DMR), and the recently developed Rapid Assessment for Developmental Disabilities (RADD) [4549]. These questionnaires evaluate functional changes by considering their baseline function levels and then quantifying the degree of functional change. Further neuropsychological assessments for cognitive decline are recommended when patients test positive in this form of report. After the functional decline is recognized, a further imaging evaluation, such as with magnetic resonance imaging (MRI) and/or position emission tomography (PET), may be correlated with the clinical observations.
The amyloid load measured by PET, for example, the Pittsburgh compound B PET (PiB PET), has been used in the assessment of AD in the general population [50]. In DS, the accumulation of amyloid by PiB PET and Florbetaben F18 PET has also been demonstrated [5153]. In contrast to the observation in the general population, the amyloid deposition in people with DS was first found in the striatum, followed by the rostral prefrontal-cingulo-parietal region, the caudal frontal, rostral temporal, primary sensorimotor and occipital regions, and then the medio-temporal regions and other basal ganglia, and the deposition occurs earlier than in the general population [17, 51, 53, 54]. Whether the PET imaging results correlate with cognitive function in adults with DS remains controversial [17, 54]. This method provides a way to identify risk in conjunction with other clinical observations, as well as biomarkers, as proposed in AD in the general population [16, 52, 55]. In addition, PET studies of glucose metabolism can also be used to identify AD changes in DS, as well as to provide evidence of brain atrophy [56]. One critical future direction would be to perform longitudinal studies in patients starting from an original baseline before 40 years of age, and to use DS patients as a target group for pre-clinical anti-AD drug therapy, because of the high incidence of disease after the age of 40.

Biomarkers for the Detection of AD in DS

Biomarkers have been reported to be used not only to diagnose but also to follow up on AD progress in the general population [17]. The pattern of biomarker changes in AD in DS have been considered to be similar to those in AD [57]. The initial study of AD in DS measured biomarkers (amyloid and tau) in cerebrospinal fluid (CSF) [58, 59]. Owing to the nature of APP overproduction in DS, the baseline plasma levels of Aβ1-40 and Aβ1-42 and the Aβ1-40/Aβ1-40 ratio are higher than those in control [6064]. A positive correlation of tau and a negative correlation of Aβ1-42 have been reported with age [58]. Subsequently, a method for the detection of plasma amyloid (Aβ-40 and Aβ-42) was developed, and several studies have documented correlations of the changes in amyloid in DS with AD (Table 1) [60, 62, 6570]. The majority of the reports have concluded that higher levels of Aβ1-42 or the Aβ1-42/Aβ1-40 ratio are associated with the onset of AD in DS [62, 70, 71]. However, the results in the plasma are opposite from those in the CSF, as CSF Aβ1-42 levels have been consistently reported to be lower than control levels, as determined through different testing methods [58, 72, 73]. The inconsistency between the plasma and CSF results remains a puzzle. To correlate these results with imaging findings, Rafii et al. have demonstrated a greater hippocampal atrophy with a greater amyloid load and an inverse relationship between amyloid load and regional glucose metabolism [57]. However, the cognitive and functional measures do not correlate with the amyloid load but instead correlate with the regional FDG PET [57]. In addition to Aβ1-40 and Aβ1-42, other peptides from β-amyloid have been studied. Portelius et al. have reported higher levels of Aβ1-28 and AβX-40 and lower levels of sAPPα and sAPPβ in the CSF of DS subjects compared with healthy controls [73, 74]. For tau protein, increased total tau (T-tau) has been reported in CSF [58, 74]. Because of the small amount of protein in the blood, tau levels were difficult to measure from peripheral blood until the development of the immunomagnetic reduction (IMR) method [53]. Through this method, we have observed a higher baseline tau protein level in people with DS with a negative correlation with functional ability [71]. This result may be explained by the burn-out phenomenon that is also seen in AD in the general population [55, 71, 75].
Table 1
Characteristics of the studies investigating biomarkers of Alzheimer’s disease in Down syndrome
References
Year
Study design
Population studied
Sample
Biomarker
Method
Results
Tamaoka et al. [72]
1999
CS
5 DS
34 HC
CSF
Aβ1-40
Aβ1-42
NA
DS compared with control: lower Aβ1-42
Schupf et al. [60]
2001
CS
64 nDS nAD
97 DS nAD
11 DS wAD
Plasma
Aβ1-40
Aβ1-42
ELISA
6E10
R165
R162
DS compared with control: higher Aβ1-40 and Aβ1-42
DS wAD compared with DS nAD: Higher Aβ1-42
Tapiola et al. [58]
2001
CS
12 DS
19 HC
CSF
Aβ1-42
Tau
ELISA
6E10
R162
R164
hTAU
DS: Tau increased with age; Aβ1-42 decreased with age
DS compared with control: lower Aβ1-42
Mehta et al.
2003
 
