Skip to main content
Erschienen in: Current Hypertension Reports 6/2015

01.06.2015 | Hypertension and the Kidney (RM Carey, Section Editor)

Activation of Mineralocorticoid Receptor in Salt-Sensitive Hypertension

verfasst von: Nobuhiro Ayuzawa, Toshiro Fujita

Erschienen in: Current Hypertension Reports | Ausgabe 6/2015

Einloggen, um Zugang zu erhalten

Abstract

The impaired capacity of the kidney to excrete sodium plays an essential role in the development of hypertension. Adrenal corticosteroids control renal handling of sodium by regulating tubular sodium reabsorption in the distal nephron where both mineralocorticoid receptors (MR) and glucocorticoid receptors are expressed. In addition, cell type- and segment-specific expression of 11β-HSD2 and sodium transporters such as Na–Cl cotransporter (NCC), epithelial sodium channel (ENaC), and pendrin/Na+-driven Cl/HCO3 exchanger (NDCBE) builds a distinctive model of sodium transport in the aldosterone-sensitive distal nephron. Aberrant MR activation in the distal nephron triggers salt-sensitive hypertension and hypokalemia through inappropriate sodium reabsorption and potassium secretion. However, MR activity is not necessarily modulated by the ligand alone. Recently, several lines of evidence revealed alternative mechanisms that regulate the activity of MR in a ligand-independent manner or through ligand binding modulation. This review summarizes the disorders related to MR activation in individual tubular cells and highlights the renal mechanism of salt-sensitive hypertension and new approaches for the prevention and treatment of this disease.
Literatur
1.
Zurück zum Zitat Lawes CM, Vander Hoorn S, Rodgers A, et al. Global burden of blood-pressure-related disease, 2001. Lancet. 2008;371:1513–8.PubMedCrossRef Lawes CM, Vander Hoorn S, Rodgers A, et al. Global burden of blood-pressure-related disease, 2001. Lancet. 2008;371:1513–8.PubMedCrossRef
2.
Zurück zum Zitat Gu Q, Burt VL, Dillon CF, et al. Trends in antihypertensive medication use and blood pressure control among United States adults with hypertension: the National Health and Nutrition Examination Survey, 2001 to 2010. Circulation. 2012;126:2105–14.PubMedCrossRef Gu Q, Burt VL, Dillon CF, et al. Trends in antihypertensive medication use and blood pressure control among United States adults with hypertension: the National Health and Nutrition Examination Survey, 2001 to 2010. Circulation. 2012;126:2105–14.PubMedCrossRef
3.
Zurück zum Zitat Luft FC, Weinberger MH. Heterogeneous responses to changes in dietary salt intake: the salt-sensitivity paradigm. Am J Clin Nutr. 1997;65:612S–7.PubMed Luft FC, Weinberger MH. Heterogeneous responses to changes in dietary salt intake: the salt-sensitivity paradigm. Am J Clin Nutr. 1997;65:612S–7.PubMed
4.
Zurück zum Zitat Fujita T, Henry WL, Bartter FC, et al. Factors influencing blood pressure in salt-sensitive patients with hypertension. Am J Med. 1980;69:334–44.PubMedCrossRef Fujita T, Henry WL, Bartter FC, et al. Factors influencing blood pressure in salt-sensitive patients with hypertension. Am J Med. 1980;69:334–44.PubMedCrossRef
5.
Zurück zum Zitat Guyton AC. The surprising kidney-fluid mechanism for pressure control—its infinite gain! Hypertension. 1990;16:725–30.PubMedCrossRef Guyton AC. The surprising kidney-fluid mechanism for pressure control—its infinite gain! Hypertension. 1990;16:725–30.PubMedCrossRef
6.
Zurück zum Zitat Hall JE, Mizelle HL, Hildebrandt DA, et al. Abnormal pressure natriuresis. A cause or a consequence of hypertension? Hypertension. 1990;15:547–59.PubMedCrossRef Hall JE, Mizelle HL, Hildebrandt DA, et al. Abnormal pressure natriuresis. A cause or a consequence of hypertension? Hypertension. 1990;15:547–59.PubMedCrossRef
7.
Zurück zum Zitat Coffman TM. Under pressure: the search for the essential mechanisms of hypertension. Nat Med. 2011;17:1402–9.PubMedCrossRef Coffman TM. Under pressure: the search for the essential mechanisms of hypertension. Nat Med. 2011;17:1402–9.PubMedCrossRef
8.
Zurück zum Zitat Reilly RF, Ellison DH. Mammalian distal tubule: physiology, pathophysiology, and molecular anatomy. Physiol Rev. 2000;80:277–313.PubMed Reilly RF, Ellison DH. Mammalian distal tubule: physiology, pathophysiology, and molecular anatomy. Physiol Rev. 2000;80:277–313.PubMed
9.
Zurück zum Zitat Rossier BC, Staub OHummler E. Genetic dissection of sodium and potassium transport along the aldosterone-sensitive distal nephron: importance in the control of blood pressure and hypertension. FEBS Lett. 2013;587:1929–41.PubMedCrossRef Rossier BC, Staub OHummler E. Genetic dissection of sodium and potassium transport along the aldosterone-sensitive distal nephron: importance in the control of blood pressure and hypertension. FEBS Lett. 2013;587:1929–41.PubMedCrossRef
10.
