Skip to main content
Erschienen in: Journal of Medical Case Reports 1/2019

Open Access 01.12.2019 | Case report

Acute kidney injury secondary to thrombotic microangiopathy associated with idiopathic hypereosinophilic syndrome: a case report and review of the literature

verfasst von: Diana Curras-Martin, Swapnil Patel, Huzaif Qaisar, Sushil K. Mehandru, Avais Masud, Mohammad A. Hossain, Gurpreet S. Lamba, Harry Dounis, Michael Levitt, Arif Asif

Erschienen in: Journal of Medical Case Reports | Ausgabe 1/2019

Abstract

Background

Renal involvement in idiopathic hypereosinophilic syndrome is uncommon. The mechanism of kidney damage can be explained as occurring via two distinct pathways: (1) thromboembolic ischemic changes secondary to endocardial disruption mediated by eosinophilic cytotoxicity to the myocardium and (2) direct eosinophilic cytotoxic effect to the kidney.

Case presentation

We present a case of a 63-year-old Caucasian man who presented to our hospital with 2 weeks of progressively generalized weakness. He was diagnosed with idiopathic hypereosinophilic syndrome with multiorgan involvement and acute kidney injury with biopsy-proven thrombotic microangiopathy. Full remission was achieved after 8 weeks of corticosteroid therapy.

Conclusion

Further studies are needed to investigate if age and absence of frank thrombocytopenia can serve as a prognostic feature of idiopathic hypereosinophilic syndrome, as seen in this case.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

Idiopathic hypereosinophilic syndrome (HES) is characterized by an absolute eosinophil count greater than 1500 cells/mm3 observed at least twice with a minimum interval of 4 weeks, multiorgan involvement, and presence of tissue damage without an identifiable underlying cause [1]. Renal involvement in HES varies from 7% to 36%; however, kidney injury mediated by thrombotic microangiopathy (TMA) is rare [2]. To the best of our knowledge, only two cases of idiopathic HES [3] and one case of myeloproliferative-variant HES [4] have been reported. None of the reported cases achieved normal kidney function after treatment. The pathophysiology of renal impairment in HES can be explained by two mechanisms: (1) an ischemic kidney injury secondary to cardiac mural thrombus mediated by eosinophilic cytotoxicity to the heart (endocardium and myocardium) and (2) direct eosinophilic cytotoxic effect to the kidney [25]. We present a rare case of idiopathic HES with multiorgan failure and renal biopsy-proven TMA in which complete remission was achieved after 8 weeks of steroid therapy.

Case presentation

A 63-year-old Caucasian man presented to our hospital with 2 weeks of progressive generalized weakness, vague abdominal discomfort, and dyspnea on exertion requiring more frequent use of his inhaler. He did not report similar symptoms in the past, and he denied any associated chest pain, cough, changes in bowel habits, fevers, chills, weight loss, recent travel, tick bites, or sick contacts. His past medical history was relevant for chronic bronchitis diagnosed 10 years ago. He was a former one-pack-per-day smoker for 20 years. His family history was noncontributory.