50 DS
50 nDS
Plasma
Aβ1-40
Aβ1-42
ELISA
6E10
R165
R226
DS compared with control: higher Aβ1-42 in old DS
Schupf et al. [62]
2007
LF for 5 years
207 DS
Plasma
Aβ1-40
Aβ1-42
ELISA
6E10
R165
R162
DS wAD compared with DS nAD: higher Aβ1-42 at baseline
Elevation in plasma Aβ1-42 was associated with earlier onset of AD and increased risk of death in DS.
Jones et al. [68]
2009
CS
60 DS
Plasma
Aβ1-40
Aβ1-42
ELISA (BioSource Intl)
R226
DS wAD compared with DS nAD: no association
Matsuoka et al. [70]
2009
CS
198 DS
Plasma
Aβ1-40
Aβ1-42
ELISA
82E1
1A10
1C3
Aβ1-42/ Aβ1-40 ratio was associated with presence of AD
Schupf et al. [66]
2010
LF for 14–20 m
225 DS
Plasma
Aβ1-40
Aβ1-42
ELISA
6E10
R165
R162
Decrease in Aβ1-42 levels, Aβ1-42/Aβ1-40 ratio, and increase in Aβ-40 levels were related to conversion to AD during follow up.
Decrease in Aβ1-40 levels decreased AD risk
Prasher et al. [67]
2010
LF for 6.7 years
83 DS nAD
44 DS wAD
Plasma
Aβ1-40
Aβ1-42
ELISA
6E10
R165
R162
DS wAD compared with DS nAD: lower Aβ1-40. Higher Aβ1-42/Aβ1-40 ratio
Head et al. [69]
2010
CS + LF
40 DS
17 nDS wAD
52 DS wAD
26 nDS nAD
Plasma
Aβ1-40
Aβ1-42
ELISA
Wako Ltd.
DS had higher Aβ than control
Aβ could not dissociate DS wAD and DS nAD
Coppus et al. [65]
2012
CS + LF
506 DS
Plasma
Aβ1-40
Aβ1-42
xMAP
Innogenetics
High Aβ1–40 and Aβ1–42 were determinants of the risk of dementia in people with DS
Portelius et al. [73]
2014
CS
12 DS
20 HC
CSF
Aβ peptide
APL1β25
APL1β27 APL1β28
MALDI TOF/TOF
6E10
4G8
ELISA
APLP1 peptide
DS compared with control: decreased Aββ1-42, APL1β25, APL1β27 APL1β28; higher Aβ1-28
Portelius et al. [74]
2014
CS
12 DS
20 HC
CSF
Aβ1-42
AβX-38/40/42
sAPPα/β
T-Tau
P-Tau
YKL-40
CC chemokine Ligand 2
Orexin-A
Immunoassay
MesoScale Discovery
ELISA
Innotest
DS compared with control: higher AβX-40, sAPPα, sAPPβ; lower Orexin-Α
DS subject: Orexin-A decreased with age, T-tau and YKL-40 increased with age
Rafii et al. [57]
2015
LF 3 years
12 DS nAD
Plasma
AβX-38/40/42
Immunoassay
MesoScale
Greater hippocampal atrophy with amyloid load, inverse relationship between amyloid load and regional glucose metabolism
Cognitive and functional measure did not correlate with amyloid load but correlated with regional FDG PET
Dekker et al. [77]
2015
CS
151 DS
22 HC
Serum
NA/A
MHPG
5-HT
5-HIAA
DA
HVA
DOPAC
RP-HPLC
DS wAD and DS converted to AD compared to DS nAD and HC: lower MHPG level
Jenkins et al. [78]
2016
LF 2.9 years
5 DS
Blood
Telomere length
PNA probe Cen2
Dako
DS wAD compared with control: shortening of telomere length over time
Hamlett et al. [64]
2016
CS
DS
HC
Blood
Aβ1-42
P-T181-tau
P-S96-tau
ELISA
DS compared with control: higher Aβ1-42, P-T181-tau, and P-S96-tau
Iulita et al. [76]
2016
LF
31 HC
21 DS
10 DS AD
Plasma
Aβ1-38
Aβ1-40
Aβ1-42
ProNGF
Neuroserpin
Plasminogen
MMP-1, MMP-3, MMP-9
IFN-r
TNF-α
IL-6
IL-8
IL-10
ELISA
6E10
Meso-Scale Discovery
DS compared with control: higher Aβ1-40, Aβ1-42, ProNGF, MMP-1, MMP-3, MMP-9, TNF-a, IL-6 and IL-10.
Obeid et al. [63]
2016
CS
60 nDS elder
44 HC
31 DS
Plasma
Aβ1-42
SAH
SAM
Methylation
ELISA
Innogenetics
QIAGEN PSQ96 MA pyrosequencing
DS compared with control: higher SAH, Aβ1-42, lower SAM/SAH ratio and methylation % of ASPA and ITGA2B CpG sites
Lee et al. [71]
2017
CS
78 nDS
62 AD
35 DS
16 DS_D
Blood
Aβ1-40
Aβ1-42
Tau
IMR
MagQu
DS compared with control: higher Aβ-40 and tau levels, lower Aβ-42 level and Aβ-42/Aβ-40 ratio
DS_D compared with DS: decreased Aβ-40 and increased Aβ-42 levels and Aβ-42/40 ratios
DS Down syndrome, nDS non-Down syndrome, AD Alzheimer’s disease, nAD without Alzheimer’s disease, wAD with Alzheimer’s disease, DS_D Down syndrome with degeneration, HC healthy control, ELISA enzyme-linked immunosorbent assay, IMR immunomagnetic reduction, CS crossed-sectional cohort, LF longitudinal follow up, SAH, S-adenosylhomocysteine, SAM S-adenosylmethionine, NA/A norepinephrine/epinephrine, MHPG 3-methoxy-4-hydroxyphenylglycol, 5-HT 5-hydroxytryptamine, 5-HIAA 5-hydroxyindoleacetic acid, DA dopamine, HVA homovanillic acid, DOPAC 3,4-dihydroxyphenylacetic acid, APL amyloid precursor-like, MALDI TOF/TOF matrix-assisted laser desorption/ionization time-of-flight/time-of-flight
In addition to amyloid and tau, several biomarkers have been studied in DS in recent years. Compared with healthy controls, people with DS have been reported to have higher levels of ProNGF, MMP-1, MMP-3, MMP-9, TNF-a, IL-6, IL-10, and S-adenosylhomocysteine (SAH), a lower SAM/SAH (S-adenosylmethionine/S-adenosylhomocysteine) ratio and CpG methylation percentage, and lower levels of amyloid precursor-like protein 1 (APLP1) peptides (APL1β25, APL1β27, and APL1β28) and CSF Orexin-A [63, 73, 76]. A lower serum 3-methoxy-4-hydroxyphenylglycol (MHPG) level and shortening of the telomere length predicts the conversion of AD into DS [77, 78]. With the combination of amyloid and inflammatory markers, these biomarkers may be strong predictors of cognitive deterioration [76]. We believe that, with the launch of the DS biomarker initiative project [57], more markers will be identified in the near future to aid in predicting the occurrence of AD in DS.

Conclusion

Given the underlying intellectual disability, AD in people with DS is usually difficult to diagnose. In addition to clinical presentations and imaging studies, biomarkers such as amyloid and tau aid in predicting AD in people with DS. Increasing numbers of biomarkers are being reported and may increase the prediction rate in early diagnosis.

Acknowledgements

No funding or sponsorship was received for this study or publication of this article. All named authors meet the International Committee of Medical Journal Editors (ICMJE) criteria for authorship for this manuscript, take responsibility for the integrity of the work as a whole, and have given final approval for the version to be published.

Disclosures

Ni-Chung Lee, Yin-Hsiu Chien and Wuh-Liang Hwu have nothing to disclose.

Compliance with Ethics Guidelines

This article is based on previously conducted studies and does not involve any new studies of human or animal subjects performed by any of the authors.

