Skip to main content
Erschienen in: BMC Musculoskeletal Disorders 1/2021

Open Access 01.12.2021 | Research

Accuracy of image-free navigation in intraoperative leg length change from total hip arthroplasty using evaluations from 2D and 3D measurements

verfasst von: Shine Tone, Masahiro Hasegawa, Yohei Naito, Hiroki Wakabayashi, Akihiro Sudo

Erschienen in: BMC Musculoskeletal Disorders | Ausgabe 1/2021

Abstract

Background

Leg length discrepancy is one of the most common problems after total hip arthroplasty (THA). The aim of this study was to investigate the accuracy of image-free navigation in intraoperative leg length change (LLC) using evaluations from anteroposterior radiographs (2D measurement) and 3D bone models using CT data (3D measurement).

Methods

One hundred THAs with cementless cups and stems were performed using an image-free navigation system in our hospital. We evaluated the accuracy of image-free navigation based on LLC from 2D and 3D measurements. Furthermore, we also investigated error in absolute value and correlations between 2D and 3D measurements in LLC.

Results

The accuracy of image-free navigation based on 2D measurement was 94% within 5 mm and 76% within 3 mm. The accuracy of image-free navigation based on 3D measurement was 92% within 5 mm and 81% within 3 mm. The error in absolute value in LLC between 2D and 3D measurements was 1.7 ± 1.4 mm (range, 0 to 6 mm). A strong correlation was observed between 2D and 3D measurements in the LLC.

Conclusions

In the present study, good accuracy of image-free navigation in intraoperative LLC was confirmed for both evaluation methods from 2D and 3D measurements. In addition, the error in absolute value in the LLC between 2D and 3D measurements was very small, and we observed a strong correlation between 2D and 3D measurements. Based on these results, evaluation of LLC from radiographs was considered sufficient if radiographs can be taken accurately.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
LLD
Leg length discrepancy
THA
Total hip arthroplasty
LLC
Leg length change
2D
Two-dimensional
3D
Three-dimensional
CT
Computed tomography
ASIS
Anterior superior iliac spine

Background

Leg length discrepancy (LLD) is one of the most common problems after total hip arthroplasty (THA). LLD can be a cause of patient dissatisfaction because of ipsilateral gait disorder, knee pain, back pain and implant failure associated with inferior clinical outcomes [16]. Several methods have been reported for adjusting and equalizing leg length after THA [3, 712]. As one of these methods, use of computer navigation in THA has been increasing over the last decade. Many reports have described good accuracy for CT-based navigation and image-free navigation in terms of intraoperative leg length change (LLC) [1318]. However, almost all those reports evaluated LLC using a two-dimensional (2D) measurement based on pre- and postoperative anteroposterior radiographs. In recent years, a three-dimensional (3D) method based on 3D bone models from computed tomography (CT) data has been used for preoperative and postoperative evaluation of total joint arthroplasty. Several reports have described that the evaluation using 3D method was more accurate than using 2D method for implant position and offset [1921]. Therefore, we hypothesized that the 3D measurement could evaluate leg length change more accurate than the 2D measurement. No reports appear to have compared between the 2D and 3D measurements for the accuracy evaluation of image-free navigation. The aim of this study was to investigate the accuracy of image-free navigation in intraoperative LLC using evaluation methods based on 2D and 3D measurements.

Methods

Study design and patient selection

This retrospective case series was approved by the ethics committee of our institution (No. H2018–083). From November 2014, our institution performed 118 consecutive primary THAs with cementless cup and stems (Kyocera, Kyoto, Japan) using an image-free navigation system (Brain Lab; KICK Hip application 6.0, Helmstetten, Germany). We recorded preoperative variables, including age, sex, body mass index and primary diagnosis. For assessment of leg length, all included patients underwent pre- and postoperative radiographic and CT examinations. Postoperative radiography and CT examinations were performed at 2 weeks postoperatively. Exclusion criteria were incomplete operation record and inadequate pelvic x-rays and CT data. All preoperative and postoperative evaluations were performed by the author (ST), and all operations were performed by two senior surgeon (AS and MH).