Clinical findings

The patient’s vital signs at presentation showed a blood pressure of 128/84 mmHg, heart rate of 75 beats/minute, respiratory rate of 18 breaths/minute, oxygen saturation of 99% on room air, and body temperature of 97.7 °F. On physical examination, the patient was in no apparent distress and was awake, alert, and oriented to person, place, and time. His heart and lung examination revealed sinus tachycardia and diffuse expiratory wheezes throughout the lung fields. The patient’s abdominal examination was pertinent for a nonperitonitic tenderness to palpation in the left upper quadrant. His neurological examination was remarkable for weakness in the right upper extremity. His laboratory data are summarized in Table 1.
Table 1
Laboratory data during hospitalization
Biochemistry
Results
Reference values
Sodium
133
136–145 mmol/L
Potassium
4.0
3.5–5.2 mmol/L
Chloride
101
96–110 mmol/L
Bicarbonate
22
24–31 mmol/L
Blood urea nitrogen
17
5–25 mg/dl
Creatinine
1.3
0.61–1.24 mg/dl
Glomerular filtration rate
56
> 60 ml/minute
Glucose
87
70–99 mg/dl
Protein, total
6.9
6.0–8.5 g/dl
Albumin
2.8
3.5–4.7 g/dl
Aspartate aminotransferase
40
10–42 IU/L
Alanine transaminase
51
10–60 IU/L
Alkaline phosphatase
128
38–126 IU/L
Total bilirubin
2.0
0.2–1.3 mg/dl
Lactate dehydrogenase
343
91–200 IU/L
Haptoglobin
41
40–268 mg/dl
Troponin I
0.13
> 0.08 ng/ml
Procalcitonin
0.11
< 0.05 ng/ml; low-risk sepsis
Complete blood count
 Hemoglobin
10.0
12.0–17.5 g/dl
 Hematocrit
30.2
36–53
 Red cell distribution width
17.0
11.5–15.0%
 Mean corpuscular hemoglobin
28.9
26.0–34.0 pg
 Platelets
190
140–450 × 103/μl
 White cell count
22.2
4.5–11.0 × 103/μl
 Neutrophil count
4.8
1.50–7.50 × 103/μl
 Eosinophil count
16.2
0.00–0.50 × 103/μl
 Erythrocyte sedimentation rate
32
0–15 mm/hour
 International normalized ratio
1.15
0.88–1.15

Timeline

See Fig. 1 for the timeline of the patient’s kidney function and absolute eosinophil count while receiving steroid treatment.

Diagnostic assessment

Findings of computed tomography (CT) of the patient’s brain were unremarkable. Magnetic resonance imaging (MRI) of his brain revealed subacute infarcts involving the left frontal white matter and left cerebellum; in addition, an evolving subacute infarct was seen in the left corona radiata. CT of the chest demonstrated diffuse ground-glass opacity, and CT of the abdomen was remarkable for a wedge-shaped area of low attenuation in the spleen consistent with splenic infarct. His transthoracic echocardiogram revealed a mural apical thrombus in the left ventricular (LV) apex with reduced ejection fraction (31–35%). Cardiac MRI performed 7 days after anticoagulation therapy was initiated showed a diffuse subendocardial scarring of the middle to apical LV segments and the right ventricular side of the septum. It also revealed evidence of edema of the middle anteroseptum and apical septum, consistent with endomyocardial fibrosis. However, no mural thrombus was visualized.
A presumptive diagnosis of HES was made on the basis of presenting symptoms, laboratory data, and imaging studies. Investigation for secondary causes, including immunological testing (Table 2), blood and urine cultures, ova and parasites, and infectious serology (Table 3), were unrevealing, and results of urine drug screening were negative. Bone marrow biopsy demonstrated a normocellular bone marrow population with eosinophilia comprising 60–70%, without evidence of lymphoproliferative disorder or metastatic neoplasm. Cytogenetic analysis was unrevealing: negative for breakpoint cluster region-Abelson murine leukemia viral oncogene homolog 1 (BCR-ABL1) fusion, eosinophilia-associated platelet-derived growth factor receptor alpha (PDGFRA), platelet-derived growth factor receptor beta (PDGFRB), fibroblast growth factor receptor 1 (FGFR1), Janus kinase 2 (JAK2) mutation, and JAK2 pericentriolar material 1 (PCM1) fusion.
Table 2
Immunological test results
Autoimmune serology
Results
Reference values
Antinuclear antibody
0.50
< 0.90, negative
Anti-double-stranded DNA antibody
1
< 4 IU/ml, negative
Serine protease 3 antibody
1
0–19 AU/ml
Antineutrophil antibody
Positive
Negative
Myeloperoxidase antibody
Not detected
< 1.0, not detected
Histone antibody IgG
0.6
0.0–0.9 units
Cardiolipin IgA
0.0
0–11 units
Cardiolipin IgM
7.0
< 20 units, negative
Complement
 C4
15.6 → 15.4
16–40 mg/dl
 C3
91.7 → 77
85–170 mg/dl
Immunoglobulins
 IgG
1240
600–1560 mg/dl
 IgM
61
400–300 mg/dl
 IgA
104
70–450 mg/dl
 IgE
259
< 214 Ku/L
DNA Deoxyribonucleic acid, Ig G Immunoglobulin G, Ig M Immunoglobulin M, Ig A Immunoglobulin A, Ig E Immunoglobulin E
Table 3
Infectious disease test results
Infectious serology
Results
Reference values
Human immunodeficiency virus
Negative
Negative
Hepatitis C virus
Negative
Negative
Hepatitis A virus IgM
Negative
Negative
Hepatitis D virus
Negative
Negative
Hepatitis B core IgM
Negative
Negative
Hepatitis B surface antibody
Negative
Negative
Hepatitis B surface antigen
Negative
Negative
QuantiFERON interpretation
Indeterminate
 