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Open Access

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://​creativecommons.​org/​licenses/​by-nc/​4.​0/​), which permits any noncommercial use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://​creativecommons.​org/​licenses/​by/​4.​0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Literatur
1.
Zurück zum Zitat Lin SJ, Hu SC, Sheu SF, Ho JW, Chiou PC, Chao MC, et al. Anthropometric study on Down syndrome in Taiwan. Zhonghua Min Guo Xiao Er Ke Yi Xue Hui Za Zhi. 1991;32(3):158–64.PubMed Lin SJ, Hu SC, Sheu SF, Ho JW, Chiou PC, Chao MC, et al. Anthropometric study on Down syndrome in Taiwan. Zhonghua Min Guo Xiao Er Ke Yi Xue Hui Za Zhi. 1991;32(3):158–64.PubMed
2.
Zurück zum Zitat CDC. Improved national prevalence estimates for 18 selected major birth defects—United States, 1999–2001. MMWR Morb Mortal Wkly Rep. 2006;54:1301–5. CDC. Improved national prevalence estimates for 18 selected major birth defects—United States, 1999–2001. MMWR Morb Mortal Wkly Rep. 2006;54:1301–5.
3.
Zurück zum Zitat AAP issues guidelines on health supervision for children with Down syndrome. Am Fam Phys. 1994;50(3):695–7. AAP issues guidelines on health supervision for children with Down syndrome. Am Fam Phys. 1994;50(3):695–7.
4.
Zurück zum Zitat Bittles AH, Glasson EJ. Clinical, social, and ethical implications of changing life expectancy in Down syndrome. Dev Med Child Neurol. 2004;46(4):282–6.CrossRefPubMed Bittles AH, Glasson EJ. Clinical, social, and ethical implications of changing life expectancy in Down syndrome. Dev Med Child Neurol. 2004;46(4):282–6.CrossRefPubMed
5.
Zurück zum Zitat Arbuzova S, Hutchin T, Cuckle H. Mitochondrial dysfunction and Down’s syndrome. BioEssays. 2002;24(8):681–4.CrossRefPubMed Arbuzova S, Hutchin T, Cuckle H. Mitochondrial dysfunction and Down’s syndrome. BioEssays. 2002;24(8):681–4.CrossRefPubMed
6.
Zurück zum Zitat Devenny DA, Wegiel J, Schupf N, Jenkins E, Zigman W, Krinsky-McHale SJ, et al. Dementia of the Alzheimer’s type and accelerated aging in Down syndrome. Sci Aging Knowl Environ. 2005;2005(14):dn1.CrossRef Devenny DA, Wegiel J, Schupf N, Jenkins E, Zigman W, Krinsky-McHale SJ, et al. Dementia of the Alzheimer’s type and accelerated aging in Down syndrome. Sci Aging Knowl Environ. 2005;2005(14):dn1.CrossRef
8.
Zurück zum Zitat Willard RL. Thompson & Thompson genetics in medicine. 6th ed. Philadelphia: Saunders; 2001. p. 157–79. Willard RL. Thompson & Thompson genetics in medicine. 6th ed. Philadelphia: Saunders; 2001. p. 157–79.
9.
Zurück zum Zitat Zana M, Janka Z, Kalman J. Oxidative stress: a bridge between Down’s syndrome and Alzheimer’s disease. Neurobiol Aging. 2006;28:648–76.CrossRefPubMed Zana M, Janka Z, Kalman J. Oxidative stress: a bridge between Down’s syndrome and Alzheimer’s disease. Neurobiol Aging. 2006;28:648–76.CrossRefPubMed
10.
Zurück zum Zitat Struwe F. Histopathologische Untersuchungen über Entstehung und Wesen der senilen Plaques. Z Gesamte Neurol Psychiatr. 1929;122:291–307.CrossRef Struwe F. Histopathologische Untersuchungen über Entstehung und Wesen der senilen Plaques. Z Gesamte Neurol Psychiatr. 1929;122:291–307.CrossRef
11.
Zurück zum Zitat Rumble B, Retallack R, Hilbich C, Simms G, Multhaup G, Martins R, et al. Amyloid A4 protein and its precursor in Down’s syndrome and Alzheimer’s disease. N Engl J Med. 1989;320(22):1446–52.CrossRefPubMed Rumble B, Retallack R, Hilbich C, Simms G, Multhaup G, Martins R, et al. Amyloid A4 protein and its precursor in Down’s syndrome and Alzheimer’s disease. N Engl J Med. 1989;320(22):1446–52.CrossRefPubMed
12.
Zurück zum Zitat Head E, Lott IT, Wilcock DM, Lemere CA. Aging in Down syndrome and the development of Alzheimer’s disease neuropathology. Curr Alzheimer Res. 2016;13(1):18–29.CrossRefPubMedPubMedCentral Head E, Lott IT, Wilcock DM, Lemere CA. Aging in Down syndrome and the development of Alzheimer’s disease neuropathology. Curr Alzheimer Res. 2016;13(1):18–29.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Lemere CA, Blusztajn JK, Yamaguchi H, Wisniewski T, Saido TC, Selkoe DJ. Sequence of deposition of heterogeneous amyloid beta-peptides and APO E in Down syndrome: implications for initial events in amyloid plaque formation. Neurobiol Dis. 1996;3(1):16–32.CrossRefPubMed Lemere CA, Blusztajn JK, Yamaguchi H, Wisniewski T, Saido TC, Selkoe DJ. Sequence of deposition of heterogeneous amyloid beta-peptides and APO E in Down syndrome: implications for initial events in amyloid plaque formation. Neurobiol Dis. 1996;3(1):16–32.CrossRefPubMed
14.
Zurück zum Zitat Xue QS, Streit WJ. Microglial pathology in Down syndrome. Acta Neuropathol. 2011;122(4):455–66.CrossRefPubMed Xue QS, Streit WJ. Microglial pathology in Down syndrome. Acta Neuropathol. 2011;122(4):455–66.CrossRefPubMed
15.
Zurück zum Zitat Cardenas AM, Ardiles AO, Barraza N, Baez-Matus X, Caviedes P. Role of tau protein in neuronal damage in Alzheimer’s disease and Down syndrome. Arch Med Res. 2012;43(8):645–54.CrossRefPubMed Cardenas AM, Ardiles AO, Barraza N, Baez-Matus X, Caviedes P. Role of tau protein in neuronal damage in Alzheimer’s disease and Down syndrome. Arch Med Res. 2012;43(8):645–54.CrossRefPubMed
16.