Surgical procedure

For the THA procedure, we used a posterolateral approach in the lateral decubitus position. KICK Hip application system for THA is a non-image-based system that uses a virtual data model supplemented by intraoperative registration (Fig. 1a). The system required placement of trackers on the pelvis and distal femur (two pins each) before surgery (Fig. 1b). The reference frame used is the anterior pelvic plane, which is obtained by palpating bilateral anterior superior iliac spines (ASISs) with a special tracked palpation pointer registered to the computer. The femoral reference plane is formed by the piriformis fossa, medial and lateral epicondyles and ankle center. The femur position was registered to the software by holding the leg in a neutral extension position. After trial and final reconstructions, the femur is brought to the neutral position stored during leg alignment, so as to match the centers of the crosshairs displayed on the monitor. When these crosshairs are sufficiently aligned (within 5° of stored leg alignment), the active crosshair turns green. Intraoperative LLC was displayed after holding the leg steady for 2–3 s (Fig. 1c). Intraoperative LLC was defined as the amount of change from the leg length measured as the distance between the two trackers in the neutral position. All procedures were performed in accordance with relevant guidelines.

Evaluation methods of leg length change

The anteroposterior pelvic radiograph was performed in the standard manner with the patient supine with lower limbs placed in internal rotation and the big toes touching each other so that the patella was facing forward. Pre- and postoperative LLD on 2D measurement was measured as the distance between the horizontal line connecting both tear drops and the medial apex of the lesser trochanter in neutral position (Fig. 2a). LLC on 2D measurement was defined as the difference between pre- and postoperative LLD on 2D measurement. Helical CT providing images with a 1-mm slice interval from the ASIS to the knee was performed for all cases. Pre- and postoperative LLD on 3D measurement were measured in the functional pelvic plane after repositioning using the 3D-Template system (ZedHip; LEXI Co., Tokyo, Japan), then assessed as the distance from the ASIS to the intercondylar fossa of femur (Fig. 2b). The 3D-Template system was used to match pre- and postoperative CT digital images. LLC on 3D measurement was defined as the difference between pre- and postoperative LLD on 3D measurement. To evaluate the accuracy of image-free navigation based on 2D and 3D measurements, intraoperative LLC were compared with LLC on 2D and 3D measurements. We also investigated the error in absolute value and the correlation between 2D and 3D measurements of LLC.

Statistical analysis

All statistical analyses were performed with EZR (Saitama Medical Center, Jichi Medical University, Saitama, Japan), a graphical user interface for R (The R Foundation for Statistical Computing, Vienna, Austria). Continuous data were analyzed using the nonparametric Wilcoxon signed-rank test and Spearman’s rank correlation coefficient. Values of P < 0.05 were considered significant. The reproducibility of 2D and 3D measurements was confirmed. For intra-observer reliability, each parameter was measured twice, on 20 hips, at an interval ≥ 4 weeks by one orthopedic surgeon (ST). For inter-observer reliability, two orthopedic surgeons (ST and YN) measured each parameter twice, on 20 hips, at an interval ≥ 4 weeks. Intra-class and inter-class correlation coefficient was calculated to analyse the variability between observers. Values of 0.81–1.00 indicated excellent correlation; 0.61–0.80, substantial correlation; 0.41–0.60, moderate correlation; 0.21–0.40, fair correlation; and 0.00–0.20, poor correlation.

