Skip to main content
Erschienen in: Journal of Medical Systems 5/2011

01.10.2011 | Original Paper

Accurate Automated Detection of Autism Related Corpus Callosum Abnormalities

verfasst von: Ayman El-Baz, Ahmed Elnakib, Manuel F. Casanova, Georgy Gimel’farb, Andrew E. Switala, Desha Jordan, Sabrina Rainey

Erschienen in: Journal of Medical Systems | Ausgabe 5/2011

Einloggen, um Zugang zu erhalten

Abstract

The importance of accurate early diagnostics of autism that severely affects personal behavior and communication skills cannot be overstated. Neuropathological studies have revealed an abnormal anatomy of the Corpus Callosum (CC) in autistic brains. We propose a new approach to quantitative analysis of three-dimensional (3D) magnetic resonance images (MRI) of the brain that ensures a more accurate quantification of anatomical differences between the CC of autistic and normal subjects. It consists of three main processing steps: (i) segmenting the CC from a given 3D MRI using the learned CC shape and visual appearance; (ii) extracting a centerline of the CC; and (iii) cylindrical mapping of the CC surface for its comparative analysis. Our experiments revealed significant differences (at the 95% confidence level) between 17 normal and 17 autistic subjects in four anatomical divisions, i.e. splenium, rostrum, genu and body of their CCs.
Fußnoten
1
To the best of our knowledge, we are the first authors who introduced an analytical form to estimate Gibbs potentials [36].
 
Literatur
1.
Zurück zum Zitat Brambilla, P., Hardan, A., and Nemi, S., Brain anatomy and development in autism: Review of MRI studies. Brain Res. Bull. 61:557–569, 2003.CrossRef Brambilla, P., Hardan, A., and Nemi, S., Brain anatomy and development in autism: Review of MRI studies. Brain Res. Bull. 61:557–569, 2003.CrossRef
2.
Zurück zum Zitat Minshew, N., and Payton, J., New perspectives in autism, part i. the clinical spectrum of autism. Curr. Probl. Pediatr. 18:561–610, 1988. Minshew, N., and Payton, J., New perspectives in autism, part i. the clinical spectrum of autism. Curr. Probl. Pediatr. 18:561–610, 1988.
3.
Zurück zum Zitat Stevens, M., Fein, D., Dunn, M., Allen, D., Waterhouse, L. H., Feinstein, C., and Rapin, I., Subgroups of children with autism by cluster analysis: A longitudinal examination. J. Am. Acad. Child Adolesc. Psychiatry 39:346–352, 2000.CrossRef Stevens, M., Fein, D., Dunn, M., Allen, D., Waterhouse, L. H., Feinstein, C., and Rapin, I., Subgroups of children with autism by cluster analysis: A longitudinal examination. J. Am. Acad. Child Adolesc. Psychiatry 39:346–352, 2000.CrossRef
4.
Zurück zum Zitat Kanner, L., Autistic disturbances of affective contact. Nerv. Child 2:250–250, 1943. Kanner, L., Autistic disturbances of affective contact. Nerv. Child 2:250–250, 1943.
5.
Zurück zum Zitat Aylward, E., Minshew, N., Field, K., Sparks, B., and Singh, N., Effects of age on brain volume and head circumference in autism. Neurology 59(2):175–183, 2002. Aylward, E., Minshew, N., Field, K., Sparks, B., and Singh, N., Effects of age on brain volume and head circumference in autism. Neurology 59(2):175–183, 2002.
6.
Zurück zum Zitat Courchesne, R., Carper, R., and Akshoomoff, N., Evidence of brain overgrowth in the first year of life in autism. JAMA 290:337–344, 2003.CrossRef Courchesne, R., Carper, R., and Akshoomoff, N., Evidence of brain overgrowth in the first year of life in autism. JAMA 290:337–344, 2003.CrossRef
7.
Zurück zum Zitat Casanova, M. F., White matter volume increases and minicolumns in autism. Ann. Neurol. 56(3):453, 2004.CrossRef Casanova, M. F., White matter volume increases and minicolumns in autism. Ann. Neurol. 56(3):453, 2004.CrossRef
8.