Zurück zum Zitat Wiseman FK, Al-Janabi T, Hardy J, Karmiloff-Smith A, Nizetic D, Tybulewicz VL, et al. A genetic cause of Alzheimer disease: mechanistic insights from Down syndrome. Nat Rev Neurosci. 2015;16(9):564–74.CrossRefPubMedPubMedCentral Wiseman FK, Al-Janabi T, Hardy J, Karmiloff-Smith A, Nizetic D, Tybulewicz VL, et al. A genetic cause of Alzheimer disease: mechanistic insights from Down syndrome. Nat Rev Neurosci. 2015;16(9):564–74.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Hartley D, Blumenthal T, Carrillo M, DiPaolo G, Esralew L, Gardiner K, et al. Down syndrome and Alzheimer’s disease: common pathways, common goals. Alzheimers Dement. 2015;11(6):700–9.CrossRefPubMed Hartley D, Blumenthal T, Carrillo M, DiPaolo G, Esralew L, Gardiner K, et al. Down syndrome and Alzheimer’s disease: common pathways, common goals. Alzheimers Dement. 2015;11(6):700–9.CrossRefPubMed
18.
Zurück zum Zitat Mao R, Zielke CL, Zielke HR, Pevsner J. Global up-regulation of chromosome 21 gene expression in the developing Down syndrome brain. Genomics. 2003;81(5):457–67.CrossRefPubMed Mao R, Zielke CL, Zielke HR, Pevsner J. Global up-regulation of chromosome 21 gene expression in the developing Down syndrome brain. Genomics. 2003;81(5):457–67.CrossRefPubMed
19.
Zurück zum Zitat Prasher VP, Farrer MJ, Kessling AM, Fisher EM, West RJ, Barber PC, et al. Molecular mapping of Alzheimer-type dementia in Down’s syndrome. Ann Neurol. 1998;43(3):380–3.CrossRefPubMed Prasher VP, Farrer MJ, Kessling AM, Fisher EM, West RJ, Barber PC, et al. Molecular mapping of Alzheimer-type dementia in Down’s syndrome. Ann Neurol. 1998;43(3):380–3.CrossRefPubMed
20.
Zurück zum Zitat Busciglio J, Pelsman A, Wong C, Pigino G, Yuan M, Mori H, et al. Altered metabolism of the amyloid beta precursor protein is associated with mitochondrial dysfunction in Down’s syndrome. Neuron. 2002;33(5):677–88.CrossRefPubMed Busciglio J, Pelsman A, Wong C, Pigino G, Yuan M, Mori H, et al. Altered metabolism of the amyloid beta precursor protein is associated with mitochondrial dysfunction in Down’s syndrome. Neuron. 2002;33(5):677–88.CrossRefPubMed
21.
Zurück zum Zitat Misonou H, Morishima-Kawashima M, Ihara Y. Oxidative stress induces intracellular accumulation of amyloid beta-protein (Abeta) in human neuroblastoma cells. Biochemistry. 2000;39(23):6951–9.CrossRefPubMed Misonou H, Morishima-Kawashima M, Ihara Y. Oxidative stress induces intracellular accumulation of amyloid beta-protein (Abeta) in human neuroblastoma cells. Biochemistry. 2000;39(23):6951–9.CrossRefPubMed
22.
Zurück zum Zitat Paola D, Domenicotti C, Nitti M, Vitali A, Borghi R, Cottalasso D, et al. Oxidative stress induces increase in intracellular amyloid beta-protein production and selective activation of betaI and betaII PKCs in NT2 cells. Biochem Biophys Res Commun. 2000;268(2):642–6.CrossRefPubMed Paola D, Domenicotti C, Nitti M, Vitali A, Borghi R, Cottalasso D, et al. Oxidative stress induces increase in intracellular amyloid beta-protein production and selective activation of betaI and betaII PKCs in NT2 cells. Biochem Biophys Res Commun. 2000;268(2):642–6.CrossRefPubMed
23.
Zurück zum Zitat Braak H, Braak E. Neuropathological staging of Alzheimer-related changes. Acta Neuropathol. 1991;82:239–59.CrossRefPubMed Braak H, Braak E. Neuropathological staging of Alzheimer-related changes. Acta Neuropathol. 1991;82:239–59.CrossRefPubMed
24.
Zurück zum Zitat Jones EL, Mok K, Hanney M, Harold D, Sims R, Williams J, et al. Evidence that PICALM affects age at onset of Alzheimer’s dementia in Down syndrome. Neurobiol Aging. 2013;34(10):2441 e1–5.CrossRefPubMed Jones EL, Mok K, Hanney M, Harold D, Sims R, Williams J, et al. Evidence that PICALM affects age at onset of Alzheimer’s dementia in Down syndrome. Neurobiol Aging. 2013;34(10):2441 e1–5.CrossRefPubMed
25.
Zurück zum Zitat Dorval V, Mazzella MJ, Mathews PM, Hay RT, Fraser PE. Modulation of Abeta generation by small ubiquitin-like modifiers does not require conjugation to target proteins. Biochem J. 2007;404(2):309–16.CrossRefPubMedPubMedCentral Dorval V, Mazzella MJ, Mathews PM, Hay RT, Fraser PE. Modulation of Abeta generation by small ubiquitin-like modifiers does not require conjugation to target proteins. Biochem J. 2007;404(2):309–16.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Mok KY, Jones EL, Hanney M, Harold D, Sims R, Williams J, et al. Polymorphisms in BACE2 may affect the age of onset Alzheimer’s dementia in Down syndrome. Neurobiol Aging. 2014;35(6):1513 e1–5.CrossRefPubMed Mok KY, Jones EL, Hanney M, Harold D, Sims R, Williams J, et al. Polymorphisms in BACE2 may affect the age of onset Alzheimer’s dementia in Down syndrome. Neurobiol Aging. 2014;35(6):1513 e1–5.CrossRefPubMed
27.
Zurück zum Zitat Patel A, Rees SD, Kelly MA, Bain SC, Barnett AH, Thalitaya D, et al. Association of variants within APOE, SORL1, RUNX1, BACE1 and ALDH18A1 with dementia in Alzheimer’s disease in subjects with Down syndrome. Neurosci Lett. 2011;487(2):144–8.CrossRefPubMed Patel A, Rees SD, Kelly MA, Bain SC, Barnett AH, Thalitaya D, et al. Association of variants within APOE, SORL1, RUNX1, BACE1 and ALDH18A1 with dementia in Alzheimer’s disease in subjects with Down syndrome. Neurosci Lett. 2011;487(2):144–8.CrossRefPubMed
28.
Zurück zum Zitat Ryoo SR, Cho HJ, Lee HW, Jeong HK, Radnaabazar C, Kim YS, et al. Dual-specificity tyrosine(Y)-phosphorylation regulated kinase 1A-mediated phosphorylation of amyloid precursor protein: evidence for a functional link between Down syndrome and Alzheimer’s disease. J Neurochem. 2008;104(5):1333–44.CrossRefPubMed Ryoo SR, Cho HJ, Lee HW, Jeong HK, Radnaabazar C, Kim YS, et al. Dual-specificity tyrosine(Y)-phosphorylation regulated kinase 1A-mediated phosphorylation of amyloid precursor protein: evidence for a functional link between Down syndrome and Alzheimer’s disease. J Neurochem. 2008;104(5):1333–44.CrossRefPubMed
29.