QuantiFERON-TB
0.00
0.00 IU/ml
Aspergillus antigen
Not detected
 
Aspergillus fumigatus IgG
Negative
Negative
Micropolyspora faeni IgG
Negative
Negative
Pigeon serum
Negative
Negative
Thermoactinomyces candidus
Negative
Negative
Thymus vulgaris
Negative
Negative
Setaria viridis
Negative
Negative
Strongyloides antibody
Negative
Negative
IgG Immunoglobulin G, Ig M Immunoglobulin M
Due to the stigma of hemolysis (normocytic acute anemia, elevated lactate dehydrogenase and bilirubin, positive schistocytes with relative thrombocytopenia), further investigation was pursued. The result of the Coombs test (direct and indirect) was negative. A disintegrin-like and metalloprotease with thrombospondin type 1 motif 13 (ADAMTS13) activity level was greater than 50%, and the expression of complement regulatory proteins CD59 and CD55 on erythrocytes was within normal limits as determined by flow cytometry.
Due to a further decline in the estimated glomerular filtration rate (GFR) early in the patient’s hospital course, a kidney biopsy was pursued. Renal biopsy revealed a glomerular and vascular TMA, interstitial fibrosis, and inflammation with focal eosinophils (Fig. 1). IHC staining for eosinophil granule major basic protein 1 (MBP1) was not performed.

Therapeutic intervention

Our patient was started on prednisone 1 mg/kg daily and a heparin protocol at 18 U/kg/hour with an activated partial thromboplastin time goal of 60–100 seconds. Simultaneously, warfarin was initiated. Once the patient’s international normalized ratio was within therapeutic range (2.0–3.0), he was anticoagulated with heparin and warfarin for an additional 48 hours. His eosinophil count and estimated GFR were monitored on an outpatient basis, and his prednisone dose was gradually tapered. After the eighth week, the patient was maintained on 5 mg of prednisone daily.

Follow-up and outcomes

By the time the renal biopsy report was available, the patient’s kidney function had started to recover; hence, no further intervention was required. After initiation of treatment with steroids, the patient achieved resolution of pulmonary, cardiac, neurologic, and abdominal symptoms. Repeat echocardiography after 5 weeks showed improvement of LV ejection fraction to 50–55%. Complete normalization of eosinophil count and renal function was observed after 4 and 8 weeks of therapy, respectively (Fig. 1). At his 10-week follow-up, the patient continued to do well under close surveillance for renal and cardiac complications. At 12-month follow-up, he continued to have a normal eosinophil count and renal function. However, cardiac MRI showed persistent endocardial fibrosis.