Zurück zum Zitat Albiston AL, Obeyesekere VR, Smith RE, et al. Cloning and tissue distribution of the human 11 beta-hydroxysteroid dehydrogenase type 2 enzyme. Mol Cell Endocrinol. 1994;105:R11–7.PubMedCrossRef Albiston AL, Obeyesekere VR, Smith RE, et al. Cloning and tissue distribution of the human 11 beta-hydroxysteroid dehydrogenase type 2 enzyme. Mol Cell Endocrinol. 1994;105:R11–7.PubMedCrossRef
11.
Zurück zum Zitat Kyossev Z, Walker PD Reeves WB. Immunolocalization of NAD-dependent 11 beta-hydroxysteroid dehydrogenase in human kidney and colon. Kidney Int. 1996;49:271–81.PubMedCrossRef Kyossev Z, Walker PD Reeves WB. Immunolocalization of NAD-dependent 11 beta-hydroxysteroid dehydrogenase in human kidney and colon. Kidney Int. 1996;49:271–81.PubMedCrossRef
12.
Zurück zum Zitat Campean V, Kricke J, Ellison D, et al. Localization of thiazide-sensitive Na(+)-Cl(-) cotransport and associated gene products in mouse DCT. Am J Physiol Renal Physiol. 2001;281:F1028–35.PubMedCrossRef Campean V, Kricke J, Ellison D, et al. Localization of thiazide-sensitive Na(+)-Cl(-) cotransport and associated gene products in mouse DCT. Am J Physiol Renal Physiol. 2001;281:F1028–35.PubMedCrossRef
13.
Zurück zum Zitat Rozansky DJ, Cornwall T, Subramanya AR, et al. Aldosterone mediates activation of the thiazide-sensitive Na-Cl cotransporter through an SGK1 and WNK4 signaling pathway. J Clin Invest. 2009;119:2601–12.PubMedCentralPubMedCrossRef Rozansky DJ, Cornwall T, Subramanya AR, et al. Aldosterone mediates activation of the thiazide-sensitive Na-Cl cotransporter through an SGK1 and WNK4 signaling pathway. J Clin Invest. 2009;119:2601–12.PubMedCentralPubMedCrossRef
14.
Zurück zum Zitat Faresse N, Lagnaz D, Debonneville A, et al. Inducible kidney-specific Sgk1 knockout mice show a salt-losing phenotype. Am J Physiol Renal Physiol. 2012;302:F977–85.PubMedCrossRef Faresse N, Lagnaz D, Debonneville A, et al. Inducible kidney-specific Sgk1 knockout mice show a salt-losing phenotype. Am J Physiol Renal Physiol. 2012;302:F977–85.PubMedCrossRef
15.
Zurück zum Zitat Shi PP, Cao XR, Sweezer EM, et al. Salt-sensitive hypertension and cardiac hypertrophy in mice deficient in the ubiquitin ligase Nedd4-2. Am J Physiol Renal Physiol. 2008;295:F462–70.PubMedCentralPubMedCrossRef Shi PP, Cao XR, Sweezer EM, et al. Salt-sensitive hypertension and cardiac hypertrophy in mice deficient in the ubiquitin ligase Nedd4-2. Am J Physiol Renal Physiol. 2008;295:F462–70.PubMedCentralPubMedCrossRef
16.
Zurück zum Zitat Ronzaud C, Loffing-Cueni D, Hausel P, et al. Renal tubular NEDD4-2 deficiency causes NCC-mediated salt-dependent hypertension. J Clin Invest. 2013;123:657–65.PubMedCentralPubMed Ronzaud C, Loffing-Cueni D, Hausel P, et al. Renal tubular NEDD4-2 deficiency causes NCC-mediated salt-dependent hypertension. J Clin Invest. 2013;123:657–65.PubMedCentralPubMed
17.
Zurück zum Zitat Ko B, Mistry AC, Hanson L, et al. Aldosterone acutely stimulates NCC activity via a SPAK-mediated pathway. Am J Physiol Renal Physiol. 2013;305:F645–52.PubMedCentralPubMedCrossRef Ko B, Mistry AC, Hanson L, et al. Aldosterone acutely stimulates NCC activity via a SPAK-mediated pathway. Am J Physiol Renal Physiol. 2013;305:F645–52.PubMedCentralPubMedCrossRef
18.
19.
Zurück zum Zitat Mu S, Shimosawa T, Ogura S, et al. Epigenetic modulation of the renal beta-adrenergic-WNK4 pathway in salt-sensitive hypertension. Nat Med. 2011;17:573–80.PubMedCrossRef Mu S, Shimosawa T, Ogura S, et al. Epigenetic modulation of the renal beta-adrenergic-WNK4 pathway in salt-sensitive hypertension. Nat Med. 2011;17:573–80.PubMedCrossRef
20.
Zurück zum Zitat Williams GH, Burgess E, Kolloch RE, et al. Efficacy of eplerenone versus enalapril as monotherapy in systemic hypertension. Am J Cardiol. 2004;93:990–6.PubMedCrossRef Williams GH, Burgess E, Kolloch RE, et al. Efficacy of eplerenone versus enalapril as monotherapy in systemic hypertension. Am J Cardiol. 2004;93:990–6.PubMedCrossRef
21.
Zurück zum Zitat Pitt B, Zannad F, Remme WJ, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med. 1999;341:709–17.PubMedCrossRef Pitt B, Zannad F, Remme WJ, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med. 1999;341:709–17.PubMedCrossRef
22.
Zurück zum Zitat Pitt B, Remme W, Zannad F, et al. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med. 2003;348:1309–21.PubMedCrossRef Pitt B, Remme W, Zannad F, et al. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med. 2003;348:1309–21.PubMedCrossRef
23.
Zurück zum Zitat Zannad F, McMurray JJ, Krum H, et al. Eplerenone in patients with systolic heart failure and mild symptoms. N Engl J Med. 2011;364:11–21.PubMedCrossRef Zannad F, McMurray JJ, Krum H, et al. Eplerenone in patients with systolic heart failure and mild symptoms. N Engl J Med. 2011;364:11–21.PubMedCrossRef
24.
