Skip to main content
Erschienen in: Journal of Medical Systems 10/2015

01.10.2015 | Systems-Level Quality Improvement

A Type-2 Fuzzy Image Processing Expert System for Diagnosing Brain Tumors

verfasst von: M. Zarinbal, M. H. Fazel Zarandi, I. B. Turksen, M. Izadi

Erschienen in: Journal of Medical Systems | Ausgabe 10/2015

Einloggen, um Zugang zu erhalten

Abstract

The focus of this paper is diagnosing and differentiating Astrocytomas in MRI scans by developing an interval Type-2 fuzzy automated tumor detection system. This system consists of three modules: working memory, knowledge base, and inference engine. An image processing method with three steps of preprocessing, segmentation and feature extraction, and approximate reasoning is used in inference engine module to enhance the quality of MRI scans, segment them into desired regions, extract the required features, and finally diagnose and differentiate Astrocytomas. However, brain tumors have different characteristics in different planes, so considering one plane of patient’s MRI scan may cause inaccurate results. Therefore, in the developed system, several consecutive planes are processed. The performance of this system is evaluated using 95 MRI scans and the results show good improvement in diagnosing and differentiating Astrocytomas.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Turkington, C., The encyclopedia of the brain and brain disorders. Facts On File, Inc., New York, 2002. Turkington, C., The encyclopedia of the brain and brain disorders. Facts On File, Inc., New York, 2002.
2.
Zurück zum Zitat Ali-osman, F. (Ed.), Brain tumors. Humana Press Inc., Totowa, 2005. Ali-osman, F. (Ed.), Brain tumors. Humana Press Inc., Totowa, 2005.
3.
Zurück zum Zitat Baert, A. L., and Sartor, K., MR imaging in white matter diseases of the brain and spinal cord. Springer-Verlag, Berlin, 2005. Baert, A. L., and Sartor, K., MR imaging in white matter diseases of the brain and spinal cord. Springer-Verlag, Berlin, 2005.
4.
Zurück zum Zitat Brandt, T., Dichgans, J. eds: Neurological disorders: course and treatment. Academic Press (2003). Brandt, T., Dichgans, J. eds: Neurological disorders: course and treatment. Academic Press (2003).
5.
Zurück zum Zitat Kwon, K.-C., Lim, Y.-T., Kim, C.-H., Kim, N., Park, C., Yoo, K.-H., Son, S.-H., and Jeon, S.-I., Microwave tomography analysis system for breast tumor detection. J. Med. Syst. 36:1757–1767, 2012.CrossRefPubMed Kwon, K.-C., Lim, Y.-T., Kim, C.-H., Kim, N., Park, C., Yoo, K.-H., Son, S.-H., and Jeon, S.-I., Microwave tomography analysis system for breast tumor detection. J. Med. Syst. 36:1757–1767, 2012.CrossRefPubMed
6.
Zurück zum Zitat Boquete, L., Ortega, S., Miguel-Jiménez, J. M., Rodríguez-Ascariz, J. M., and Blanco, R., Automated detection of breast cancer in thermal infrared images, based on independent component analysis. J. Med. Syst. 36:103–111, 2012.CrossRefPubMed Boquete, L., Ortega, S., Miguel-Jiménez, J. M., Rodríguez-Ascariz, J. M., and Blanco, R., Automated detection of breast cancer in thermal infrared images, based on independent component analysis. J. Med. Syst. 36:103–111, 2012.CrossRefPubMed
7.
Zurück zum Zitat Francis, S. V., Sasikala, M., and Saranya, S., Detection of breast abnormality from thermograms using curvelet transform based feature extraction. J. Med. Syst. 38:1–9, 2014.CrossRef Francis, S. V., Sasikala, M., and Saranya, S., Detection of breast abnormality from thermograms using curvelet transform based feature extraction. J. Med. Syst. 38:1–9, 2014.CrossRef
8.