Discussion

HES is an uncommon disorder, marked by overproduction of eosinophils, eosinophilia greater than 1500/mm3, tissue infiltration, and organ damage. Idiopathic HES requires exclusion of primary and secondary causes of hypereosinophilia as well as lymphocyte-variant hypereosinophilia [1]. For the period from 2001 to 2005, the National Cancer Institute Surveillance, Epidemiology, and End Results Program reported an age-adjusted incidence of 0.036 per 100,000 person-years for myeloproliferative HES. The incidence of idiopathic HES remains obscure [6]. The most common presenting symptoms are weakness, fatigue, cough, and dyspnea, followed by fever, rash, rhinitis, and in rare cases angioedema [7]. The mortality of HES is close to 10%, with the leading cause of death attributed to cardiac events followed by thromboembolic phenomena [8].
The pathogenesis of HES is mediated by “piecemeal degranulation” or eosinophil activation and secretion of the granule cationic proteins (such as eosinophil peroxidase, eosinophil cationic protein, eosinophil-derived neurotoxin, and MBP1) and eosinophil-expressed cytokines (such as RANTES [regulated on activation, normal T expressed and secreted] and interleukin [4, 9]). Eosinophil granule cationic proteins have the capability to activate inflammatory cells such as mast cells to induce inflammatory mediators and direct tissue-damaging cytotoxicity. These multiple proinflammatory activities lead to endothelial damage, thrombosis by activation of complement and coagulation cascade, and direct platelet stimulation and downregulation of thrombomodulin by MBP1 [5, 9].
Renal involvement in idiopathic HES is a rare entity, with only a handful of cases reported in the medical literature (Table 4) [1021]. TMA is a life-threatening syndrome of systemic microvascular occlusions and is characterized by sudden or gradual onset of thrombocytopenia, microangiopathic hemolytic anemia, and renal or other end-organ damage [22]. It has been associated with diverse diseases and syndromes, such as systemic infections, cancer, pregnancy complications (for example, preeclampsia, eclampsia, HELLP [hemolysis, elevated liver enzymes, low platelet count] syndrome), autoimmune disorders (for example, systemic lupus erythematosus, systemic sclerosis, antiphospholipid syndrome), hematopoietic stem cell or organ transplant, severe hypertension, and cocaine-induced [22, 23]. Liapis et al. first reported two cases of TMA associated with idiopathic HES, along with a third case of myeloproliferative variant of HES in association with TMA [3] (Table 5). Of the cases described by Liapis et al., none had full renal recovery. In contrast, our patient did remarkably well with steroid and anticoagulation therapy. After discharge, his eosinophil count remained stable with resolution of renal injury with prednisone.
Table 4
Renal pathology in hypereosinophilia
Patient age and sex
Diagnosis
Renal pathology
Reference
14-year-old female
Idiopathic HES
Thromboembolism
Spry [10]
50-year-old male
Idiopathic HES
Necrotizing IgA nephropathy
Shah et al. [11]
40-year-old male
Idiopathic HES
Interstitial nephritis
Bulucu et al. [12]
67-year-old woman
Idiopathic HES
Crescentic glomerulonephritis
Richardson et al. [13]
18-year-old male
Eosinophilic gastroenteritis
Immunotactoid glomerulonephritis
Choi et al. [14]
55-year-old male
Idiopathic HES
Interstitial nephritis, focal segmental glomerulosclerosis
Motellon et al. [15]
73-year-old male
Idiopathic HES
Ischemic changes, interstitial nephritis
Navarro et al. [16]
42-year-old male
HES
Renal Infarct
Smith et al. [17]