Zurück zum Zitat Lee JH, Chulikavit M, Pang D, Zigman WB, Silverman W, Schupf N. Association between genetic variants in sortilin-related receptor 1 (SORL1) and Alzheimer’s disease in adults with Down syndrome. Neurosci Lett. 2007;425(2):105–9.CrossRefPubMedPubMedCentral Lee JH, Chulikavit M, Pang D, Zigman WB, Silverman W, Schupf N. Association between genetic variants in sortilin-related receptor 1 (SORL1) and Alzheimer’s disease in adults with Down syndrome. Neurosci Lett. 2007;425(2):105–9.CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Wolvetang EW, Bradfield OM, Tymms M, Zavarsek S, Hatzistavrou T, Kola I, et al. The chromosome 21 transcription factor ETS2 transactivates the beta-APP promoter: implications for Down syndrome. Biochim Biophys Acta. 2003;1628(2):105–10.CrossRefPubMed Wolvetang EW, Bradfield OM, Tymms M, Zavarsek S, Hatzistavrou T, Kola I, et al. The chromosome 21 transcription factor ETS2 transactivates the beta-APP promoter: implications for Down syndrome. Biochim Biophys Acta. 2003;1628(2):105–10.CrossRefPubMed
31.
Zurück zum Zitat Henriksen K, Byrjalsen I, Christiansen C, Karsdal MA. Relationship between serum levels of tau fragments and clinical progression of Alzheimer’s disease. J Alzheimer’s Dis. 2015;43(4):1331–41. Henriksen K, Byrjalsen I, Christiansen C, Karsdal MA. Relationship between serum levels of tau fragments and clinical progression of Alzheimer’s disease. J Alzheimer’s Dis. 2015;43(4):1331–41.
32.
Zurück zum Zitat Alexander GE, Saunders AM, Szczepanik J, Strassburger TL, Pietrini P, Dani A, et al. Relation of age and apolipoprotein E to cognitive function in Down syndrome adults. NeuroReport. 1997;8(8):1835–40.CrossRefPubMed Alexander GE, Saunders AM, Szczepanik J, Strassburger TL, Pietrini P, Dani A, et al. Relation of age and apolipoprotein E to cognitive function in Down syndrome adults. NeuroReport. 1997;8(8):1835–40.CrossRefPubMed
33.
Zurück zum Zitat Chace C, Pang D, Weng C, Temkin A, Lax S, Silverman W, et al. Variants in CYP17 and CYP19 cytochrome P450 genes are associated with onset of Alzheimer’s disease in women with down syndrome. J Alzheimer’s Dis. 2012;28(3):601–12. Chace C, Pang D, Weng C, Temkin A, Lax S, Silverman W, et al. Variants in CYP17 and CYP19 cytochrome P450 genes are associated with onset of Alzheimer’s disease in women with down syndrome. J Alzheimer’s Dis. 2012;28(3):601–12.
34.
Zurück zum Zitat Prasher VP, Sajith SG, Rees SD, Patel A, Tewari S, Schupf N, et al. Significant effect of APOE epsilon 4 genotype on the risk of dementia in Alzheimer’s disease and mortality in persons with Down syndrome. Int J Geriatr Psychiatry. 2008;23(11):1134–40.CrossRefPubMedPubMedCentral Prasher VP, Sajith SG, Rees SD, Patel A, Tewari S, Schupf N, et al. Significant effect of APOE epsilon 4 genotype on the risk of dementia in Alzheimer’s disease and mortality in persons with Down syndrome. Int J Geriatr Psychiatry. 2008;23(11):1134–40.CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Huang LY. Risk factors for dementia in Down syndrome. Taiwan: National Taiwan University; 2016. Huang LY. Risk factors for dementia in Down syndrome. Taiwan: National Taiwan University; 2016.
36.
Zurück zum Zitat Zhao Q, Lee JH, Pang D, Temkin A, Park N, Janicki SC, et al. Estrogen receptor-Beta variants are associated with increased risk of Alzheimer’s disease in women with down syndrome. Dement Geriatr Cogn Disord. 2011;32(4):241–9.CrossRefPubMedPubMedCentral Zhao Q, Lee JH, Pang D, Temkin A, Park N, Janicki SC, et al. Estrogen receptor-Beta variants are associated with increased risk of Alzheimer’s disease in women with down syndrome. Dement Geriatr Cogn Disord. 2011;32(4):241–9.CrossRefPubMedPubMedCentral
37.
38.
Zurück zum Zitat Wilcock DM, Hurban J, Helman AM, Sudduth TL, McCarty KL, Beckett TL, et al. Down syndrome individuals with Alzheimer’s disease have a distinct neuroinflammatory phenotype compared to sporadic Alzheimer’s disease. Neurobiol Aging. 2015;36(9):2468–74.CrossRefPubMedPubMedCentral Wilcock DM, Hurban J, Helman AM, Sudduth TL, McCarty KL, Beckett TL, et al. Down syndrome individuals with Alzheimer’s disease have a distinct neuroinflammatory phenotype compared to sporadic Alzheimer’s disease. Neurobiol Aging. 2015;36(9):2468–74.CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Codocedo JF, Rios JA, Godoy JA, Inestrosa NC. Are microRNAs the molecular link between metabolic syndrome and Alzheimer’s disease? Mol Neurobiol. 2016;53:2320–38.CrossRefPubMed Codocedo JF, Rios JA, Godoy JA, Inestrosa NC. Are microRNAs the molecular link between metabolic syndrome and Alzheimer’s disease? Mol Neurobiol. 2016;53:2320–38.CrossRefPubMed
41.
Zurück zum Zitat Pan Y, Liu R, Terpstra E, Wang Y, Qiao F, Wang J, et al. Dysregulation and diagnostic potential of microRNA in Alzheimer’s disease. J Alzheimer’s Dis. 2015;49(1):1–12.CrossRef Pan Y, Liu R, Terpstra E, Wang Y, Qiao F, Wang J, et al. Dysregulation and diagnostic potential of microRNA in Alzheimer’s disease. J Alzheimer’s Dis. 2015;49(1):1–12.CrossRef
42.
Zurück zum Zitat Dekker AD, Strydom A, Coppus AM, Nizetic D, Vermeiren Y, Naude PJ, et al. Behavioural and psychological symptoms of dementia in Down syndrome: early indicators of clinical Alzheimer’s disease? Cortex. 2015;73:36–61.CrossRefPubMed Dekker AD, Strydom A, Coppus AM, Nizetic D, Vermeiren Y, Naude PJ, et al. Behavioural and psychological symptoms of dementia in Down syndrome: early indicators of clinical Alzheimer’s disease? Cortex. 2015;73:36–61.CrossRefPubMed
43.
Zurück zum Zitat Sabbagh M, Edgin J. Clinical assessment of cognitive decline in adults with Down syndrome. Curr Alzheimer Res. 2016;13(1):30–4.CrossRefPubMed Sabbagh M, Edgin J. Clinical assessment of cognitive decline in adults with Down syndrome. Curr Alzheimer Res. 2016;13(1):30–4.CrossRefPubMed