Zurück zum Zitat Brilla CG, Pick R, Tan LB, et al. Remodeling of the rat right and left ventricles in experimental hypertension. Circ Res. 1990;67:1355–64.PubMedCrossRef Brilla CG, Pick R, Tan LB, et al. Remodeling of the rat right and left ventricles in experimental hypertension. Circ Res. 1990;67:1355–64.PubMedCrossRef
25.
Zurück zum Zitat Brilla CG, Matsubara LSWeber KT. Anti-aldosterone treatment and the prevention of myocardial fibrosis in primary and secondary hyperaldosteronism. J Mol Cell Cardiol. 1993;25:563–75.PubMedCrossRef Brilla CG, Matsubara LSWeber KT. Anti-aldosterone treatment and the prevention of myocardial fibrosis in primary and secondary hyperaldosteronism. J Mol Cell Cardiol. 1993;25:563–75.PubMedCrossRef
27.
Zurück zum Zitat Blasi ER, Rocha R, Rudolph AE, et al. Aldosterone/salt induces renal inflammation and fibrosis in hypertensive rats. Kidney Int. 2003;63:1791–800.PubMedCrossRef Blasi ER, Rocha R, Rudolph AE, et al. Aldosterone/salt induces renal inflammation and fibrosis in hypertensive rats. Kidney Int. 2003;63:1791–800.PubMedCrossRef
28.
Zurück zum Zitat Bochud M, Nussberger J, Bovet P, et al. Plasma aldosterone is independently associated with the metabolic syndrome. Hypertension. 2006;48:239–45.PubMedCrossRef Bochud M, Nussberger J, Bovet P, et al. Plasma aldosterone is independently associated with the metabolic syndrome. Hypertension. 2006;48:239–45.PubMedCrossRef
29.
Zurück zum Zitat Kidambi S, Kotchen JM, Grim CE, et al. Association of adrenal steroids with hypertension and the metabolic syndrome in blacks. Hypertension. 2007;49:704–11.PubMedCrossRef Kidambi S, Kotchen JM, Grim CE, et al. Association of adrenal steroids with hypertension and the metabolic syndrome in blacks. Hypertension. 2007;49:704–11.PubMedCrossRef
30.
Zurück zum Zitat Rocchini AP, Key J, Bondie D, et al. The effect of weight loss on the sensitivity of blood pressure to sodium in obese adolescents. N Engl J Med. 1989;321:580–5.PubMedCrossRef Rocchini AP, Key J, Bondie D, et al. The effect of weight loss on the sensitivity of blood pressure to sodium in obese adolescents. N Engl J Med. 1989;321:580–5.PubMedCrossRef
31.
Zurück zum Zitat Nagase M, Yoshida S, Shibata S, et al. Enhanced aldosterone signaling in the early nephropathy of rats with metabolic syndrome: possible contribution of fat-derived factors. J Am Soc Nephrol. 2006;17:3438–46.PubMedCrossRef Nagase M, Yoshida S, Shibata S, et al. Enhanced aldosterone signaling in the early nephropathy of rats with metabolic syndrome: possible contribution of fat-derived factors. J Am Soc Nephrol. 2006;17:3438–46.PubMedCrossRef
32.
Zurück zum Zitat Nagase M, Matsui H, Shibata S, et al. Salt-induced nephropathy in obese spontaneously hypertensive rats via paradoxical activation of the mineralocorticoid receptor: role of oxidative stress. Hypertension. 2007;50:877–83.PubMedCrossRef Nagase M, Matsui H, Shibata S, et al. Salt-induced nephropathy in obese spontaneously hypertensive rats via paradoxical activation of the mineralocorticoid receptor: role of oxidative stress. Hypertension. 2007;50:877–83.PubMedCrossRef
33.
Zurück zum Zitat de Paula RB, da Silva AAHall JE. Aldosterone antagonism attenuates obesity-induced hypertension and glomerular hyperfiltration. Hypertension. 2004;43:41–7.PubMedCrossRef de Paula RB, da Silva AAHall JE. Aldosterone antagonism attenuates obesity-induced hypertension and glomerular hyperfiltration. Hypertension. 2004;43:41–7.PubMedCrossRef
34.
Zurück zum Zitat Shibata S, Mu S, Kawarazaki H, et al. PMC3148723; Rac1 GTPase in rodent kidneys is essential for salt-sensitive hypertension via a mineralocorticoid receptor-dependent pathway. J Clin Invest. 2011;121:3233–43.PubMedCentralPubMedCrossRef Shibata S, Mu S, Kawarazaki H, et al. PMC3148723; Rac1 GTPase in rodent kidneys is essential for salt-sensitive hypertension via a mineralocorticoid receptor-dependent pathway. J Clin Invest. 2011;121:3233–43.PubMedCentralPubMedCrossRef
35.
Zurück zum Zitat Farjah M, Roxas BP, Geenen DL, et al. Dietary salt regulates renal SGK1 abundance: relevance to salt sensitivity in the Dahl rat. Hypertension. 2003;41:874–8.PubMedCrossRef Farjah M, Roxas BP, Geenen DL, et al. Dietary salt regulates renal SGK1 abundance: relevance to salt sensitivity in the Dahl rat. Hypertension. 2003;41:874–8.PubMedCrossRef
36.
Zurück zum Zitat Aoi W, Niisato N, Sawabe Y, et al. Aldosterone-induced abnormal regulation of ENaC and SGK1 in Dahl salt-sensitive rat. Biochem Biophys Res Commun. 2006;341:376–81.PubMedCrossRef Aoi W, Niisato N, Sawabe Y, et al. Aldosterone-induced abnormal regulation of ENaC and SGK1 in Dahl salt-sensitive rat. Biochem Biophys Res Commun. 2006;341:376–81.PubMedCrossRef
37.