Results

One hundred patients with complete data sets were included for analysis. The patient demographics are shown in Table 1. The intra-class and inter-class correlation coefficients for the 2D measurement were 0.98 and 0.92, respectively. The intra-class and inter-class correlation coefficients for the 3D measurement were 0.97 and 0.94, respectively.
Table 1
demographic data
Variable
Results
Age (years)
67.9 ± 9.7
Gender
Male: 19
Female: 81
Body mass index (kg/m2)
23.9 ± 4.5
Primary diagnosis
 Osteoarthritis
Crowe classification
 
I: 79 II: 7 III: 5
 Idiopathic osteonecrosis
8
 Rheumatoid arthritis
1
Mean intraoperative LLC with image-free navigation was 12.0 ± 7.2 mm (range, −7 to 32 mm). Mean LLC on 2D measurement were 13.2 ± 7.0 mm (range, −3 to 35 mm). Mean LLC on 3D measurement were 12.9 ± 6.5 mm (range, −1 to 34 mm) (Table 2). Intraoperative LLC with image-free navigation was significantly shorter than LLC on 2D and 3D measurements. There was no significance between 2D and 3D measurements of LLC. In terms of the accuracy of image-free navigation based on 2D measurement, agreement with a difference ≤ 5 mm was confirmed in 94 of 100 THAs (94.0%), agreement with a difference ≤ 3 mm was confirmed in 76 of 100 THAs (76.0%). In the accuracy of image-free navigation based on 3D measurement, agreement with a difference ≤ 5 mm was confirmed in 92 of 100 THAs (92.0%), agreement with a difference ≤ 3 mm was confirmed in 81 of 100 THAs (81.0%) (Fig. 3). Errors in absolute value for LLC between 2D and 3D measurements were 1.7 ± 1.4 mm (range, 0 to 6 mm). A strong significant correlation between 2D and 3D measurements of LLC was observed (Fig. 4).
Table 2
Results of intraoperative leg length change with image-free navigation, leg length change on 2D measurement and leg length change on 3D measurement
 
Image-free navigation
2D measurement
3D measurement
LLC (mm)
12.0 ± 7.2
13.2 ± 7.0
12.9 ± 6.5
 
(−7 to 32)
(−3 to 35)
(−1 to 34)

Discussion

THAs have very high success rates in terms of providing pain relief and improving mobility among patients with advanced osteoarthritis, osteonecrosis, and rheumatoid arthritis. However, these adult reconstructive procedures are also associated with a known potential for major complications, which may lead to litigation [2224]. Although leg length discrepancy must be ≤10 mm for a patient to have good quality of life, an unexpected difference of 10–16 mm can sometimes occur despite careful attention [3, 6, 25]. Accurately assessing the amount of change in intraoperative leg length is considered very important to minimize the unexpected leg length discrepancy.
Good results have been reported for intraoperative LLC using image-free navigation in previous studies [1315]. Moreover, several studies of intraoperative LLC have reported the accuracy of image-free navigation using pin fixing was significantly higher than free-hand, fluoroscopy and image-free navigation with the pinless device [2628]. In the present study, good accuracy of image-free navigation in intraoperative LLC was confirmed on radiographic assessment, as in previous studies. The most important finding of the present study was the observation of the strong significant correlation of LLC between the evaluation of 2D and 3D measurements. Furthermore, no significant difference was observed the accuracy of LLC between the evaluation of 2D and 3D measurements. Based on these results, we were not confirmed the evaluation of 3D measurement was usefulness than that of 2D measurement in the present study.
On the other hand, a leg length error ≥ 10 mm was observed in 4 cases of this study. Ellapparadia et al. reported that 4 patients showed leg length error > 10 mm among these 6 patients with leg length error > 6 mm [13]. As the potential source of assessment errors in intraoperative assessment, loosening of the device has been reported as a factor inducing error [15]. It is thus necessary to keep in mind that some patients still show LLC >10 mm, although we were unable to clarify the causes of error in the present study.
Several limitations to this study must be considered. First, CT scans expose the patient to irradiation. CT scans is the imaging study that can be used for measurement of the hip geometry, preoperative planning and offset evaluation, but it exposes the patients to large radiation dose compared to conventional radiography [2931]. Increased radiation exposure has been related to increased risk of various cancers, indicating the importance to minimize radiation exposure as much as possible [32, 33]. Therefore, a low dose CT have recently used to preoperative planning and postoperative assessment of total hip arthroplasty [34, 35]. However, we indicated that CT scan might not be necessary for the evaluation of leg length in this study. Second, leg length is often susceptible to errors that can be influenced by flexion contracture and variations in pelvic tilt and rotation. Fortunately, patients with severe flexion contracture were not observed in this study. A third limitation was the difference in evaluation methods between radiograph and CT examinations. 2D measurement was assessed as the distance between the horizontal line connecting both tear drops and the medial apex of the lesser trochanter, while 3D measurement was assessed as the distance from the ASIS to the intercondylar fossa of femur. However, we obtained the strong correlation between 2D and 3D measurement. From this result, the difference between 2D and 3D measurement was little affected for the evaluation of LLC.