Zurück zum Zitat Fazel Zarandi, M. H., Zarinbal, M., and Izadi, M., Systematic image processing for diagnosing brain tumors: a type-II fuzzy expert system approach. Appl. Soft Comput. 11:285–294, 2011.CrossRef Fazel Zarandi, M. H., Zarinbal, M., and Izadi, M., Systematic image processing for diagnosing brain tumors: a type-II fuzzy expert system approach. Appl. Soft Comput. 11:285–294, 2011.CrossRef
9.
Zurück zum Zitat Vadivel, A., and Surendiran, B., A fuzzy rule-based approach for characterization of mammogram masses into BI-RADS shape categories. Comput. Biol. Med. 43:259–267, 2013.CrossRefPubMed Vadivel, A., and Surendiran, B., A fuzzy rule-based approach for characterization of mammogram masses into BI-RADS shape categories. Comput. Biol. Med. 43:259–267, 2013.CrossRefPubMed
10.
Zurück zum Zitat Harati, V., Khayati, R., and Farzan, A., Fully automated tumor segmentation based on improved fuzzy connectedness algorithm in brain MR images. Comput. Biol. Med. 41:483–492, 2011.CrossRefPubMed Harati, V., Khayati, R., and Farzan, A., Fully automated tumor segmentation based on improved fuzzy connectedness algorithm in brain MR images. Comput. Biol. Med. 41:483–492, 2011.CrossRefPubMed
11.
Zurück zum Zitat Miranda, G.H.B., Felipe, J.C.: Computer-aided diagnosis system based on fuzzy logic for breast cancer categorization. Comput. Biol. Med. (2014). Miranda, G.H.B., Felipe, J.C.: Computer-aided diagnosis system based on fuzzy logic for breast cancer categorization. Comput. Biol. Med. (2014).
12.
Zurück zum Zitat T. Moritani, S. Ekholm, P.-L.Westesson: Diffusion-weighted MR imaging of the brain. Springer-Verlag (2005). T. Moritani, S. Ekholm, P.-L.Westesson: Diffusion-weighted MR imaging of the brain. Springer-Verlag (2005).
13.
Zurück zum Zitat Zarinbal, M., Fazel Zarandi, M.H.: Type-2 fuzzy image enhancement: Fuzzy rule based approach. J. Intell. Fuzzy Syst. (2014). Zarinbal, M., Fazel Zarandi, M.H.: Type-2 fuzzy image enhancement: Fuzzy rule based approach. J. Intell. Fuzzy Syst. (2014).
14.
Zurück zum Zitat Zacharaki, E. I., Wang, S., Chawla, S., Soo Yoo, D., Wolf, R., Melhem, E. R., and Davatzikos, C., Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme. Magn. Reson. Med. 62:1609–18, 2009.PubMedCentralCrossRefPubMed Zacharaki, E. I., Wang, S., Chawla, S., Soo Yoo, D., Wolf, R., Melhem, E. R., and Davatzikos, C., Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme. Magn. Reson. Med. 62:1609–18, 2009.PubMedCentralCrossRefPubMed
15.
Zurück zum Zitat El-Dahshan, E.-S. a., Mohsen, H. M., Revett, K., and Salem, A.-B. M., Computer-aided diagnosis of human brain tumor through MRI: a survey and a new algorithm. Expert Syst. Appl. 41:5526–5545, 2014.CrossRef El-Dahshan, E.-S. a., Mohsen, H. M., Revett, K., and Salem, A.-B. M., Computer-aided diagnosis of human brain tumor through MRI: a survey and a new algorithm. Expert Syst. Appl. 41:5526–5545, 2014.CrossRef
16.
Zurück zum Zitat Meyer-base, A.: pattern recognition for medical imaging. Academic Press (2004). Meyer-base, A.: pattern recognition for medical imaging. Academic Press (2004).
17.