Zurück zum Zitat Casanova, M. F., van Kooten, I. A., Switala, A., van Engeland, H., Heinsen, H., Steinbusch, H., Hof, P. R., Trippe, J., Stone, J., and Schmitz, C., Minicolumnar abnormalities in autism. Acta Neuropathological, 2006. Casanova, M. F., van Kooten, I. A., Switala, A., van Engeland, H., Heinsen, H., Steinbusch, H., Hof, P. R., Trippe, J., Stone, J., and Schmitz, C., Minicolumnar abnormalities in autism. Acta Neuropathological, 2006.
9.
Zurück zum Zitat Mountcastle, V. B., Perpetual Neuroscience: The Cerebral Cortex. Harvard University Press, Cambridge, 1988. Mountcastle, V. B., Perpetual Neuroscience: The Cerebral Cortex. Harvard University Press, Cambridge, 1988.
10.
Zurück zum Zitat Calvin, W., How Brains Think. Basic Books, New York, 1996. Calvin, W., How Brains Think. Basic Books, New York, 1996.
11.
Zurück zum Zitat Buxhoeveden, D., and Casanova, M. F., Encephalization, minicolumns, and hominid evolution. In: Casanova, M. F. (Ed.), Neocortical Modularity and the Cell Minicolumn. Nova Biomedical, New York, pp. 117–136, 2005. Buxhoeveden, D., and Casanova, M. F., Encephalization, minicolumns, and hominid evolution. In: Casanova, M. F. (Ed.), Neocortical Modularity and the Cell Minicolumn. Nova Biomedical, New York, pp. 117–136, 2005.
12.
Zurück zum Zitat Gressens, P., and Evrard, P., The glial fascicle: An ontogenic and phylogenic unit guiding, supplying and distributing mammalian cortical neurons. Brain Res. Dev. Brain Res. 76:272–277, 1993.CrossRef Gressens, P., and Evrard, P., The glial fascicle: An ontogenic and phylogenic unit guiding, supplying and distributing mammalian cortical neurons. Brain Res. Dev. Brain Res. 76:272–277, 1993.CrossRef
13.
Zurück zum Zitat Fahmi, R., El-Baz, A., Hassan, H., Farag, A., and Casanova, M. F., Classification Techniques for Autistic Vs. Typically Developing Brain Using MRI Data. Proc. of IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI’07), Arlington, Virginia, USA 1348–1351, 2007. Fahmi, R., El-Baz, A., Hassan, H., Farag, A., and Casanova, M. F., Classification Techniques for Autistic Vs. Typically Developing Brain Using MRI Data. Proc. of IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI’07), Arlington, Virginia, USA 1348–1351, 2007.
14.
Zurück zum Zitat Casanova, M. F., Farag, A., El-Baz, A., Mott, M., Hassan, H., Fahmi, R., and Switala, A. E., Abnormalities of the gyral window in autism: A macroscopic correlate to a putative minicolumnopathy. J. Spec. Educ. Rehabil. 1:85–101, 2007.CrossRef Casanova, M. F., Farag, A., El-Baz, A., Mott, M., Hassan, H., Fahmi, R., and Switala, A. E., Abnormalities of the gyral window in autism: A macroscopic correlate to a putative minicolumnopathy. J. Spec. Educ. Rehabil. 1:85–101, 2007.CrossRef
15.
Zurück zum Zitat Abell, F., Krams, M., Ashburner, J., Passingham, R., Friston, K., Frackowiak, R., Happe, F., Frith, C., and Frith, U., The neuroanatomy of autism: A voxel-based whole brain analysis of structural scans. NeuroReport 10(8):647–1651, 1999.CrossRef Abell, F., Krams, M., Ashburner, J., Passingham, R., Friston, K., Frackowiak, R., Happe, F., Frith, C., and Frith, U., The neuroanatomy of autism: A voxel-based whole brain analysis of structural scans. NeuroReport 10(8):647–1651, 1999.CrossRef
16.
Zurück zum Zitat Waiter, G., Williams, J., Murray, A., Gilchrist, A., Perrett, D., and Whiten, A., A voxel-based investigation of brain structure in male adolescents with autistic spectrum disorder. Neuroimage 22:619–625, 2004.CrossRef Waiter, G., Williams, J., Murray, A., Gilchrist, A., Perrett, D., and Whiten, A., A voxel-based investigation of brain structure in male adolescents with autistic spectrum disorder. Neuroimage 22:619–625, 2004.CrossRef
17.