Conclusions

The accuracy of image-free navigation in leg length change showed good results for evaluations by both anteroposterior pelvic radiographs and 3D bone models using CT data. With regard to leg length change, evaluation using radiographs alone is possible if accurate radiographs can be obtained.

Acknowledgements

Not applicable.

Declarations

This study was approved by Institutional Review Board at Mie University hospital. All patients provided their informed consent.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Jasty M, Webster W, Harris W. Management of limb length inequality during total hip replacement. Clin Orthop Relat Res. 1996;333:165–71.CrossRef Jasty M, Webster W, Harris W. Management of limb length inequality during total hip replacement. Clin Orthop Relat Res. 1996;333:165–71.CrossRef
2.
Zurück zum Zitat Parvizi J, Sharkey PF, Bissett GA, Rothman RH, Hozack WJ. Surgical treatment of limb-length discrepancy following total hip arthroplasty. J Bone Joint Surg Am. 2003;85:2310–7.CrossRef Parvizi J, Sharkey PF, Bissett GA, Rothman RH, Hozack WJ. Surgical treatment of limb-length discrepancy following total hip arthroplasty. J Bone Joint Surg Am. 2003;85:2310–7.CrossRef
3.
Zurück zum Zitat Woolson ST, Harris WH. A method of intraoperative limb length measurement in total hip arthroplasty. Clin Orthop Relat Res. 1985;194:207–10.CrossRef Woolson ST, Harris WH. A method of intraoperative limb length measurement in total hip arthroplasty. Clin Orthop Relat Res. 1985;194:207–10.CrossRef
4.
Zurück zum Zitat Woo RY, Morrey BF. Dislocations after total hip arthroplasty. J Bone Joint Surg Am. 1982;64:1295–306.CrossRef Woo RY, Morrey BF. Dislocations after total hip arthroplasty. J Bone Joint Surg Am. 1982;64:1295–306.CrossRef
5.
Zurück zum Zitat Abraham WD, Dimon JH 3rd. Leg length discrepancy in total hip arthroplasty. Orthop Clin North Am. 1992;23:201–9.CrossRef Abraham WD, Dimon JH 3rd. Leg length discrepancy in total hip arthroplasty. Orthop Clin North Am. 1992;23:201–9.CrossRef
6.
Zurück zum Zitat Maloney WJ, Keeney JA. Leg length discrepancy after total hip arthroplasty. J Arthroplast. 2004;19(4 Suppl 1):108–10.CrossRef Maloney WJ, Keeney JA. Leg length discrepancy after total hip arthroplasty. J Arthroplast. 2004;19(4 Suppl 1):108–10.CrossRef
7.
Zurück zum Zitat Ranawat CS, Rao RR, Rodriguez JA, Bhende HS. Correction of limb-length inequality during total hip arthroplasty. J Arthroplast. 2001;16:715–20.CrossRef Ranawat CS, Rao RR, Rodriguez JA, Bhende HS. Correction of limb-length inequality during total hip arthroplasty. J Arthroplast. 2001;16:715–20.CrossRef
8.
Zurück zum Zitat McGee HM, Scott JH. A simple method of obtaining equal leg length in total hip arthroplasty. Clin Orthop Relat Res. 1985;194:269–70.CrossRef McGee HM, Scott JH. A simple method of obtaining equal leg length in total hip arthroplasty. Clin Orthop Relat Res. 1985;194:269–70.CrossRef
9.
Zurück zum Zitat Shiramizu K, Naito M, Shitama T, Nakamura Y, Shitama H. L-shaped caliper for limb length measurement during total hip arthroplasty. J Bone Joint Surg (Br). 2004;86:966–9.CrossRef Shiramizu K, Naito M, Shitama T, Nakamura Y, Shitama H. L-shaped caliper for limb length measurement during total hip arthroplasty. J Bone Joint Surg (Br). 2004;86:966–9.CrossRef