59-year-old male
HES
Interstitial nephritis
Garella et al. [18]
80-year-old female
Idiopathic HES
TTP
Ohguchi et al. [19]
40-year-old male
Idiopathic HES
ATN, Charcot-Leyden crystalluria
Hirszel et al. [20]
52-year-old male
Idiopathic HES
Membranous glomerulonephritis
Frigui et al. [21]
HES Hypereosinophilic syndrome, IgA Immunoglobulin A, ATN Acute tubular necrosis, TTP Thrombotic thrombocytopenic purpura
Table 5
Reported thrombotic microangiopathy cases: comparative table
Demographics
Our patient
Historical 1 [3]
Historical 2 [3]
Historical 3 [4]
Sex
Male
Male
Male
Male
Age, years
63
15
26
24
Race
Caucasian
African American
Caucasian
Caucasian
CBC at admission
 Hemoglobin 12.0–17.5 g/dl
10.0
9.8
13.3
10.7
 Platelets 140–450 × 103/μl
235a
76
101
130
 White cell count 4.5–11.0 × 103/μl
22.2
23.7
14.7
23.5
Differential count, %
 Neutrophils 1.50–7.50 × 103/μl
4.8
8.3
6.7
Not available
 Lymphocytes 1.50–3.70 × 103/μl
0.9
2.8
2.6
Not available
 Monocytes 0.20–1.00 × 103/μl
0.2
0.7
0.4
Not available
 Eosinophils 0.00–0.50 × 103/μl
16.2
11.1
4.9
18.3
Schistocytes
Positive
Not available
Positive
Positive
Renal function test at admission
 Creatinine 0.61–1.24 mg/dl
1.3
10.9
2.2
1.81
GFR
56
Not available
57
50
 Percentage eosinophils in bone marrow
60%
80%
44%
37%
 Renal biopsy
Glomerular capillary thrombosis
Mesangiolysis
Endotheliosis
Eosinophilic infiltrate
Arterial thrombosis
Mesangiolysis
Eosinophilic infiltrate
Arteriolar thrombosis
Glomerular capillary thrombosis
Eosinophilic infiltrate
Arteriolar thrombosis
Glomerular capillary thrombosis
Eosinophilic infiltrate
Urinalysis
 Proteinuria
Negative
Present
Present
Present
 Red blood cells/high-power field
20
50
Not available
100
 Eosinophils/high-power field
None
None
7
None
 Treatment
Prednisone
Prednisone
Rituximab
Prednisone
Imatinib
Imatinib
 Follow-up
At 2 months
At 6 months
At 12 months
At 12 months
 Creatinine 0.61–1.24 mg/dl
1.18
5.2
1.8
1.7
*Our patient’s platelets at baseline: 377–348 × 103/μl
CBC Complete Blood Count, GFR Glomerular Filtration Rate
The mechanism of kidney damage in TMA with HES can occur via two different pathways: (1) direct eosinophilic cytotoxic effects to the renal vasculature and (2) ischemia secondary to thromboembolic events due to endocardial disruption. Subsequently, endothelial damage and complement cascade activation will result in TMA [1, 2, 5]. Similarly to our patient’s case and cases reported previously, Spry [10] reported that one of every five patients with HES developed hypertension and some degree of proteinuria. However, the described patients presented late in the course of HES and most likely had ischemic changes to the kidney secondary to cardioembolism rather than intrinsic eosinophilic cytotoxicity [2].
A multicenter analysis demonstrated that steroids alone induced partial or complete response at 4 weeks of treatment in 85% of the patients [24]. It was also observed that patients with positive factor interacting with PAPOLA [poly(A) polymerase alpha] and CPSF1 (cleavage and polyadenylation specificity factor) (FIP1L1)–PDGFRA gene fusion had a higher response to imatinib than those without [24]. It has been hypothesized that the deletion of genetic material as occurs in HES may result in gain of fusion proteins [25].
We report the only patient treated solely with a steroid, and a complete resolution of acute kidney injury was achieved, in contrast to previously reported cases. We hypothesize that factors such as the patient’s age group, proteinuria, and relative thrombocytopenia might be important to consider as prognostic factors.