Zurück zum Zitat Rojas, D. C., Peterson, E., Winterrowd, E., Reite, M. L., Rogers, S. J., and Tregellas, J. R., Regional gray matter volumetric changes in autism associated with social and repetitive behavior symptoms. BMC Psychiatry 6(56), 2006. Rojas, D. C., Peterson, E., Winterrowd, E., Reite, M. L., Rogers, S. J., and Tregellas, J. R., Regional gray matter volumetric changes in autism associated with social and repetitive behavior symptoms. BMC Psychiatry 6(56), 2006.
18.
Zurück zum Zitat Boddaert, N., Chabane, N., Gervais, H., Good, C. D., Bourgeois, M., Plumet, M. H., Barthelemy, C., Mouren, M. C., Artiges, E., Samson, Y., Brunelle, F., Frackowiak, R. S. J., and Zilbovicius, M., Superior temporal sulcus anatomical abnormalities in childhood autism: a voxel-based morphometry MRI study. Neuroimage 23:364–369, 2004.CrossRef Boddaert, N., Chabane, N., Gervais, H., Good, C. D., Bourgeois, M., Plumet, M. H., Barthelemy, C., Mouren, M. C., Artiges, E., Samson, Y., Brunelle, F., Frackowiak, R. S. J., and Zilbovicius, M., Superior temporal sulcus anatomical abnormalities in childhood autism: a voxel-based morphometry MRI study. Neuroimage 23:364–369, 2004.CrossRef
20.
Zurück zum Zitat Herbert, M. R., Ziegler, D. A., Deutsch, C. K., O’Brien, L. M., Lange, N., Bakardjiev, A., Hodgson, J., Adrien, K. T., Steele, S., Makris, N., Kennedy, D., Harris, G. J., and Caviness, V. S., Jr., Dissociations of cerebral cortex, subcortical and cerebral white matter volumes in autistic boys. Brain 126:1182–1192, 2003.CrossRef Herbert, M. R., Ziegler, D. A., Deutsch, C. K., O’Brien, L. M., Lange, N., Bakardjiev, A., Hodgson, J., Adrien, K. T., Steele, S., Makris, N., Kennedy, D., Harris, G. J., and Caviness, V. S., Jr., Dissociations of cerebral cortex, subcortical and cerebral white matter volumes in autistic boys. Brain 126:1182–1192, 2003.CrossRef
21.
Zurück zum Zitat Waiter, G. D., Williams, J. H., Murray, A. D., Gilchrist, A., Perrett, D. I., and Whiten, A., Structural white matter deficits in high-functioning individuals with autistic spectrum disorder: A voxel-based investigation. Neuroimage 24(2):455–461, 2005.CrossRef Waiter, G. D., Williams, J. H., Murray, A. D., Gilchrist, A., Perrett, D. I., and Whiten, A., Structural white matter deficits in high-functioning individuals with autistic spectrum disorder: A voxel-based investigation. Neuroimage 24(2):455–461, 2005.CrossRef
22.
Zurück zum Zitat Barnea-Goraly, N., Kwon, H., Menon, V., Eliez, S., Lotspeich, L., and Reiss, A. L., White matter structure in autism: Preliminary evidence from diffusion tensor imaging. Biol. Psychiatry 55:323–328, 2004.CrossRef Barnea-Goraly, N., Kwon, H., Menon, V., Eliez, S., Lotspeich, L., and Reiss, A. L., White matter structure in autism: Preliminary evidence from diffusion tensor imaging. Biol. Psychiatry 55:323–328, 2004.CrossRef
23.
Zurück zum Zitat El-Baz, A., Casanova, M. F., Gimel’farb, G., Mott, M., and Switala, A. E., Autism Diagnostics by 3D Texture Analysis of Cerebral White Matter Gyrifications. Proc. of International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI’07), Brisbane, Australia 235–243, 2007. El-Baz, A., Casanova, M. F., Gimel’farb, G., Mott, M., and Switala, A. E., Autism Diagnostics by 3D Texture Analysis of Cerebral White Matter Gyrifications. Proc. of International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI’07), Brisbane, Australia 235–243, 2007.
24.
Zurück zum Zitat Egaas, B., Courchesne, E., and Saitoh, O., Reduced size of corpus callosum in autism. Arch. Neurol. 52(8):794–801, 1995.CrossRef Egaas, B., Courchesne, E., and Saitoh, O., Reduced size of corpus callosum in autism. Arch. Neurol. 52(8):794–801, 1995.CrossRef
25.