10.
Zurück zum Zitat Ogawa K, Kabata T, Maeda T, Kajino Y, Tsuchiya H. Accurate leg length measurement in total hip arthroplasty: a comparison of computer navigation and a simple manual measurement device. Clin Orthop Surg. 2014;6:153–8.CrossRef Ogawa K, Kabata T, Maeda T, Kajino Y, Tsuchiya H. Accurate leg length measurement in total hip arthroplasty: a comparison of computer navigation and a simple manual measurement device. Clin Orthop Surg. 2014;6:153–8.CrossRef
11.
Zurück zum Zitat Enke O, Levy YD, Bruce WJ. Accuracy of leg length and femoral offset restoration after total hip arthroplasty with the utilisation of an intraoperative calibration gauge. Hip Int. 2020;30(3):296–302.CrossRef Enke O, Levy YD, Bruce WJ. Accuracy of leg length and femoral offset restoration after total hip arthroplasty with the utilisation of an intraoperative calibration gauge. Hip Int. 2020;30(3):296–302.CrossRef
12.
Zurück zum Zitat Grobler G, Nortje M, Dower B, Chivers D. A vertical measurement system to predict the change in leg length in total hip arthroplasty. Arthroplast Today. 2020;6(3):330–7.CrossRef Grobler G, Nortje M, Dower B, Chivers D. A vertical measurement system to predict the change in leg length in total hip arthroplasty. Arthroplast Today. 2020;6(3):330–7.CrossRef
13.
Zurück zum Zitat Ellapparadja P, Mahajan V, Atiya S, Sankar B, Deep K. Leg length discrepancy in computer navigated total hip arthroplasty - how accurate are we? Hip Int. 2016;26:438–43.CrossRef Ellapparadja P, Mahajan V, Atiya S, Sankar B, Deep K. Leg length discrepancy in computer navigated total hip arthroplasty - how accurate are we? Hip Int. 2016;26:438–43.CrossRef
14.
Zurück zum Zitat Nishio S, Fukunishi S, Fukui T, Fujihara Y, Yoshiya S. Adjustment of leg length using imageless navigation THA software without a femoral tracker. J Orthop Sci. 2011;16:171–6.CrossRef Nishio S, Fukunishi S, Fukui T, Fujihara Y, Yoshiya S. Adjustment of leg length using imageless navigation THA software without a femoral tracker. J Orthop Sci. 2011;16:171–6.CrossRef
15.
Zurück zum Zitat Takeda Y, Fukunishi S, Nishio S, Fujihara Y, Yoshiya S. Accuracy of component orientation and leg length adjustment in total hip arthroplasty using image-free navigation. Open Orthop J. 2017;11:1432–9.CrossRef Takeda Y, Fukunishi S, Nishio S, Fujihara Y, Yoshiya S. Accuracy of component orientation and leg length adjustment in total hip arthroplasty using image-free navigation. Open Orthop J. 2017;11:1432–9.CrossRef
16.
Zurück zum Zitat Ecker TM, Tannast M, Murphy SB. Computed tomography-based surgical navigation for hip arthroplasty. Clin Orthop Relat Res. 2007;465:100–5.CrossRef Ecker TM, Tannast M, Murphy SB. Computed tomography-based surgical navigation for hip arthroplasty. Clin Orthop Relat Res. 2007;465:100–5.CrossRef
17.
Zurück zum Zitat Kitada M, Nakamura N, Iwana D, Kakimoto A, Nishii T, Sugano N. Evaluation of the accuracy of computed tomography-based navigation for femoral stem orientation and leg length discrepancy. J Arthroplast. 2011;26(5):674–9.CrossRef Kitada M, Nakamura N, Iwana D, Kakimoto A, Nishii T, Sugano N. Evaluation of the accuracy of computed tomography-based navigation for femoral stem orientation and leg length discrepancy. J Arthroplast. 2011;26(5):674–9.CrossRef