Zurück zum Zitat Luther JM, Luo P, Wang Z, et al. PMC3434275; Aldosterone deficiency and mineralocorticoid receptor antagonism prevent angiotensin II-induced cardiac, renal, and vascular injury. Kidney Int. 2012. Luther JM, Luo P, Wang Z, et al. PMC3434275; Aldosterone deficiency and mineralocorticoid receptor antagonism prevent angiotensin II-induced cardiac, renal, and vascular injury. Kidney Int. 2012.
38.
Zurück zum Zitat Mihailidou AS, Le Loan TY, Mardini M, et al. Glucocorticoids activate cardiac mineralocorticoid receptors during experimental myocardial infarction. Hypertension. 2009;54:1306–12.PubMedCrossRef Mihailidou AS, Le Loan TY, Mardini M, et al. Glucocorticoids activate cardiac mineralocorticoid receptors during experimental myocardial infarction. Hypertension. 2009;54:1306–12.PubMedCrossRef
39.
Zurück zum Zitat Funder JW. Minireview: aldosterone and mineralocorticoid receptors: past, present, and future. Endocrinology. 2010;151:5098–102.PubMedCrossRef Funder JW. Minireview: aldosterone and mineralocorticoid receptors: past, present, and future. Endocrinology. 2010;151:5098–102.PubMedCrossRef
40.
Zurück zum Zitat Massaad C, Houard N, Lombes M, et al. Modulation of human mineralocorticoid receptor function by protein kinase A. Mol Endocrinol. 1999;13:57–65.PubMedCrossRef Massaad C, Houard N, Lombes M, et al. Modulation of human mineralocorticoid receptor function by protein kinase A. Mol Endocrinol. 1999;13:57–65.PubMedCrossRef
41.
Zurück zum Zitat Yokota K, Shibata H, Kurihara I, et al. Coactivation of the N-terminal transactivation of mineralocorticoid receptor by Ubc9. J Biol Chem. 2007;282:1998–2010.PubMedCrossRef Yokota K, Shibata H, Kurihara I, et al. Coactivation of the N-terminal transactivation of mineralocorticoid receptor by Ubc9. J Biol Chem. 2007;282:1998–2010.PubMedCrossRef
42.
Zurück zum Zitat Shibata S, Nagase M, Yoshida S, et al. Modification of mineralocorticoid receptor function by Rac1 GTPase: implication in proteinuric kidney disease. Nat Med. 2008;14:1370–6.PubMedCrossRef Shibata S, Nagase M, Yoshida S, et al. Modification of mineralocorticoid receptor function by Rac1 GTPase: implication in proteinuric kidney disease. Nat Med. 2008;14:1370–6.PubMedCrossRef
43.
Zurück zum Zitat Pavlov TS, Levchenko VStaruschenko A. Role of Rho GDP dissociation inhibitor alpha in control of epithelial sodium channel (ENaC)-mediated sodium reabsorption. J Biol Chem. 2014;289:28651–9.PubMedCrossRef Pavlov TS, Levchenko VStaruschenko A. Role of Rho GDP dissociation inhibitor alpha in control of epithelial sodium channel (ENaC)-mediated sodium reabsorption. J Biol Chem. 2014;289:28651–9.PubMedCrossRef
44.
Zurück zum Zitat Tapia-Castillo A, Carvajal CA, Campino C, et al. Polymorphisms in the RAC1 gene are associated with hypertension risk factors in a Chilean pediatric population. Am J Hypertens. 2014;27:299–307.PubMedCrossRef Tapia-Castillo A, Carvajal CA, Campino C, et al. Polymorphisms in the RAC1 gene are associated with hypertension risk factors in a Chilean pediatric population. Am J Hypertens. 2014;27:299–307.PubMedCrossRef
45.
Zurück zum Zitat Akilesh S, Suleiman H, Yu H, et al. Arhgap24 inactivates Rac1 in mouse podocytes, and a mutant form is associated with familial focal segmental glomerulosclerosis. J Clin Invest. 2011;121:4127–37.PubMedCentralPubMedCrossRef Akilesh S, Suleiman H, Yu H, et al. Arhgap24 inactivates Rac1 in mouse podocytes, and a mutant form is associated with familial focal segmental glomerulosclerosis. J Clin Invest. 2011;121:4127–37.PubMedCentralPubMedCrossRef
47.
Zurück zum Zitat Gee HY, Saisawat P, Ashraf S, et al. ARHGDIA mutations cause nephrotic syndrome via defective RHO GTPase signaling. J Clin Invest. 2013;123:3243–53.PubMedCentralPubMedCrossRef Gee HY, Saisawat P, Ashraf S, et al. ARHGDIA mutations cause nephrotic syndrome via defective RHO GTPase signaling. J Clin Invest. 2013;123:3243–53.PubMedCentralPubMedCrossRef
48.•
Zurück zum Zitat Kawarazaki W, Nagase M, Yoshida S, et al. PMC3358757; angiotensin II- and salt-induced kidney injury through Rac1-mediated mineralocorticoid receptor activation. J Am Soc Nephrol. 2012;23:997–1007. This report demonstrated that salt-induced hypertension and renal injury in renin and angiotensinogen-overproducing transgenic mice is mediated by Rac1-mediated MR activation in the kidney.PubMedCentralPubMedCrossRef Kawarazaki W, Nagase M, Yoshida S, et al. PMC3358757; angiotensin II- and salt-induced kidney injury through Rac1-mediated mineralocorticoid receptor activation. J Am Soc Nephrol. 2012;23:997–1007. This report demonstrated that salt-induced hypertension and renal injury in renin and angiotensinogen-overproducing transgenic mice is mediated by Rac1-mediated MR activation in the kidney.PubMedCentralPubMedCrossRef
49.
Zurück zum Zitat Kobori H, Nishiyama A, Abe Y, et al. Enhancement of intrarenal angiotensinogen in Dahl salt-sensitive rats on high salt diet. Hypertension. 2003;41:592–7.PubMedCentralPubMedCrossRef Kobori H, Nishiyama A, Abe Y, et al. Enhancement of intrarenal angiotensinogen in Dahl salt-sensitive rats on high salt diet. Hypertension. 2003;41:592–7.PubMedCentralPubMedCrossRef