Conclusion

TMA of the kidney in association with idiopathic HES is rare. To the best of our knowledge, this is the first case report of HES with multiorgan involvement that was successfully treated with a corticosteroid alone. Further studies are needed to investigate if age, absence of frank thrombocytopenia, and proteinuria can serve as prognostic features, as seen in our patient’s case.

Patient perspective

Our patient has experienced a progressive recovery and is in good spirits.
Not applicable.
Written informed consent was obtained from the patient for publication of this case report and any accompanying images. A copy of the written consent is available for review by the Editor-in-Chief of this journal.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Allgemeinmedizin

Kombi-Abonnement

Mit e.Med Allgemeinmedizin erhalten Sie Zugang zu allen CME-Fortbildungen und Premium-Inhalten der allgemeinmedizinischen Zeitschriften, inklusive einer gedruckten Allgemeinmedizin-Zeitschrift Ihrer Wahl.

Literatur
1.
Zurück zum Zitat Gotlib J. World Health Organization-defined eosinophilic disorders: 2017 update on diagnosis, risk stratification, and management. Am J Hematol. 2017;92(11):1243–59.CrossRef Gotlib J. World Health Organization-defined eosinophilic disorders: 2017 update on diagnosis, risk stratification, and management. Am J Hematol. 2017;92(11):1243–59.CrossRef
2.
Zurück zum Zitat Shehwaro N, Langlois AL, Gueutin V, Izzedine H. Renal involvement in idiopathic hypereosinophic syndrome. Clin Kidney J. 2013;6(3):272–6.CrossRef Shehwaro N, Langlois AL, Gueutin V, Izzedine H. Renal involvement in idiopathic hypereosinophic syndrome. Clin Kidney J. 2013;6(3):272–6.CrossRef
3.
Zurück zum Zitat Liapis H, Ho AK, Graeme DB, Gleich MG. Thrombotic microangiopathy associated with the hypereosinophilic syndrome. Kidney Int. 2005;67(5):1806–11.CrossRef Liapis H, Ho AK, Graeme DB, Gleich MG. Thrombotic microangiopathy associated with the hypereosinophilic syndrome. Kidney Int. 2005;67(5):1806–11.CrossRef
4.
Zurück zum Zitat Langlois AL, Shehwaro N, Rondet C, Benbrik Y, Maloum K, Gueutin V, Rouvier P, Izzedine H. Renal thrombotic microangiopathy and FIP1L1/PDGFRα-associated myeloproliferative variant of hypereosinophilic syndrome. Clin Kidney J. 2013;6(4):418–20.CrossRef Langlois AL, Shehwaro N, Rondet C, Benbrik Y, Maloum K, Gueutin V, Rouvier P, Izzedine H. Renal thrombotic microangiopathy and FIP1L1/PDGFRα-associated myeloproliferative variant of hypereosinophilic syndrome. Clin Kidney J. 2013;6(4):418–20.CrossRef
5.
Zurück zum Zitat Ackerman SJ, Bochner BS. Mechanisms of eosinophilia in the pathogenesis of hypereosinophilic disorders. Immunol Allergy Clin N Am. 2007;27(3):357–75.CrossRef Ackerman SJ, Bochner BS. Mechanisms of eosinophilia in the pathogenesis of hypereosinophilic disorders. Immunol Allergy Clin N Am. 2007;27(3):357–75.CrossRef
6.
Zurück zum Zitat Crane MM, Chang CM, Kobayashi MG. Incidence of myeloproliferative hypereosinophilic syndrome in the Unites States and an estimate of all hypereosinophilic syndrome incidence. J Allergy Clin Immunol. 2010;126:179–81.CrossRef Crane MM, Chang CM, Kobayashi MG. Incidence of myeloproliferative hypereosinophilic syndrome in the Unites States and an estimate of all hypereosinophilic syndrome incidence. J Allergy Clin Immunol. 2010;126:179–81.CrossRef
7.
Zurück zum Zitat Weller PF, Bubley GJ. The idiopathic hypereosinophilic syndrome. J Am Soc Hematol Blood. 1994;83:2759–79. Weller PF, Bubley GJ. The idiopathic hypereosinophilic syndrome. J Am Soc Hematol Blood. 1994;83:2759–79.
8.