44.
Zurück zum Zitat Ball SL, Holland AJ, Treppner P, Watson PC, Huppert FA. Executive dysfunction and its association with personality and behaviour changes in the development of Alzheimer’s disease in adults with Down syndrome and mild to moderate learning disabilities. Br J Clin Psychol. 2008;47(Pt 1):1–29.CrossRefPubMed Ball SL, Holland AJ, Treppner P, Watson PC, Huppert FA. Executive dysfunction and its association with personality and behaviour changes in the development of Alzheimer’s disease in adults with Down syndrome and mild to moderate learning disabilities. Br J Clin Psychol. 2008;47(Pt 1):1–29.CrossRefPubMed
45.
Zurück zum Zitat Prasher V, Farooq A, Holder R. The Adaptive Behaviour Dementia Questionnaire (ABDQ): screening questionnaire for dementia in Alzheimer’s disease in adults with Down syndrome. Res Dev Disabil. 2004;25(4):385–97.CrossRefPubMed Prasher V, Farooq A, Holder R. The Adaptive Behaviour Dementia Questionnaire (ABDQ): screening questionnaire for dementia in Alzheimer’s disease in adults with Down syndrome. Res Dev Disabil. 2004;25(4):385–97.CrossRefPubMed
46.
Zurück zum Zitat Walsh DM, Doran E, Silverman W, Tournay A, Movsesyan N, Lott IT. Rapid assessment of cognitive function in down syndrome across intellectual level and dementia status. J Intellect Disabil Res. 2015;59:1071–9.CrossRefPubMedPubMedCentral Walsh DM, Doran E, Silverman W, Tournay A, Movsesyan N, Lott IT. Rapid assessment of cognitive function in down syndrome across intellectual level and dementia status. J Intellect Disabil Res. 2015;59:1071–9.CrossRefPubMedPubMedCentral
47.
Zurück zum Zitat Gedye A. Dementia scale for Down syndrome: manual. Vancouver: Gedye Research and Consulting; 1995. Gedye A. Dementia scale for Down syndrome: manual. Vancouver: Gedye Research and Consulting; 1995.
48.
Zurück zum Zitat Evenhuis HM. Further evaluation of the Dementia Questionnaire for Persons with Mental Retardation (DMR). J Intellect Disabil Res. 1996;40(Pt 4):369–73.CrossRefPubMed Evenhuis HM. Further evaluation of the Dementia Questionnaire for Persons with Mental Retardation (DMR). J Intellect Disabil Res. 1996;40(Pt 4):369–73.CrossRefPubMed
49.
Zurück zum Zitat Deb S, Hare M, Prior L, Bhaumik S. Dementia screening questionnaire for individuals with intellectual disabilities. Br J Psychiatry J Mental Sci. 2007;190:440–4.CrossRef Deb S, Hare M, Prior L, Bhaumik S. Dementia screening questionnaire for individuals with intellectual disabilities. Br J Psychiatry J Mental Sci. 2007;190:440–4.CrossRef
50.
Zurück zum Zitat Vandenberghe R, Adamczuk K, Dupont P, Laere KV, Chetelat G. Amyloid PET in clinical practice: its place in the multidimensional space of Alzheimer’s disease. Neuroimage Clin. 2013;2:497–511.CrossRefPubMedPubMedCentral Vandenberghe R, Adamczuk K, Dupont P, Laere KV, Chetelat G. Amyloid PET in clinical practice: its place in the multidimensional space of Alzheimer’s disease. Neuroimage Clin. 2013;2:497–511.CrossRefPubMedPubMedCentral
51.
Zurück zum Zitat Sabbagh MN, Fleisher A, Chen K, Rogers J, Berk C, Reiman E, et al. Positron emission tomography and neuropathologic estimates of fibrillar amyloid-beta in a patient with Down syndrome and Alzheimer disease. Arch Neurol. 2011;68(11):1461–6.CrossRefPubMedPubMedCentral Sabbagh MN, Fleisher A, Chen K, Rogers J, Berk C, Reiman E, et al. Positron emission tomography and neuropathologic estimates of fibrillar amyloid-beta in a patient with Down syndrome and Alzheimer disease. Arch Neurol. 2011;68(11):1461–6.CrossRefPubMedPubMedCentral
52.
Zurück zum Zitat Jennings D, Seibyl J, Sabbagh M, Lai F, Hopkins W, Bullich S, et al. Age dependence of brain beta-amyloid deposition in Down syndrome: an [18F]florbetaben PET study. Neurology. 2015;84(5):500–7.CrossRefPubMed Jennings D, Seibyl J, Sabbagh M, Lai F, Hopkins W, Bullich S, et al. Age dependence of brain beta-amyloid deposition in Down syndrome: an [18F]florbetaben PET study. Neurology. 2015;84(5):500–7.CrossRefPubMed
53.
Zurück zum Zitat Handen BL, Cohen AD, Channamalappa U, Bulova P, Cannon SA, Cohen WI, et al. Imaging brain amyloid in nondemented young adults with Down syndrome using Pittsburgh compound B. Alzheimers Dement. 2012;8(6):496–501.CrossRefPubMedPubMedCentral Handen BL, Cohen AD, Channamalappa U, Bulova P, Cannon SA, Cohen WI, et al. Imaging brain amyloid in nondemented young adults with Down syndrome using Pittsburgh compound B. Alzheimers Dement. 2012;8(6):496–501.CrossRefPubMedPubMedCentral
54.
Zurück zum Zitat Annus T, Wilson LR, Hong YT, Acosta-Cabronero J, Fryer TD, Cardenas-Blanco A, et al. The pattern of amyloid accumulation in the brains of adults with Down syndrome. Alzheimers Dement. 2016;12(5):538–45.CrossRefPubMedPubMedCentral Annus T, Wilson LR, Hong YT, Acosta-Cabronero J, Fryer TD, Cardenas-Blanco A, et al. The pattern of amyloid accumulation in the brains of adults with Down syndrome. Alzheimers Dement. 2016;12(5):538–45.CrossRefPubMedPubMedCentral
55.
Zurück zum Zitat Chiu MJ, Chen YF, Chen TF, Yang SY, Yang FP, Tseng TW, et al. Plasma tau as a window to the brain-negative associations with brain volume and memory function in mild cognitive impairment and early Alzheimer’s disease. Hum Brain Mapp. 2014;35(7):3132–42.CrossRefPubMed Chiu MJ, Chen YF, Chen TF, Yang SY, Yang FP, Tseng TW, et al. Plasma tau as a window to the brain-negative associations with brain volume and memory function in mild cognitive impairment and early Alzheimer’s disease. Hum Brain Mapp. 2014;35(7):3132–42.CrossRefPubMed