18.
Zurück zum Zitat Rajpaul J, Rasool MN. Leg length correction in computer assisted primary total hip arthroplasty: a collective review of the literature. J Orthop. 2018;15(2):442–6.CrossRef Rajpaul J, Rasool MN. Leg length correction in computer assisted primary total hip arthroplasty: a collective review of the literature. J Orthop. 2018;15(2):442–6.CrossRef
19.
Zurück zum Zitat Sariali E, Boukhelifa N, Catonne Y, Pascal MH. Comparison of three-dimensional planning-assisted and conventional acetabular cup positioning in total hip arthroplasty: a randomized controlled trial. J Bone Joint Surg Am. 2016;98(2):108–16.CrossRef Sariali E, Boukhelifa N, Catonne Y, Pascal MH. Comparison of three-dimensional planning-assisted and conventional acetabular cup positioning in total hip arthroplasty: a randomized controlled trial. J Bone Joint Surg Am. 2016;98(2):108–16.CrossRef
20.
Zurück zum Zitat Bayraktar V, Weber M, von Kunow F, Zeman F, Craiovan B, Renkawitz T, et al. Accuracy of measuring acetabular cup position after total hip arthroplasty: comparison between a radiographic planning software and three-dimensional computed tomography. Int Orthop. 2017;41(4):731–8.CrossRef Bayraktar V, Weber M, von Kunow F, Zeman F, Craiovan B, Renkawitz T, et al. Accuracy of measuring acetabular cup position after total hip arthroplasty: comparison between a radiographic planning software and three-dimensional computed tomography. Int Orthop. 2017;41(4):731–8.CrossRef
21.
Zurück zum Zitat Weber M, Merle C, Nawabi DH, Dendorfer S, Grifka J, Renkawitz T. Inaccurate offset restoration in total hip arthroplasty results in reduced range of motion. Sci Rep. 2020;10(1):13208.CrossRef Weber M, Merle C, Nawabi DH, Dendorfer S, Grifka J, Renkawitz T. Inaccurate offset restoration in total hip arthroplasty results in reduced range of motion. Sci Rep. 2020;10(1):13208.CrossRef
22.
Zurück zum Zitat Wolf BR, Lu X, Li Y, Callaghan JJ, Cram P. Adverse outcomes in hip arthroplasty: long-term trends. J Bone Joint Surg Am. 2012;94:e103.CrossRef Wolf BR, Lu X, Li Y, Callaghan JJ, Cram P. Adverse outcomes in hip arthroplasty: long-term trends. J Bone Joint Surg Am. 2012;94:e103.CrossRef
23.
Zurück zum Zitat Bokshan SL, Ruttiman RJ, DePasse JM, Eltorai AEM, Rubin LE, Palumbo MA, et al. Reported litigation associated with primary hip and knee arthroplasty. J Arthroplast. 2017;32:3573–7.e1.CrossRef Bokshan SL, Ruttiman RJ, DePasse JM, Eltorai AEM, Rubin LE, Palumbo MA, et al. Reported litigation associated with primary hip and knee arthroplasty. J Arthroplast. 2017;32:3573–7.e1.CrossRef
24.
Zurück zum Zitat Zengerink I, Reijman M, Mathijssen NM, Eikens-Jansen MP, Bos PK. Hip arthroplasty malpractice claims in the Netherlands: closed claim study 2000–2012. J Arthroplast. 2016;31:1890–3.e4.CrossRef Zengerink I, Reijman M, Mathijssen NM, Eikens-Jansen MP, Bos PK. Hip arthroplasty malpractice claims in the Netherlands: closed claim study 2000–2012. J Arthroplast. 2016;31:1890–3.e4.CrossRef
25.