Zurück zum Zitat Podjasek JC, Butterfield JH. Mortality in hypereosinophilic syndrome: 19 years of experience at Mayo Clinic with a review of the literature. Leuk Res. 2013;37(4):392–5.CrossRef Podjasek JC, Butterfield JH. Mortality in hypereosinophilic syndrome: 19 years of experience at Mayo Clinic with a review of the literature. Leuk Res. 2013;37(4):392–5.CrossRef
9.
Zurück zum Zitat Thomas LL, Page SM. Inflammatory cell activation by eosinophil granule proteins. Chem Immunol. 2000;76:99–117.CrossRef Thomas LL, Page SM. Inflammatory cell activation by eosinophil granule proteins. Chem Immunol. 2000;76:99–117.CrossRef
10.
Zurück zum Zitat Spry CJ. Hypereosinophilic syndrome: clinical features, laboratory findings and treatment. Allergy. 1982;37:539–51.CrossRef Spry CJ. Hypereosinophilic syndrome: clinical features, laboratory findings and treatment. Allergy. 1982;37:539–51.CrossRef
11.
Zurück zum Zitat Shah TH, Koul AN, Shah S, Khan UH, Koul PA, Sofi FA, Mufti S, Jan RA. Idiopathic hypereosinophilic syndrome presenting as IgA Nephropathy with nephrotic range proteinuria. Open J Nephrol. 2013;3(2):101–3.CrossRef Shah TH, Koul AN, Shah S, Khan UH, Koul PA, Sofi FA, Mufti S, Jan RA. Idiopathic hypereosinophilic syndrome presenting as IgA Nephropathy with nephrotic range proteinuria. Open J Nephrol. 2013;3(2):101–3.CrossRef
12.
Zurück zum Zitat Bulucu F, Can C, Inal V, Baykal Y, Erikçi S. Renal involvement in a patient with idiopathic hypereosinophilic syndrome. Clin Nephrol. 2002;57(2):171–3.CrossRef Bulucu F, Can C, Inal V, Baykal Y, Erikçi S. Renal involvement in a patient with idiopathic hypereosinophilic syndrome. Clin Nephrol. 2002;57(2):171–3.CrossRef
13.
Zurück zum Zitat Richardson P, Dickinson G, Nash S, Hoffman L, Steingart R, Germain M. Crescentic glomerulonephritis and eosinophilic interstitial infiltrates in a patient with hypereosinophilic syndrome. Postgrad Med J. 1995;71(833):175–8.CrossRef Richardson P, Dickinson G, Nash S, Hoffman L, Steingart R, Germain M. Crescentic glomerulonephritis and eosinophilic interstitial infiltrates in a patient with hypereosinophilic syndrome. Postgrad Med J. 1995;71(833):175–8.CrossRef
14.
Zurück zum Zitat Choi YJ, Lee JD, Yang KI, et al. Immunotactoid glomerulopathy associated with idiopathic hypereosinophilic syndrome. Am J Nephrol. 1998;18:337–43.CrossRef Choi YJ, Lee JD, Yang KI, et al. Immunotactoid glomerulopathy associated with idiopathic hypereosinophilic syndrome. Am J Nephrol. 1998;18:337–43.CrossRef
15.
Zurück zum Zitat Motellon JL, Bernis, Garcia-Sanchez A, Gruss E, Tarver JA. Renal involvement in the hypereosinophilic syndrome: case report. Nephrol Dial Transplant. 1995;10:401–3.PubMed Motellon JL, Bernis, Garcia-Sanchez A, Gruss E, Tarver JA. Renal involvement in the hypereosinophilic syndrome: case report. Nephrol Dial Transplant. 1995;10:401–3.PubMed
16.
Zurück zum Zitat Navarro I, Torras J, Goma M, Cruzado JM, Grinyó JM. Renal involvement as the first manifestation of hypereosinophilic syndrome: a case report. NDT Plus. 2009;2(5):379–81.PubMedPubMedCentral Navarro I, Torras J, Goma M, Cruzado JM, Grinyó JM. Renal involvement as the first manifestation of hypereosinophilic syndrome: a case report. NDT Plus. 2009;2(5):379–81.PubMedPubMedCentral
17.
Zurück zum Zitat Smith A, Fernando SL. Renal infarction in hypereosinophilic syndrome. Intern Med J. 2012;42:1162–3.CrossRef Smith A, Fernando SL. Renal infarction in hypereosinophilic syndrome. Intern Med J. 2012;42:1162–3.CrossRef
18.
Zurück zum Zitat Garella G, Marra L. Hypereosinophilic syndrome and renal insufficiency [in Italian]. Minerva Urol Nefrol. 1990;42:135–6.PubMed Garella G, Marra L. Hypereosinophilic syndrome and renal insufficiency [in Italian]. Minerva Urol Nefrol. 1990;42:135–6.PubMed
19.