Zurück zum Zitat Piven, J., Bailey, J., Ranson, B. J., and Arndt, S., An MRI study of the corpus callosum in autism. Am. J. Psychiatry 154(8):1051–1056, 1997. Piven, J., Bailey, J., Ranson, B. J., and Arndt, S., An MRI study of the corpus callosum in autism. Am. J. Psychiatry 154(8):1051–1056, 1997.
26.
Zurück zum Zitat Manes, F., Piven, J., Vrancic, D., Nanclares, V., Plebst, C., and Starkstein, S., An MRI study of the corpus callosum and cerebellum in mentally retarded autistic individuals. J. Neuropsychiatry Clin. Neurosci. 11(4):470–474, 1999. Manes, F., Piven, J., Vrancic, D., Nanclares, V., Plebst, C., and Starkstein, S., An MRI study of the corpus callosum and cerebellum in mentally retarded autistic individuals. J. Neuropsychiatry Clin. Neurosci. 11(4):470–474, 1999.
27.
Zurück zum Zitat Hardan, A. Y., Minshew, N. J., and Keshavan, M. S., Corpus callosum size in autism. Neurology 55:1033–1036, 2000. Hardan, A. Y., Minshew, N. J., and Keshavan, M. S., Corpus callosum size in autism. Neurology 55:1033–1036, 2000.
28.
Zurück zum Zitat Chung, M. K., Dalton, K. M., Alexander, A. L., and Davidson, R. J., Less white matter concentration in autism: 2D voxel-based morphometry. Neuroimage 23:242–251, 2004.CrossRef Chung, M. K., Dalton, K. M., Alexander, A. L., and Davidson, R. J., Less white matter concentration in autism: 2D voxel-based morphometry. Neuroimage 23:242–251, 2004.CrossRef
29.
Zurück zum Zitat He, Q., Duan, Y., Miles, J., and Takahashi, N., Statistical Shape Analysis of the Corpus Callosum in Subtypes of Autism, Proc. 7th IEEE Int. Conf. BIBE 1087–1091, 2007. He, Q., Duan, Y., Miles, J., and Takahashi, N., Statistical Shape Analysis of the Corpus Callosum in Subtypes of Autism, Proc. 7th IEEE Int. Conf. BIBE 1087–1091, 2007.
30.
Zurück zum Zitat He, Q., Karsch, K., and Duan, Y., Abnormalities in MRI traits of Corpus Callosum in Autism Subtype. in Proc. 30th IEEE Int. Conf. of EMBS pp. 3900–3903, 2008. He, Q., Karsch, K., and Duan, Y., Abnormalities in MRI traits of Corpus Callosum in Autism Subtype. in Proc. 30th IEEE Int. Conf. of EMBS pp. 3900–3903, 2008.
31.
Zurück zum Zitat Vidal, C. N., Nicolson, R., DeVito, T. J., Hayashi, K. M., Geaga, J. A., Drost, D. J., Williamson, P. C., Rajakumar, N., Sui, Y., Dutton, R. A., Toga, A. W., and Thompson, P. M., Mapping corpus callosum deficits in autism: An index of aberrant cortical connectivity. Biol. Psychiatry 60(3):218–225, 2006.CrossRef Vidal, C. N., Nicolson, R., DeVito, T. J., Hayashi, K. M., Geaga, J. A., Drost, D. J., Williamson, P. C., Rajakumar, N., Sui, Y., Dutton, R. A., Toga, A. W., and Thompson, P. M., Mapping corpus callosum deficits in autism: An index of aberrant cortical connectivity. Biol. Psychiatry 60(3):218–225, 2006.CrossRef
32.
Zurück zum Zitat Schinzinger, R., Conformal Mapping: Methods and Applications, Courier Dover Publications, 2003. Schinzinger, R., Conformal Mapping: Methods and Applications, Courier Dover Publications, 2003.
33.
Zurück zum Zitat Wang, S., Wang, Y., Jin, M., Gu, X., and Samaras, D., Conformal geometry and its applications on 3D shape matching, recognition and stitching. IEEE Trans. Pattern Anal. Mach. Intell. 29(7):1029–1220, 2007.CrossRef Wang, S., Wang, Y., Jin, M., Gu, X., and Samaras, D., Conformal geometry and its applications on 3D shape matching, recognition and stitching. IEEE Trans. Pattern Anal. Mach. Intell. 29(7):1029–1220, 2007.CrossRef
34.