50.
Zurück zum Zitat Kobori H, Nangaku M, Navar LG, et al. The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacol Rev. 2007;59:251–87.PubMedCrossRef Kobori H, Nangaku M, Navar LG, et al. The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacol Rev. 2007;59:251–87.PubMedCrossRef
51.
Zurück zum Zitat Terada Y, Knepper MA. Thiazide-sensitive NaCl absorption in rat cortical collecting duct. Am J Physiol. 1990;259:F519–28.PubMed Terada Y, Knepper MA. Thiazide-sensitive NaCl absorption in rat cortical collecting duct. Am J Physiol. 1990;259:F519–28.PubMed
52.
Zurück zum Zitat Tomita K, Pisano JJ, Burg MB, et al. Effects of vasopressin and bradykinin on anion transport by the rat cortical collecting duct. Evidence for an electroneutral sodium chloride transport pathway. J Clin Invest. 1986;77:136–41.PubMedCentralPubMedCrossRef Tomita K, Pisano JJ, Burg MB, et al. Effects of vasopressin and bradykinin on anion transport by the rat cortical collecting duct. Evidence for an electroneutral sodium chloride transport pathway. J Clin Invest. 1986;77:136–41.PubMedCentralPubMedCrossRef
53.
Zurück zum Zitat Tomita K, Pisano JJ, Knepper MA. Control of sodium and potassium transport in the cortical collecting duct of the rat. Effects of bradykinin, vasopressin, and deoxycorticosterone. J Clin Invest. 1985;76:132–6.PubMedCentralPubMedCrossRef Tomita K, Pisano JJ, Knepper MA. Control of sodium and potassium transport in the cortical collecting duct of the rat. Effects of bradykinin, vasopressin, and deoxycorticosterone. J Clin Invest. 1985;76:132–6.PubMedCentralPubMedCrossRef
54.
Zurück zum Zitat Leviel F, Hubner CA, Houillier P, et al. The Na+-dependent chloride-bicarbonate exchanger SLC4A8 mediates an electroneutral Na+ reabsorption process in the renal cortical collecting ducts of mice. J Clin Invest. 2010;120:1627–35.PubMedCentralPubMedCrossRef Leviel F, Hubner CA, Houillier P, et al. The Na+-dependent chloride-bicarbonate exchanger SLC4A8 mediates an electroneutral Na+ reabsorption process in the renal cortical collecting ducts of mice. J Clin Invest. 2010;120:1627–35.PubMedCentralPubMedCrossRef
55.
Zurück zum Zitat Jacques T, Picard N, Miller RL, et al. Overexpression of pendrin in intercalated cells produces chloride-sensitive hypertension. J Am Soc Nephrol. 2013;24:1104–13.PubMedCentralPubMedCrossRef Jacques T, Picard N, Miller RL, et al. Overexpression of pendrin in intercalated cells produces chloride-sensitive hypertension. J Am Soc Nephrol. 2013;24:1104–13.PubMedCentralPubMedCrossRef
56.
Zurück zum Zitat Chambrey R, Kurth I, Peti-Peterdi J, et al. Renal intercalated cells are rather energized by a proton than a sodium pump. Proc Natl Acad Sci U S A. 2013;110:7928–33.PubMedCentralPubMedCrossRef Chambrey R, Kurth I, Peti-Peterdi J, et al. Renal intercalated cells are rather energized by a proton than a sodium pump. Proc Natl Acad Sci U S A. 2013;110:7928–33.PubMedCentralPubMedCrossRef
57.
Zurück zum Zitat Smith AN, Skaug J, Choate KA, et al. Mutations in ATP6N1B, encoding a new kidney vacuolar proton pump 116-kD subunit, cause recessive distal renal tubular acidosis with preserved hearing. Nat Genet. 2000;26:71–5.PubMedCrossRef Smith AN, Skaug J, Choate KA, et al. Mutations in ATP6N1B, encoding a new kidney vacuolar proton pump 116-kD subunit, cause recessive distal renal tubular acidosis with preserved hearing. Nat Genet. 2000;26:71–5.PubMedCrossRef
58.
Zurück zum Zitat Gueutin V, Vallet M, Jayat M, et al. Renal beta-intercalated cells maintain body fluid and electrolyte balance. J Clin Invest. 2013;123:4219–31.PubMedCentralPubMedCrossRef Gueutin V, Vallet M, Jayat M, et al. Renal beta-intercalated cells maintain body fluid and electrolyte balance. J Clin Invest. 2013;123:4219–31.PubMedCentralPubMedCrossRef
59.
Zurück zum Zitat Sebastian A, McSherry EMorris Jr RC. Renal potassium wasting in renal tubular acidosis (RTA): its occurrence in types 1 and 2 RTA despite sustained correction of systemic acidosis. J Clin Invest. 1971;50:667–78.PubMedCentralPubMedCrossRef Sebastian A, McSherry EMorris Jr RC. Renal potassium wasting in renal tubular acidosis (RTA): its occurrence in types 1 and 2 RTA despite sustained correction of systemic acidosis. J Clin Invest. 1971;50:667–78.PubMedCentralPubMedCrossRef
60.
Zurück zum Zitat Sebastian A, McSherry EMorris Jr RC. Impaired renal conservation of sodium and chloride during sustained correction of systemic acidosis in patients with type 1, classic renal tubular acidosis. J Clin Invest. 1976;58:454–69.PubMedCentralPubMedCrossRef Sebastian A, McSherry EMorris Jr RC. Impaired renal conservation of sodium and chloride during sustained correction of systemic acidosis in patients with type 1, classic renal tubular acidosis. J Clin Invest. 1976;58:454–69.PubMedCentralPubMedCrossRef