56.
Zurück zum Zitat Dani A, Pietrini P, Furey ML, McIntosh AR, Grady CL, Horwitz B, et al. Brain cognition and metabolism in Down syndrome adults in association with development of dementia. NeuroReport. 1996;7(18):2933–6.CrossRefPubMed Dani A, Pietrini P, Furey ML, McIntosh AR, Grady CL, Horwitz B, et al. Brain cognition and metabolism in Down syndrome adults in association with development of dementia. NeuroReport. 1996;7(18):2933–6.CrossRefPubMed
57.
Zurück zum Zitat Rafii MS, Wishnek H, Brewer JB, Donohue MC, Ness S, Mobley WC, et al. The down syndrome biomarker initiative (DSBI) pilot: proof of concept for deep phenotyping of Alzheimer’s disease biomarkers in down syndrome. Front Behav Neurosci. 2015;9:239.CrossRefPubMedPubMedCentral Rafii MS, Wishnek H, Brewer JB, Donohue MC, Ness S, Mobley WC, et al. The down syndrome biomarker initiative (DSBI) pilot: proof of concept for deep phenotyping of Alzheimer’s disease biomarkers in down syndrome. Front Behav Neurosci. 2015;9:239.CrossRefPubMedPubMedCentral
58.
Zurück zum Zitat Tapiola T, Soininen H, Pirttila T. CSF tau and Abeta42 levels in patients with Down’s syndrome. Neurology. 2001;56(7):979–80.CrossRefPubMed Tapiola T, Soininen H, Pirttila T. CSF tau and Abeta42 levels in patients with Down’s syndrome. Neurology. 2001;56(7):979–80.CrossRefPubMed
59.
Zurück zum Zitat Tamaoka A. Characterization of amyloid beta protein species in the plasma, cerebrospinal fluid and brains of patients with Alzheimer’s disease. Nihon Ronen Igakkai zasshi Jpn J Geriatr. 1998;35(4):273–7.CrossRef Tamaoka A. Characterization of amyloid beta protein species in the plasma, cerebrospinal fluid and brains of patients with Alzheimer’s disease. Nihon Ronen Igakkai zasshi Jpn J Geriatr. 1998;35(4):273–7.CrossRef
60.
Zurück zum Zitat Schupf N, Patel B, Silverman W, Zigman WB, Zhong N, Tycko B, et al. Elevated plasma amyloid beta-peptide 1-42 and onset of dementia in adults with Down syndrome. Neurosci Lett. 2001;301(3):199–203.CrossRefPubMed Schupf N, Patel B, Silverman W, Zigman WB, Zhong N, Tycko B, et al. Elevated plasma amyloid beta-peptide 1-42 and onset of dementia in adults with Down syndrome. Neurosci Lett. 2001;301(3):199–203.CrossRefPubMed
61.
Zurück zum Zitat Mehta PD, Mehta SP, Fedor B, Patrick BA, Emmerling M, Dalton AJ. Plasma amyloid beta protein 1-42 levels are increased in old Down syndrome but not in young Down syndrome. Neurosci Lett. 2003;342(3):155–8.CrossRefPubMed Mehta PD, Mehta SP, Fedor B, Patrick BA, Emmerling M, Dalton AJ. Plasma amyloid beta protein 1-42 levels are increased in old Down syndrome but not in young Down syndrome. Neurosci Lett. 2003;342(3):155–8.CrossRefPubMed
62.
Zurück zum Zitat Schupf N, Patel B, Pang D, Zigman WB, Silverman W, Mehta PD, et al. Elevated plasma beta-amyloid peptide Abeta(42) levels, incident dementia, and mortality in Down syndrome. Arch Neurol. 2007;64(7):1007–13.CrossRefPubMedPubMedCentral Schupf N, Patel B, Pang D, Zigman WB, Silverman W, Mehta PD, et al. Elevated plasma beta-amyloid peptide Abeta(42) levels, incident dementia, and mortality in Down syndrome. Arch Neurol. 2007;64(7):1007–13.CrossRefPubMedPubMedCentral
63.
Zurück zum Zitat Obeid R, Hubner U, Bodis M, Geisel J. Plasma amyloid beta 1-42 and DNA methylation pattern predict accelerated aging in young subjects with Down syndrome. Neuromol Med. 2016;18(4):593–601.CrossRef Obeid R, Hubner U, Bodis M, Geisel J. Plasma amyloid beta 1-42 and DNA methylation pattern predict accelerated aging in young subjects with Down syndrome. Neuromol Med. 2016;18(4):593–601.CrossRef
64.
Zurück zum Zitat Hamlett ED, Goetzl EJ, Ledreux A, Vasilevko V, Boger HA, LaRosa A, et al. Neuronal exosomes reveal Alzheimer’s disease biomarkers in Down syndrome. Alzheimers Dement. 2016;13:541–9.CrossRefPubMed Hamlett ED, Goetzl EJ, Ledreux A, Vasilevko V, Boger HA, LaRosa A, et al. Neuronal exosomes reveal Alzheimer’s disease biomarkers in Down syndrome. Alzheimers Dement. 2016;13:541–9.CrossRefPubMed
65.
Zurück zum Zitat Coppus AM, Schuur M, Vergeer J, Janssens AC, Oostra BA, Verbeek MM, et al. Plasma beta amyloid and the risk of Alzheimer’s disease in Down syndrome. Neurobiol Aging. 2012;33(9):1988–94.CrossRefPubMed Coppus AM, Schuur M, Vergeer J, Janssens AC, Oostra BA, Verbeek MM, et al. Plasma beta amyloid and the risk of Alzheimer’s disease in Down syndrome. Neurobiol Aging. 2012;33(9):1988–94.CrossRefPubMed
66.
Zurück zum Zitat Schupf N, Zigman WB, Tang MX, Pang D, Mayeux R, Mehta P, et al. Change in plasma Ass peptides and onset of dementia in adults with Down syndrome. Neurology. 2010;75(18):1639–44.CrossRefPubMedPubMedCentral Schupf N, Zigman WB, Tang MX, Pang D, Mayeux R, Mehta P, et al. Change in plasma Ass peptides and onset of dementia in adults with Down syndrome. Neurology. 2010;75(18):1639–44.CrossRefPubMedPubMedCentral
67.
Zurück zum Zitat Prasher VP, Sajith SG, Mehta P, Zigman WB, Schupf N. Plasma beta-amyloid and duration of Alzheimer’s disease in adults with Down syndrome. Int J Geriatr Psychiatry. 2010;25(2):202–7.CrossRefPubMedPubMedCentral Prasher VP, Sajith SG, Mehta P, Zigman WB, Schupf N. Plasma beta-amyloid and duration of Alzheimer’s disease in adults with Down syndrome. Int J Geriatr Psychiatry. 2010;25(2):202–7.CrossRefPubMedPubMedCentral
68.
Zurück zum Zitat Jones EL, Hanney M, Francis PT, Ballard CG. Amyloid beta concentrations in older people with Down syndrome and dementia. Neurosci Lett. 2009;451(2):162–4.CrossRefPubMed Jones EL, Hanney M, Francis PT, Ballard CG. Amyloid beta concentrations in older people with Down syndrome and dementia. Neurosci Lett. 2009;451(2):162–4.CrossRefPubMed