Zurück zum Zitat Zarinbal, M., Fazel Zarandi, M. H., and Turksen, I., Relative entropy fuzzy c-means clustering. Inf. Sci. 260:74–97, 2014.CrossRef Zarinbal, M., Fazel Zarandi, M. H., and Turksen, I., Relative entropy fuzzy c-means clustering. Inf. Sci. 260:74–97, 2014.CrossRef
18.
Zurück zum Zitat Mendel, J. M., and John, R. I. B., Type-2 fuzzy sets made simple. Fuzzy Syst. IEEE Trans. 10:117–127, 2002.CrossRef Mendel, J. M., and John, R. I. B., Type-2 fuzzy sets made simple. Fuzzy Syst. IEEE Trans. 10:117–127, 2002.CrossRef
19.
Zurück zum Zitat Melin, P., Mendoza, O., and Castillo, O., Face recognition with an improved interval type-2 fuzzy logic sugeno integral and modular neural networks. IEEE Trans. Syst. Man Cybern. Syst. Hum. 41:1001–1012, 2011.CrossRef Melin, P., Mendoza, O., and Castillo, O., Face recognition with an improved interval type-2 fuzzy logic sugeno integral and modular neural networks. IEEE Trans. Syst. Man Cybern. Syst. Hum. 41:1001–1012, 2011.CrossRef
20.
Zurück zum Zitat Palanivelu, M., and Duraisamy, M., Color textured image segmentation using ICICM - interval type-2 fuzzy C-means clustering hybrid approach. Eng. J. 16:115–126, 2012.CrossRef Palanivelu, M., and Duraisamy, M., Color textured image segmentation using ICICM - interval type-2 fuzzy C-means clustering hybrid approach. Eng. J. 16:115–126, 2012.CrossRef
21.
Zurück zum Zitat Wang, W., Liu, X., and Qin, Y., Multi-attribute group decision making models under interval type-2 fuzzy environment. Knowl.-Based Syst. 30:121–128, 2012.CrossRef Wang, W., Liu, X., and Qin, Y., Multi-attribute group decision making models under interval type-2 fuzzy environment. Knowl.-Based Syst. 30:121–128, 2012.CrossRef
22.
Zurück zum Zitat Martínez, G.E., Melin, P., Mendoza, O.D., Castillo, O.: Face recognition with choquet integral in modular neural networks. in: recent advances on hybrid approaches for designing intelligent systems. pp. 437–449. Springer (2014). Martínez, G.E., Melin, P., Mendoza, O.D., Castillo, O.: Face recognition with choquet integral in modular neural networks. in: recent advances on hybrid approaches for designing intelligent systems. pp. 437–449. Springer (2014).
23.
Zurück zum Zitat Barnett, G. H. (Ed.), High-grade gliomas: diagnosis and treatment. Humana Press, Totowa, 2007. Barnett, G. H. (Ed.), High-grade gliomas: diagnosis and treatment. Humana Press, Totowa, 2007.
24.
Zurück zum Zitat Henson, J. W., Gaviani, P., and Gonzalez, R. G., MRI in treatment of adult gliomas. Lancet Oncol. 6:167–175, 2005.CrossRefPubMed Henson, J. W., Gaviani, P., and Gonzalez, R. G., MRI in treatment of adult gliomas. Lancet Oncol. 6:167–175, 2005.CrossRefPubMed
25.
Zurück zum Zitat Bovik, A. ed: Handbook of image and video processing. Academic Press (2000). Bovik, A. ed: Handbook of image and video processing. Academic Press (2000).
26.
Zurück zum Zitat Parker, J.R.: Algorithms for image processing and computer vision. Wiley Publishing, Inc. (2011). Parker, J.R.: Algorithms for image processing and computer vision. Wiley Publishing, Inc. (2011).
27.
Zurück zum Zitat Romeo, J., Pajares, G., Montalvo, M., Guerrero, J. M., Guijarro, M., and de la Cruz, J. M., A new expert system for greenness identification in agricultural images. Expert Syst. Appl. 40:2275–2286, 2013.CrossRef Romeo, J., Pajares, G., Montalvo, M., Guerrero, J. M., Guijarro, M., and de la Cruz, J. M., A new expert system for greenness identification in agricultural images. Expert Syst. Appl. 40:2275–2286, 2013.CrossRef
28.