Zurück zum Zitat Edeen J, Sharkey PF, Alexander AH. Clinical significance of leg-length inequality after total hip arthroplasty. Am J Orthop (Belle Mead NJ). 1995;24:347–51. Edeen J, Sharkey PF, Alexander AH. Clinical significance of leg-length inequality after total hip arthroplasty. Am J Orthop (Belle Mead NJ). 1995;24:347–51.
26.
Zurück zum Zitat Weber M, Woerner M, Springorum R, Sendtner E, Hapfelmeier A, Grifka J, et al. Fluoroscopy and imageless navigation enable an equivalent reconstruction of leg length and global and femoral offset in THA. Clin Orthop Relat Res. 2014;472(10):3150–8.CrossRef Weber M, Woerner M, Springorum R, Sendtner E, Hapfelmeier A, Grifka J, et al. Fluoroscopy and imageless navigation enable an equivalent reconstruction of leg length and global and femoral offset in THA. Clin Orthop Relat Res. 2014;472(10):3150–8.CrossRef
27.
Zurück zum Zitat Weber M, Thieme M, Kaiser M, Völlner F, Worlicek M, Craiovan B, et al. Accuracy of leg length and offset restoration in femoral Pinless navigation compared to navigation using a fixed pin during Total hip Arthroplasty. Biomed Res Int. 2018;2018:1639840.PubMedPubMedCentral Weber M, Thieme M, Kaiser M, Völlner F, Worlicek M, Craiovan B, et al. Accuracy of leg length and offset restoration in femoral Pinless navigation compared to navigation using a fixed pin during Total hip Arthroplasty. Biomed Res Int. 2018;2018:1639840.PubMedPubMedCentral
28.
Zurück zum Zitat Confalonieri N, Manzotti A, Montironi F, Pullen C. Leg length discrepancy, dislocation rate, and offset in total hip replacement using a short modular stem navigation vs conventional freehand. Orthopedics. 2008;31(10 Suppl 1):35–9. Confalonieri N, Manzotti A, Montironi F, Pullen C. Leg length discrepancy, dislocation rate, and offset in total hip replacement using a short modular stem navigation vs conventional freehand. Orthopedics. 2008;31(10 Suppl 1):35–9.
29.
Zurück zum Zitat Salem HS, Marchand KB, Ehiorobo JO, Tarazi JM, Matzko CN, Sodhi N, et al. Benefits of CT scanning for the management of hip arthritis and arthroplasty. Surg Technol Int. 2020;36:364–70.PubMed Salem HS, Marchand KB, Ehiorobo JO, Tarazi JM, Matzko CN, Sodhi N, et al. Benefits of CT scanning for the management of hip arthritis and arthroplasty. Surg Technol Int. 2020;36:364–70.PubMed
30.
Zurück zum Zitat Hassani H, Cherix S, Ek ET, Rüdiger HA. Comparisons of preoperative three-dimensional planning and surgical reconstruction in primary cementless total hip arthroplasty. J Arthroplast. 2014;29(6):1273–7.CrossRef Hassani H, Cherix S, Ek ET, Rüdiger HA. Comparisons of preoperative three-dimensional planning and surgical reconstruction in primary cementless total hip arthroplasty. J Arthroplast. 2014;29(6):1273–7.CrossRef
31.
Zurück zum Zitat Pasquier G, Ducharne G, Ali ES, Giraud F, Mouttet A, Durante E. Total hip arthroplasty offset measurement: is CT scan the most accurate option? Orthop Traumatol Surg Res. 2010;96(4):367–75.CrossRef Pasquier G, Ducharne G, Ali ES, Giraud F, Mouttet A, Durante E. Total hip arthroplasty offset measurement: is CT scan the most accurate option? Orthop Traumatol Surg Res. 2010;96(4):367–75.CrossRef
32.