69.
Zurück zum Zitat Head E, Doran E, Nistor M, Hill M, Schmitt FA, Haier RJ, et al. Plasma amyloid-beta as a function of age, level of intellectual disability, and presence of dementia in Down syndrome. J Alzheimer’s Dis. 2011;23(3):399–409. Head E, Doran E, Nistor M, Hill M, Schmitt FA, Haier RJ, et al. Plasma amyloid-beta as a function of age, level of intellectual disability, and presence of dementia in Down syndrome. J Alzheimer’s Dis. 2011;23(3):399–409.
70.
Zurück zum Zitat Matsuoka Y, Andrews HF, Becker AG, Gray AJ, Mehta PD, Sano MC, et al. The relationship of plasma Abeta levels to dementia in aging individuals with Down syndrome. Alzheimer Dis Assoc Disord. 2009;23(4):315–8.CrossRefPubMedPubMedCentral Matsuoka Y, Andrews HF, Becker AG, Gray AJ, Mehta PD, Sano MC, et al. The relationship of plasma Abeta levels to dementia in aging individuals with Down syndrome. Alzheimer Dis Assoc Disord. 2009;23(4):315–8.CrossRefPubMedPubMedCentral
71.
Zurück zum Zitat Lee NC, Yang SY, Chieh JJ, Huang PT, Chang LM, Chiu YN, et al. Blood beta-amyloid and tau in Down syndrome: a comparison with Alzheimer’s disease. Front Aging Neurosci. 2016;8:316.PubMed Lee NC, Yang SY, Chieh JJ, Huang PT, Chang LM, Chiu YN, et al. Blood beta-amyloid and tau in Down syndrome: a comparison with Alzheimer’s disease. Front Aging Neurosci. 2016;8:316.PubMed
72.
Zurück zum Zitat Tamaoka A, Sekijima Y, Matsuno S, Tokuda T, Shoji S, Ikeda SI. Amyloid beta protein species in cerebrospinal fluid and in brain from patients with Down’s syndrome. Ann Neurol. 1999;46(6):933.CrossRefPubMed Tamaoka A, Sekijima Y, Matsuno S, Tokuda T, Shoji S, Ikeda SI. Amyloid beta protein species in cerebrospinal fluid and in brain from patients with Down’s syndrome. Ann Neurol. 1999;46(6):933.CrossRefPubMed
73.
Zurück zum Zitat Portelius E, Holtta M, Soininen H, Bjerke M, Zetterberg H, Westerlund A, et al. Altered cerebrospinal fluid levels of amyloid beta and amyloid precursor-like protein 1 peptides in Down’s syndrome. Neuromol Med. 2014;16(2):510–6.CrossRef Portelius E, Holtta M, Soininen H, Bjerke M, Zetterberg H, Westerlund A, et al. Altered cerebrospinal fluid levels of amyloid beta and amyloid precursor-like protein 1 peptides in Down’s syndrome. Neuromol Med. 2014;16(2):510–6.CrossRef
74.
Zurück zum Zitat Portelius E, Soininen H, Andreasson U, Zetterberg H, Persson R, Karlsson G, et al. Exploring Alzheimer molecular pathology in Down’s syndrome cerebrospinal fluid. Neurodegener Dis. 2014;14(2):98–106.CrossRefPubMed Portelius E, Soininen H, Andreasson U, Zetterberg H, Persson R, Karlsson G, et al. Exploring Alzheimer molecular pathology in Down’s syndrome cerebrospinal fluid. Neurodegener Dis. 2014;14(2):98–106.CrossRefPubMed
75.
Zurück zum Zitat Yang SY, Chieh JJ, Yang CC, Liao SH, Chen HH, Horng HE, et al. Clinic applications in assaying ultra-low-concentration bio-markers using HTS SQUID-based AC magnetosusceptometer. IEEE Trans Appl Supercond. 2013;23:1600604.CrossRef Yang SY, Chieh JJ, Yang CC, Liao SH, Chen HH, Horng HE, et al. Clinic applications in assaying ultra-low-concentration bio-markers using HTS SQUID-based AC magnetosusceptometer. IEEE Trans Appl Supercond. 2013;23:1600604.CrossRef
76.
Zurück zum Zitat Iulita MF, Ower A, Barone C, Pentz R, Gubert P, Romano C, et al. An inflammatory and trophic disconnect biomarker profile revealed in Down syndrome plasma: relation to cognitive decline and longitudinal evaluation. Alzheimers Dement. 2016;12(11):1132–48.CrossRefPubMed Iulita MF, Ower A, Barone C, Pentz R, Gubert P, Romano C, et al. An inflammatory and trophic disconnect biomarker profile revealed in Down syndrome plasma: relation to cognitive decline and longitudinal evaluation. Alzheimers Dement. 2016;12(11):1132–48.CrossRefPubMed
77.
Zurück zum Zitat Dekker AD, Coppus AM, Vermeiren Y, Aerts T, van Duijn CM, Kremer BP, et al. Serum MHPG strongly predicts conversion to Alzheimer’s disease in behaviorally characterized subjects with Down syndrome. J Alzheimer’s Dis. 2015;43(3):871–91. Dekker AD, Coppus AM, Vermeiren Y, Aerts T, van Duijn CM, Kremer BP, et al. Serum MHPG strongly predicts conversion to Alzheimer’s disease in behaviorally characterized subjects with Down syndrome. J Alzheimer’s Dis. 2015;43(3):871–91.
78.
Zurück zum Zitat Jenkins EC, Ye L, Krinsky-McHale SJ, Zigman WB, Schupf N, Silverman WP. Telomere longitudinal shortening as a biomarker for dementia status of adults with Down syndrome. Am J Med Genet B. 2016;171B(2):169–74.CrossRef Jenkins EC, Ye L, Krinsky-McHale SJ, Zigman WB, Schupf N, Silverman WP. Telomere longitudinal shortening as a biomarker for dementia status of adults with Down syndrome. Am J Med Genet B. 2016;171B(2):169–74.CrossRef
Metadaten
Titel
A Review of Biomarkers for Alzheimer’s Disease in Down Syndrome
verfasst von
Ni-Chung Lee
Yin-Hsiu Chien
Wuh-Liang Hwu
Publikationsdatum
01.07.2017
Verlag
Springer Healthcare
Erschienen in
Neurology and Therapy / Ausgabe Sonderheft 1/2017
Print ISSN: 2193-8253
Elektronische ISSN: 2193-6536
DOI
https://doi.org/10.1007/s40120-017-0071-y

Weitere Artikel der Sonderheft 1/2017

Neurology and Therapy 1/2017 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Viel Bewegung in der Parkinsonforschung

25.04.2024 Parkinson-Krankheit Nachrichten

Neue arznei- und zellbasierte Ansätze, Frühdiagnose mit Bewegungssensoren, Rückenmarkstimulation gegen Gehblockaden – in der Parkinsonforschung tut sich einiges. Auf dem Deutschen Parkinsonkongress ging es auch viel um technische Innovationen.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.