Zurück zum Zitat Ericeira, D. R., Silva, A. C., de Paiva, A. C., and Gattass, M., Detection of masses based on asymmetric regions of digital bilateral mammograms using spatial description with variogram and cross-variogram functions. Comput. Biol. Med. 43:987–999, 2013.CrossRefPubMed Ericeira, D. R., Silva, A. C., de Paiva, A. C., and Gattass, M., Detection of masses based on asymmetric regions of digital bilateral mammograms using spatial description with variogram and cross-variogram functions. Comput. Biol. Med. 43:987–999, 2013.CrossRefPubMed
29.
Zurück zum Zitat Wu, Q., Pang, X., and Han, Z., Fuzzy automata system with application to target recognition based on image processing. Comput. Math. Appl. 61:1267–1277, 2011.CrossRef Wu, Q., Pang, X., and Han, Z., Fuzzy automata system with application to target recognition based on image processing. Comput. Math. Appl. 61:1267–1277, 2011.CrossRef
30.
Zurück zum Zitat Guerrero, J. M., Guijarro, M., Montalvo, M., Romeo, J., Emmi, L., Ribeiro, A., and Pajares, G., Automatic expert system based on images for accuracy crop row detection in maize fields. Expert Syst. Appl. 40:656–664, 2013.CrossRef Guerrero, J. M., Guijarro, M., Montalvo, M., Romeo, J., Emmi, L., Ribeiro, A., and Pajares, G., Automatic expert system based on images for accuracy crop row detection in maize fields. Expert Syst. Appl. 40:656–664, 2013.CrossRef
31.
Zurück zum Zitat Borges Sampaio, W., Moraes Diniz, E., Corrêa Silva, A., Cardoso De Paiva, A., and Gattass, M., Detection of masses in mammogram images using CNN, geostatistic functions and SVM. Comput. Biol. Med. 41:653–664, 2011.CrossRef Borges Sampaio, W., Moraes Diniz, E., Corrêa Silva, A., Cardoso De Paiva, A., and Gattass, M., Detection of masses in mammogram images using CNN, geostatistic functions and SVM. Comput. Biol. Med. 41:653–664, 2011.CrossRef
32.
Zurück zum Zitat Turksen, I.: An ontological and epistemological perspective of fuzzy set theory. Elsevier Science Inc. (2005). Turksen, I.: An ontological and epistemological perspective of fuzzy set theory. Elsevier Science Inc. (2005).
33.
Zurück zum Zitat Medasani, S., and Kim, J., An overview of membership function generation techniques for pattern recognition. Int. J. Approx. Reason. 19:391–417, 1998.CrossRef Medasani, S., and Kim, J., An overview of membership function generation techniques for pattern recognition. Int. J. Approx. Reason. 19:391–417, 1998.CrossRef
34.
Zurück zum Zitat Oliveira, J. V. D., and Pedrycz, W., Advances in fuzzy clustering and its applications. Wiley, Chichester, 2007.CrossRef Oliveira, J. V. D., and Pedrycz, W., Advances in fuzzy clustering and its applications. Wiley, Chichester, 2007.CrossRef
35.
Zurück zum Zitat Melin, P., and Castillo, O., A review on the applications of type-2 fuzzy logic in classification and pattern recognition. Expert Syst. Appl. 40:5413–5423, 2013.CrossRef Melin, P., and Castillo, O., A review on the applications of type-2 fuzzy logic in classification and pattern recognition. Expert Syst. Appl. 40:5413–5423, 2013.CrossRef
36.