Zurück zum Zitat Brenner DJ, Hall EJ. Computed tomography--an increasing source of radiation exposure. N Engl J Med. 2007;357(22):2277–84.CrossRef Brenner DJ, Hall EJ. Computed tomography--an increasing source of radiation exposure. N Engl J Med. 2007;357(22):2277–84.CrossRef
33.
Zurück zum Zitat Mathews JD, Forsythe AV, Brady Z, Butler MW, Goergen SK, Byrnes GB, et al. Cancer risk in 680,000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. BMJ. 2013;346:f2360.CrossRef Mathews JD, Forsythe AV, Brady Z, Butler MW, Goergen SK, Byrnes GB, et al. Cancer risk in 680,000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. BMJ. 2013;346:f2360.CrossRef
34.
Zurück zum Zitat Su AW, Hillen TJ, Eutsler EP, Bedi A, Ross JR, Larson CM, et al. Low-dose computed tomography reduces radiation exposure by 90% compared with traditional computed tomography among patients undergoing hip-preservation surgery. Arthroscopy. 2019;35(5):1385–92.CrossRef Su AW, Hillen TJ, Eutsler EP, Bedi A, Ross JR, Larson CM, et al. Low-dose computed tomography reduces radiation exposure by 90% compared with traditional computed tomography among patients undergoing hip-preservation surgery. Arthroscopy. 2019;35(5):1385–92.CrossRef
35.
Zurück zum Zitat Huppertz A, Lembcke A, Sariali el-H, Durmus T, Schwenke C, Hamm B, et al. Low dose computed tomography for 3D planning of total hip arthroplasty: evaluation of radiation exposure and image quality. J Comput Assist Tomogr. 2015;39(5):649–56.CrossRef Huppertz A, Lembcke A, Sariali el-H, Durmus T, Schwenke C, Hamm B, et al. Low dose computed tomography for 3D planning of total hip arthroplasty: evaluation of radiation exposure and image quality. J Comput Assist Tomogr. 2015;39(5):649–56.CrossRef
Metadaten
Titel
Accuracy of image-free navigation in intraoperative leg length change from total hip arthroplasty using evaluations from 2D and 3D measurements
verfasst von
Shine Tone
Masahiro Hasegawa
Yohei Naito
Hiroki Wakabayashi
Akihiro Sudo
Publikationsdatum
01.12.2021
Verlag
BioMed Central
Erschienen in
BMC Musculoskeletal Disorders / Ausgabe 1/2021
Elektronische ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-021-04906-1

Weitere Artikel der Ausgabe 1/2021

BMC Musculoskeletal Disorders 1/2021 Zur Ausgabe

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Proximale Humerusfraktur: Auch 100-Jährige operieren?

01.05.2024 DCK 2024 Kongressbericht

Mit dem demographischen Wandel versorgt auch die Chirurgie immer mehr betagte Menschen. Von Entwicklungen wie Fast-Track können auch ältere Menschen profitieren und bei proximaler Humerusfraktur können selbst manche 100-Jährige noch sicher operiert werden.

Sind Frauen die fähigeren Ärzte?

30.04.2024 Gendermedizin Nachrichten

Patienten, die von Ärztinnen behandelt werden, dürfen offenbar auf bessere Therapieergebnisse hoffen als Patienten von Ärzten. Besonders gilt das offenbar für weibliche Kranke, wie eine Studie zeigt.

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Arthroskopie kann Knieprothese nicht hinauszögern

25.04.2024 Gonarthrose Nachrichten

Ein arthroskopischer Eingriff bei Kniearthrose macht im Hinblick darauf, ob und wann ein Gelenkersatz fällig wird, offenbar keinen Unterschied.

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.