Zurück zum Zitat Hong, W., Gu, X., Qiu, F., Jin, M., and Kaufman, A., Conformal virtual colon flattening. Proc. ACM Symp. Solid and Physical Modeling, Wales, UK:85–93, 2006. Hong, W., Gu, X., Qiu, F., Jin, M., and Kaufman, A., Conformal virtual colon flattening. Proc. ACM Symp. Solid and Physical Modeling, Wales, UK:85–93, 2006.
35.
Zurück zum Zitat El-Baz, A., and Gimel’farb G., Image segmentation with a parametric deformable model using shape and appearance priors, Proc. IEEE Conf. Computer Vision and Pattern Recognition, Anchorage, AL, USA pp. 1–8, 2008. El-Baz, A., and Gimel’farb G., Image segmentation with a parametric deformable model using shape and appearance priors, Proc. IEEE Conf. Computer Vision and Pattern Recognition, Anchorage, AL, USA pp. 1–8, 2008.
36.
Zurück zum Zitat Farag, A., El-Baz, A., and Gimel’farb, G., Precise segmentation of multi-modal images. IEEE Trans. Image Process. 15(4):952–968, 2006.CrossRef Farag, A., El-Baz, A., and Gimel’farb, G., Precise segmentation of multi-modal images. IEEE Trans. Image Process. 15(4):952–968, 2006.CrossRef
37.
Zurück zum Zitat Gimel’farb, G., Image Textures and Gibbs Random Fields. Kluwer Academic, Dordrecht, 1999.CrossRefMATH Gimel’farb, G., Image Textures and Gibbs Random Fields. Kluwer Academic, Dordrecht, 1999.CrossRefMATH
38.
Zurück zum Zitat El-Baz, A., and Gimel’farb, G., EM based approximation of empirical distributions with linear combinations of discrete Gaussians. Proc. IEEE Int. Conference on Image Processing, San Antonio, Texas, USA 4:373–376, 2007. El-Baz, A., and Gimel’farb, G., EM based approximation of empirical distributions with linear combinations of discrete Gaussians. Proc. IEEE Int. Conference on Image Processing, San Antonio, Texas, USA 4:373–376, 2007.
39.
Zurück zum Zitat Viola, P., and Wells, W. M., Alignment by maximization of mutual information. Proc. 5th Int. Conference on Computer Vision16–23, 1995. Viola, P., and Wells, W. M., Alignment by maximization of mutual information. Proc. 5th Int. Conference on Computer Vision16–23, 1995.
40.
Zurück zum Zitat Cohen, L., and Kimmel, R., Global minimum for active contour models: A minimal path approach. Int. J. Comput. Vis. 24(1):57–78, 1997.CrossRef Cohen, L., and Kimmel, R., Global minimum for active contour models: A minimal path approach. Int. J. Comput. Vis. 24(1):57–78, 1997.CrossRef
41.
Zurück zum Zitat Adalsteinsson, D., and Sethian, J., A fast level set method for propagating interfaces. J. Comput. Phys. 118(2):269–277, 1995.CrossRefMATHMathSciNet Adalsteinsson, D., and Sethian, J., A fast level set method for propagating interfaces. J. Comput. Phys. 118(2):269–277, 1995.CrossRefMATHMathSciNet
42.
Zurück zum Zitat Hassouna, M., and Farag, A., Robust Centerline Extraction Framework Using Level Sets, Proc. of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Diego, CA, USA 458–465, 2005. Hassouna, M., and Farag, A., Robust Centerline Extraction Framework Using Level Sets, Proc. of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Diego, CA, USA 458–465, 2005.
43.
Zurück zum Zitat Tsai, A., Yezzi, A., Wells, W., Tempany, C., Tucker, D., Fan, A., Grimson, W. E., and Willsky, A., A shape based approach to the segmentation of medical imagery using level sets. IEEE Trans. Med. Imaging 22:137–154, 2003.CrossRef Tsai, A., Yezzi, A., Wells, W., Tempany, C., Tucker, D., Fan, A., Grimson, W. E., and Willsky, A., A shape based approach to the segmentation of medical imagery using level sets. IEEE Trans. Med. Imaging 22:137–154, 2003.CrossRef
44.