61.
Zurück zum Zitat Frische S, Kwon TH, Frokiaer J, et al. Regulated expression of pendrin in rat kidney in response to chronic NH4Cl or NaHCO3 loading. Am J Physiol Renal Physiol. 2003;284:F584–93.PubMedCrossRef Frische S, Kwon TH, Frokiaer J, et al. Regulated expression of pendrin in rat kidney in response to chronic NH4Cl or NaHCO3 loading. Am J Physiol Renal Physiol. 2003;284:F584–93.PubMedCrossRef
63.
Zurück zum Zitat Kurtz TW, Al-Bander HA, Morris Jr RC. “Salt-sensitive” essential hypertension in men. Is the sodium ion alone important? N Engl J Med. 1987;317:1043–8.PubMedCrossRef Kurtz TW, Al-Bander HA, Morris Jr RC. “Salt-sensitive” essential hypertension in men. Is the sodium ion alone important? N Engl J Med. 1987;317:1043–8.PubMedCrossRef
64.
Zurück zum Zitat Kurtz TW, Morris Jr RC. Dietary chloride as a determinant of “sodium-dependent” hypertension. Science. 1983;222:1139–41.PubMedCrossRef Kurtz TW, Morris Jr RC. Dietary chloride as a determinant of “sodium-dependent” hypertension. Science. 1983;222:1139–41.PubMedCrossRef
65.
Zurück zum Zitat Schmidlin O, Tanaka M, Bollen AW, et al. Chloride-dominant salt sensitivity in the stroke-prone spontaneously hypertensive rat. Hypertension. 2005;45:867–73.PubMedCrossRef Schmidlin O, Tanaka M, Bollen AW, et al. Chloride-dominant salt sensitivity in the stroke-prone spontaneously hypertensive rat. Hypertension. 2005;45:867–73.PubMedCrossRef
66.
Zurück zum Zitat Tanaka M, Schmidlin O, Yi SL, et al. Genetically determined chloride-sensitive hypertension and stroke. Proc Natl Acad Sci U S A. 1997;94:14748–52.PubMedCentralPubMedCrossRef Tanaka M, Schmidlin O, Yi SL, et al. Genetically determined chloride-sensitive hypertension and stroke. Proc Natl Acad Sci U S A. 1997;94:14748–52.PubMedCentralPubMedCrossRef
67.
Zurück zum Zitat Whitescarver SA, Ott CE, Jackson BA, et al. Salt-sensitive hypertension: contribution of chloride. Science. 1984;223:1430–2.PubMedCrossRef Whitescarver SA, Ott CE, Jackson BA, et al. Salt-sensitive hypertension: contribution of chloride. Science. 1984;223:1430–2.PubMedCrossRef
68.
Zurück zum Zitat Ponce-Coria J, San-Cristobal P, Kahle KT, et al. Regulation of NKCC2 by a chloride-sensing mechanism involving the WNK3 and SPAK kinases. Proc Natl Acad Sci U S A. 2008;105:8458–63.PubMedCentralPubMedCrossRef Ponce-Coria J, San-Cristobal P, Kahle KT, et al. Regulation of NKCC2 by a chloride-sensing mechanism involving the WNK3 and SPAK kinases. Proc Natl Acad Sci U S A. 2008;105:8458–63.PubMedCentralPubMedCrossRef
69.
Zurück zum Zitat Pacheco-Alvarez D, Gamba G. WNK3 is a putative chloride-sensing kinase. Cell Physiol Biochem. 2011;28:1123–34.PubMedCrossRef Pacheco-Alvarez D, Gamba G. WNK3 is a putative chloride-sensing kinase. Cell Physiol Biochem. 2011;28:1123–34.PubMedCrossRef
70.
Zurück zum Zitat Bazua-Valenti S, Chavez-Canales M, Rojas-Vega L, et al. The effect of WNK4 on the Na+-Cl- cotransporter is modulated by intracellular chloride. J Am Soc Nephrol. 2014. Bazua-Valenti S, Chavez-Canales M, Rojas-Vega L, et al. The effect of WNK4 on the Na+-Cl- cotransporter is modulated by intracellular chloride. J Am Soc Nephrol. 2014.
72.
Zurück zum Zitat San-Cristobal P, Pacheco-Alvarez D, Richardson C, et al. Angiotensin II signaling increases activity of the renal Na-Cl cotransporter through a WNK4-SPAK-dependent pathway. Proc Natl Acad Sci U S A. 2009;106:4384–9.PubMedCentralPubMedCrossRef San-Cristobal P, Pacheco-Alvarez D, Richardson C, et al. Angiotensin II signaling increases activity of the renal Na-Cl cotransporter through a WNK4-SPAK-dependent pathway. Proc Natl Acad Sci U S A. 2009;106:4384–9.PubMedCentralPubMedCrossRef
73.
Zurück zum Zitat Sato Y, Ogata E, Fujita T. Role of chloride in angiotensin II-induced salt-sensitive hypertension. Hypertension. 1991;18:622–9.PubMedCrossRef Sato Y, Ogata E, Fujita T. Role of chloride in angiotensin II-induced salt-sensitive hypertension. Hypertension. 1991;18:622–9.PubMedCrossRef
74.
Zurück zum Zitat O’Neil RG, Helman SI. Transport characteristics of renal collecting tubules: influences of DOCA and diet. Am J Physiol. 1977;233:F544–58.PubMed O’Neil RG, Helman SI. Transport characteristics of renal collecting tubules: influences of DOCA and diet. Am J Physiol. 1977;233:F544–58.PubMed
75.
Zurück zum Zitat Stoner LC, Burg MB, Orloff J. Ion transport in cortical collecting tubule; effect of amiloride. Am J Physiol. 1974;227:453–9.PubMed Stoner LC, Burg MB, Orloff J. Ion transport in cortical collecting tubule; effect of amiloride. Am J Physiol. 1974;227:453–9.PubMed
76.
Zurück zum Zitat Wall SM, Kim YH, Stanley L, et al. NaCl restriction upregulates renal Slc26a4 through subcellular redistribution: role in Cl- conservation. Hypertension. 2004;44:982–7.PubMedCrossRef Wall SM, Kim YH, Stanley L, et al. NaCl restriction upregulates renal Slc26a4 through subcellular redistribution: role in Cl- conservation. Hypertension. 2004;44:982–7.PubMedCrossRef