Zurück zum Zitat Melin, P., Gonzalez, C., Castro, J. R., Mendoza, O., and Castillo, O., Edge-detection method for image processing based on generalized type-2 fuzzy logic. Fuzzy Syst. IEEE Trans. 22:1515–1525, 2014.CrossRef Melin, P., Gonzalez, C., Castro, J. R., Mendoza, O., and Castillo, O., Edge-detection method for image processing based on generalized type-2 fuzzy logic. Fuzzy Syst. IEEE Trans. 22:1515–1525, 2014.CrossRef
37.
Zurück zum Zitat Zarinbal, M., Zarandi, M. F., and Turksen, I., Interval type-2 relative entropy fuzzy C-means clustering. Inf. Sci. 272:49–72, 2014.CrossRef Zarinbal, M., Zarandi, M. F., and Turksen, I., Interval type-2 relative entropy fuzzy C-means clustering. Inf. Sci. 272:49–72, 2014.CrossRef
38.
Zurück zum Zitat Linda, O., and Manic, M., General type-2 fuzzy C-means algorithm for uncertain fuzzy clustering. IEEE Trans. Fuzzy Syst. 20:883–897, 2012.CrossRef Linda, O., and Manic, M., General type-2 fuzzy C-means algorithm for uncertain fuzzy clustering. IEEE Trans. Fuzzy Syst. 20:883–897, 2012.CrossRef
39.
Zurück zum Zitat Pedrycz, W., Collaborative fuzzy clustering. Pattern Recogn. Lett. 23:1675–1686, 2002.CrossRef Pedrycz, W., Collaborative fuzzy clustering. Pattern Recogn. Lett. 23:1675–1686, 2002.CrossRef
40.
Zurück zum Zitat Falcon, R., Jeon, G., Bello, R., Jeong, J.: Learning collaboration links in a collaborative fuzzy clustering environment. In: MICAI: Advances in artificial intelligence lecture notes in computer science. pp. 483–495 (2007). Falcon, R., Jeon, G., Bello, R., Jeong, J.: Learning collaboration links in a collaborative fuzzy clustering environment. In: MICAI: Advances in artificial intelligence lecture notes in computer science. pp. 483–495 (2007).
41.
Zurück zum Zitat Yu, F., Tang, J., Cai, R.: A necessary preprocessing in horizontal collaborative fuzzy clustering. IEEE Int. Conf. Granular Comput. (GRC 2007). 399–399 (2007). Yu, F., Tang, J., Cai, R.: A necessary preprocessing in horizontal collaborative fuzzy clustering. IEEE Int. Conf. Granular Comput. (GRC 2007). 399–399 (2007).
42.
Zurück zum Zitat Coletta, L. F. S., Vendramin, L., Hruschka, E. R., Campello, R. J. G. B., and Pedrycz, W., Collaborative Fuzzy clustering algorithms: some refinements and design guidelines. IEEE Trans. Fuzzy Syst. 20:444–462, 2012.CrossRef Coletta, L. F. S., Vendramin, L., Hruschka, E. R., Campello, R. J. G. B., and Pedrycz, W., Collaborative Fuzzy clustering algorithms: some refinements and design guidelines. IEEE Trans. Fuzzy Syst. 20:444–462, 2012.CrossRef
43.
Zurück zum Zitat Pedrycz, W., and Rai, P., Collaborative clustering with the use of fuzzy C-means and its quantification. Fuzzy Sets Syst. 159:2399–2427, 2008.CrossRef Pedrycz, W., and Rai, P., Collaborative clustering with the use of fuzzy C-means and its quantification. Fuzzy Sets Syst. 159:2399–2427, 2008.CrossRef
44.
Zurück zum Zitat Pedrycz, W.: Knowledge-based clustering from data to information granules. John Wiley & Sons, Inc. (2005). Pedrycz, W.: Knowledge-based clustering from data to information granules. John Wiley & Sons, Inc. (2005).
45.