Zurück zum Zitat Cootes, T., and Taylor, C., A mixture model for representing shape variation. Image Vis. Comput. 17(8):567–574, 1999.CrossRef Cootes, T., and Taylor, C., A mixture model for representing shape variation. Image Vis. Comput. 17(8):567–574, 1999.CrossRef
45.
Zurück zum Zitat Frazier, T. W., and Harden, Y. H., A meta-analysis of the corpus callosum in Autism. Biol. Psychiatry 66(10):935–941, 2009. Nov 15.CrossRef Frazier, T. W., and Harden, Y. H., A meta-analysis of the corpus callosum in Autism. Biol. Psychiatry 66(10):935–941, 2009. Nov 15.CrossRef
46.
Zurück zum Zitat Just, M. A., Cherkassky, V. L., Keller, T. A., Kana, R. K., and Minshew, N. J., Functional and anatomical cortical underconnectivity in autism: Evidence from an fMRI study of an executive function task and corpus callosum morphometry. Cereb. Cortex 17:951–961, 2007.CrossRef Just, M. A., Cherkassky, V. L., Keller, T. A., Kana, R. K., and Minshew, N. J., Functional and anatomical cortical underconnectivity in autism: Evidence from an fMRI study of an executive function task and corpus callosum morphometry. Cereb. Cortex 17:951–961, 2007.CrossRef
47.
Zurück zum Zitat Boger-Megiddo, I., Shaw, D. W., Friedman, S. D., Sparks, B. F., Artru, A. A., Giedd, J. N., Dawson, G., and Dager, S. R., Corpus callosum morphometrics in young children with autism spectrum disorder. J. Autism Dev. Disord. 36:733–739, 2006.CrossRef Boger-Megiddo, I., Shaw, D. W., Friedman, S. D., Sparks, B. F., Artru, A. A., Giedd, J. N., Dawson, G., and Dager, S. R., Corpus callosum morphometrics in young children with autism spectrum disorder. J. Autism Dev. Disord. 36:733–739, 2006.CrossRef
48.
Zurück zum Zitat Rice, S. A., Bigler, E. D., Cleavinger, H. B., Tate, J., Sayer, D. F., McMahon, W., Ozonoff, S., Lu, J., and Lainhart, J. E., Macrocephaly, corpus callosum morphology, and autism. J. Child Neurol. 20:34–41, 2005.CrossRef Rice, S. A., Bigler, E. D., Cleavinger, H. B., Tate, J., Sayer, D. F., McMahon, W., Ozonoff, S., Lu, J., and Lainhart, J. E., Macrocephaly, corpus callosum morphology, and autism. J. Child Neurol. 20:34–41, 2005.CrossRef
49.
Zurück zum Zitat Elia, M., Ferri, R., Musumeci, S. A., Panerai, S., Bottitta, M., and Scuderi, C., Clinical correlates of brain morphometric features of subjects with low-functioning autistic disorder. J. Child Neurol. 15:504–508, 2000.CrossRef Elia, M., Ferri, R., Musumeci, S. A., Panerai, S., Bottitta, M., and Scuderi, C., Clinical correlates of brain morphometric features of subjects with low-functioning autistic disorder. J. Child Neurol. 15:504–508, 2000.CrossRef
50.
Zurück zum Zitat Gaffney, G. R., Kuperman, S., Tsai, L. Y., Minchin, S., and Hassanein, K. M., Midsaggital magnetic resonance imaging of autism. Br. J. Psychiatry 151:831–833, 1987.CrossRef Gaffney, G. R., Kuperman, S., Tsai, L. Y., Minchin, S., and Hassanein, K. M., Midsaggital magnetic resonance imaging of autism. Br. J. Psychiatry 151:831–833, 1987.CrossRef
Metadaten
Titel
Accurate Automated Detection of Autism Related Corpus Callosum Abnormalities
verfasst von
Ayman El-Baz
Ahmed Elnakib
Manuel F. Casanova
Georgy Gimel’farb
Andrew E. Switala
Desha Jordan
Sabrina Rainey
Publikationsdatum
01.10.2011
Verlag
Springer US
Erschienen in
Journal of Medical Systems / Ausgabe 5/2011
Print ISSN: 0148-5598
Elektronische ISSN: 1573-689X
DOI
https://doi.org/10.1007/s10916-010-9510-3

Weitere Artikel der Ausgabe 5/2011

Journal of Medical Systems 5/2011 Zur Ausgabe