77.
Zurück zum Zitat Pech V, Kim YH, Weinstein AM, et al. Angiotensin II increases chloride absorption in the cortical collecting duct in mice through a pendrin-dependent mechanism. Am J Physiol Renal Physiol. 2007;292:F914–20.PubMedCrossRef Pech V, Kim YH, Weinstein AM, et al. Angiotensin II increases chloride absorption in the cortical collecting duct in mice through a pendrin-dependent mechanism. Am J Physiol Renal Physiol. 2007;292:F914–20.PubMedCrossRef
78.
Zurück zum Zitat Azroyan A, Morla L, Crambert G, et al. Regulation of pendrin by cAMP: possible involvement in beta-adrenergic-dependent NaCl retention. Am J Physiol Renal Physiol. 2012;302:F1180–7.PubMedCrossRef Azroyan A, Morla L, Crambert G, et al. Regulation of pendrin by cAMP: possible involvement in beta-adrenergic-dependent NaCl retention. Am J Physiol Renal Physiol. 2012;302:F1180–7.PubMedCrossRef
79.
Zurück zum Zitat Verlander JW, Hassell KA, Royaux IE, et al. Deoxycorticosterone upregulates PDS (Slc26a4) in mouse kidney: role of pendrin in mineralocorticoid-induced hypertension. Hypertension. 2003;42:356–62.PubMedCrossRef Verlander JW, Hassell KA, Royaux IE, et al. Deoxycorticosterone upregulates PDS (Slc26a4) in mouse kidney: role of pendrin in mineralocorticoid-induced hypertension. Hypertension. 2003;42:356–62.PubMedCrossRef
80.
Zurück zum Zitat Pelzl L, Pakladok T, Pathare G, et al. DOCA sensitive pendrin expression in kidney, heart, lung and thyroid tissues. Cell Physiol Biochem. 2012;30:1491–501.PubMedCrossRef Pelzl L, Pakladok T, Pathare G, et al. DOCA sensitive pendrin expression in kidney, heart, lung and thyroid tissues. Cell Physiol Biochem. 2012;30:1491–501.PubMedCrossRef
81.•
Zurück zum Zitat Shibata S, Rinehart J, Zhang J, et al. Mineralocorticoid receptor phosphorylation regulates ligand binding and renal response to volume depletion and hyperkalemia. Cell Metab. 2013;18:660–71. This study revealed the unique mechanism by which renal intercalated cells regulate the activity of MR through phosphorylation, which switches NaCl transport of them and leads to distinct adaptive responses to volume depletion and hyperkalemia.PubMedCentralPubMedCrossRef Shibata S, Rinehart J, Zhang J, et al. Mineralocorticoid receptor phosphorylation regulates ligand binding and renal response to volume depletion and hyperkalemia. Cell Metab. 2013;18:660–71. This study revealed the unique mechanism by which renal intercalated cells regulate the activity of MR through phosphorylation, which switches NaCl transport of them and leads to distinct adaptive responses to volume depletion and hyperkalemia.PubMedCentralPubMedCrossRef
82.
Zurück zum Zitat Eladari D, Chambrey R, Peti-Peterdi J. A new look at electrolyte transport in the distal tubule. Annu Rev Physiol. 2012;74:325–49.PubMedCrossRef Eladari D, Chambrey R, Peti-Peterdi J. A new look at electrolyte transport in the distal tubule. Annu Rev Physiol. 2012;74:325–49.PubMedCrossRef
83.
Zurück zum Zitat Arroyo JP, Ronzaud C, Lagnaz D, et al. Aldosterone paradox: differential regulation of ion transport in distal nephron. Physiology (Bethesda). 2011;26:115–23.CrossRef Arroyo JP, Ronzaud C, Lagnaz D, et al. Aldosterone paradox: differential regulation of ion transport in distal nephron. Physiology (Bethesda). 2011;26:115–23.CrossRef
84.••
Zurück zum Zitat Ando K, Ohtsu H, Uchida S, et al. Anti-albuminuric effect of the aldosterone blocker eplerenone in non-diabetic hypertensive patients with albuminuria: a double-blind, randomised, placebo-controlled trial. Lancet Diabetes Endocrinol. 2014;2:944-953. This double-blind, randomized, placebo-controlled trial showed that the addition of the selective MR blocker eplerenone to renin–angiotensin system inhibitor therapy significantly reduces albuminuria in hypertensive patients with non-diabetic chronic kidney disease. Ando K, Ohtsu H, Uchida S, et al. Anti-albuminuric effect of the aldosterone blocker eplerenone in non-diabetic hypertensive patients with albuminuria: a double-blind, randomised, placebo-controlled trial. Lancet Diabetes Endocrinol. 2014;2:944-953. This double-blind, randomized, placebo-controlled trial showed that the addition of the selective MR blocker eplerenone to renin–angiotensin system inhibitor therapy significantly reduces albuminuria in hypertensive patients with non-diabetic chronic kidney disease.
Metadaten
Titel
Activation of Mineralocorticoid Receptor in Salt-Sensitive Hypertension
verfasst von
Nobuhiro Ayuzawa
Toshiro Fujita
Publikationsdatum
01.06.2015
Verlag
Springer US
Erschienen in
Current Hypertension Reports / Ausgabe 6/2015
Print ISSN: 1522-6417
Elektronische ISSN: 1534-3111
DOI
https://doi.org/10.1007/s11906-015-0552-2