Zurück zum Zitat Zarinbal, M., Zarandi, M. H. F., and Turksen, I. B., Relative entropy collaborative fuzzy clustering method. Pattern Recogn. 48:933–940, 2015.CrossRef Zarinbal, M., Zarandi, M. H. F., and Turksen, I. B., Relative entropy collaborative fuzzy clustering method. Pattern Recogn. 48:933–940, 2015.CrossRef
46.
Zurück zum Zitat Hwang, C., and Rhee, F. C., Uncertain fuzzy clustering : Interval type-2 fuzzy approach to C -means. IEEE Trans. Fuzzy Syst. 15:107–120, 2007.CrossRef Hwang, C., and Rhee, F. C., Uncertain fuzzy clustering : Interval type-2 fuzzy approach to C -means. IEEE Trans. Fuzzy Syst. 15:107–120, 2007.CrossRef
47.
Zurück zum Zitat Nixon, M.S., Aguado, A.S.: Feature extraction and image processing. Newnes (2002). Nixon, M.S., Aguado, A.S.: Feature extraction and image processing. Newnes (2002).
48.
Zurück zum Zitat Khotanlou, H., Colliot, O., Atif, J., and Bloch, I., 3D brain tumor segmentation in MRI using fuzzy classification, symmetry analysis and spatially constrained deformable models. Fuzzy Sets Syst. 160:1457–1473, 2009.CrossRef Khotanlou, H., Colliot, O., Atif, J., and Bloch, I., 3D brain tumor segmentation in MRI using fuzzy classification, symmetry analysis and spatially constrained deformable models. Fuzzy Sets Syst. 160:1457–1473, 2009.CrossRef
49.
Zurück zum Zitat Zhang, A., Gertych, A., Liu, B.J.: Automatic bone age assessment for young children from newborn to 7-year-old using carpal bones. Comput. Med. Imag. Graph. 31, 299–310. Zhang, A., Gertych, A., Liu, B.J.: Automatic bone age assessment for young children from newborn to 7-year-old using carpal bones. Comput. Med. Imag. Graph. 31, 299–310.
50.
Zurück zum Zitat Kang, H., Pinti, A., Taleb-Ahmeda, A., and Zeng, X., An intelligent generalized system for tissue classification on MR images by integrating qualitative medical knowledge. Biomed. Signal Proc. Contrl. 6:21–26, 2011.CrossRef Kang, H., Pinti, A., Taleb-Ahmeda, A., and Zeng, X., An intelligent generalized system for tissue classification on MR images by integrating qualitative medical knowledge. Biomed. Signal Proc. Contrl. 6:21–26, 2011.CrossRef
51.
Zurück zum Zitat Shang, C., and Barnes, D., Fuzzy-rough feature selection aided support vector machines for Mars image classification. Comput. Vis. Image Underst. 17:202–213, 2013.CrossRef Shang, C., and Barnes, D., Fuzzy-rough feature selection aided support vector machines for Mars image classification. Comput. Vis. Image Underst. 17:202–213, 2013.CrossRef
52.
Zurück zum Zitat Duda, R.O., Hart, P.E., Stork, D.G.: Pattern classification. Wiley-Interscience (2000). Duda, R.O., Hart, P.E., Stork, D.G.: Pattern classification. Wiley-Interscience (2000).
53.
Zurück zum Zitat Bishop, C., Pattern recognition and machine learning. Springer Science, New York, 2006. Bishop, C., Pattern recognition and machine learning. Springer Science, New York, 2006.
Metadaten
Titel
A Type-2 Fuzzy Image Processing Expert System for Diagnosing Brain Tumors
verfasst von
M. Zarinbal
M. H. Fazel Zarandi
I. B. Turksen
M. Izadi
Publikationsdatum
01.10.2015
Verlag
Springer US
Erschienen in
Journal of Medical Systems / Ausgabe 10/2015
Print ISSN: 0148-5598
Elektronische ISSN: 1573-689X
DOI
https://doi.org/10.1007/s10916-015-0311-6

Weitere Artikel der Ausgabe 10/2015

Journal of Medical Systems 10/2015 Zur Ausgabe