Weitere Artikel der Ausgabe 6/2015

Current Hypertension Reports 6/2015 Zur Ausgabe

Novel Treatments for Hypertension (T Unger, Section Editor)

Blood Pressure Control versus Atrial Fibrillation Management in Stroke Prevention

Hypertension and Obesity (E Reisin, Section Editor)

The Kidney in Obesity

Pulmonary Hypertension (JR Klinger, Section Editor)

Biomarkers and Prognostic Indicators in Pulmonary Arterial Hypertension

Novel Treatments for Hypertension (T Unger, Section Editor)

Excess Cardiovascular Risk in Diabetic Women: A Case for Intensive Treatment

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Echinokokkose medikamentös behandeln oder operieren?

06.05.2024 DCK 2024 Kongressbericht

Die Therapie von Echinokokkosen sollte immer in spezialisierten Zentren erfolgen. Eine symptomlose Echinokokkose kann – egal ob von Hunde- oder Fuchsbandwurm ausgelöst – konservativ erfolgen. Wenn eine Op. nötig ist, kann es sinnvoll sein, vorher Zysten zu leeren und zu desinfizieren. 

Aquatherapie bei Fibromyalgie wirksamer als Trockenübungen

03.05.2024 Fibromyalgiesyndrom Nachrichten

Bewegungs-, Dehnungs- und Entspannungsübungen im Wasser lindern die Beschwerden von Patientinnen mit Fibromyalgie besser als das Üben auf trockenem Land. Das geht aus einer spanisch-brasilianischen Vergleichsstudie hervor.

Wo hapert es noch bei der Umsetzung der POMGAT-Leitlinie?

03.05.2024 DCK 2024 Kongressbericht

Seit November 2023 gibt es evidenzbasierte Empfehlungen zum perioperativen Management bei gastrointestinalen Tumoren (POMGAT) auf S3-Niveau. Vieles wird schon entsprechend der Empfehlungen durchgeführt. Wo es im Alltag noch hapert, zeigt eine Umfrage in einem Klinikverbund.

Das Risiko für Vorhofflimmern in der Bevölkerung steigt

02.05.2024 Vorhofflimmern Nachrichten

Das Risiko, im Lauf des Lebens an Vorhofflimmern zu erkranken, ist in den vergangenen 20 Jahren gestiegen: Laut dänischen Zahlen wird es drei von zehn Personen treffen. Das hat Folgen weit über die Schlaganfallgefährdung hinaus.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.