Zurück zum Zitat Ohguchi H, Sugawara T, Harigae H. Thrombotic thrombocytopenic purpura complicated with hypereosinophilic syndrome. Inter Med. 2009;48:1687–90.CrossRef Ohguchi H, Sugawara T, Harigae H. Thrombotic thrombocytopenic purpura complicated with hypereosinophilic syndrome. Inter Med. 2009;48:1687–90.CrossRef
20.
Zurück zum Zitat Hirszel P, Cashell AW, Whelan TV, et al. Urinary Charcot-Leyden crystals in the hypereosinophilic syndrome with acute renal failure. Am J Kidney Dis. 1988;12:319–22.CrossRef Hirszel P, Cashell AW, Whelan TV, et al. Urinary Charcot-Leyden crystals in the hypereosinophilic syndrome with acute renal failure. Am J Kidney Dis. 1988;12:319–22.CrossRef
21.
Zurück zum Zitat Frigui M, Hmida MB, Jallouli M, et al. Membranous glomerulopathy associated with idiopathic hypereosinophilic syndrome. Saudi J Kidney Dis Transpl. 2010;21:320–2.PubMed Frigui M, Hmida MB, Jallouli M, et al. Membranous glomerulopathy associated with idiopathic hypereosinophilic syndrome. Saudi J Kidney Dis Transpl. 2010;21:320–2.PubMed
22.
Zurück zum Zitat Asif A, Ali Nayer A, Haas CS. Atypical hemolytic uremic syndrome in the setting of complement-amplifying conditions: case reports and a review of the evidence for treatment with eculizumab. J Nephrol. 2017;30(3):347–62.CrossRef Asif A, Ali Nayer A, Haas CS. Atypical hemolytic uremic syndrome in the setting of complement-amplifying conditions: case reports and a review of the evidence for treatment with eculizumab. J Nephrol. 2017;30(3):347–62.CrossRef
23.
Zurück zum Zitat Dejman A, Alavi SN, Thomas DB, Stefanovic A, Asif A, Nayer A. The potential role of complements in cocaine-induced thrombotic microangiopathy. Clin Kidney J. 2018;11(1):26–8.CrossRef Dejman A, Alavi SN, Thomas DB, Stefanovic A, Asif A, Nayer A. The potential role of complements in cocaine-induced thrombotic microangiopathy. Clin Kidney J. 2018;11(1):26–8.CrossRef
24.
Zurück zum Zitat Ogbogu PU, Bochner BS, Butterfield JH, Gleich GJ, Huss-Marp J, Kahn JE, Leiferman KM, Nutman TB, Pfab F, Ring J, Rothenberg ME, Roufosse F, Sajous MH, Sheikh J, Simon D, Simon HU, Stein ML, Wardlaw A, Weller PF, Klion AD. Hypereosinophilic syndrome: a multicenter, retrospective analysis of clinical characteristics and response to therapy. J Allergy Clin Immunol. 2009;124(6):1319–25.CrossRef Ogbogu PU, Bochner BS, Butterfield JH, Gleich GJ, Huss-Marp J, Kahn JE, Leiferman KM, Nutman TB, Pfab F, Ring J, Rothenberg ME, Roufosse F, Sajous MH, Sheikh J, Simon D, Simon HU, Stein ML, Wardlaw A, Weller PF, Klion AD. Hypereosinophilic syndrome: a multicenter, retrospective analysis of clinical characteristics and response to therapy. J Allergy Clin Immunol. 2009;124(6):1319–25.CrossRef
25.
Zurück zum Zitat Cools J, DeAngelo DJ, Gotlib J, Stover EH, Legare RD, Cortes J, Kutok J, Clark J, Galinsky I, Griffin JD, Cross NC, Tefferi A, Malone J, Alam R, Schrier SL, Schmid J, Rose M, Vandenberghe P, Verhoef G, Boogaerts M, Wlodarska I, Kantarjian H, Marynen P, Coutre SE, Stone R, Gilliland DG. A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. N Engl J Med. 2003;348(13):1201–14.CrossRef Cools J, DeAngelo DJ, Gotlib J, Stover EH, Legare RD, Cortes J, Kutok J, Clark J, Galinsky I, Griffin JD, Cross NC, Tefferi A, Malone J, Alam R, Schrier SL, Schmid J, Rose M, Vandenberghe P, Verhoef G, Boogaerts M, Wlodarska I, Kantarjian H, Marynen P, Coutre SE, Stone R, Gilliland DG. A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. N Engl J Med. 2003;348(13):1201–14.CrossRef
Metadaten
Titel
Acute kidney injury secondary to thrombotic microangiopathy associated with idiopathic hypereosinophilic syndrome: a case report and review of the literature
verfasst von
Diana Curras-Martin
Swapnil Patel
Huzaif Qaisar
Sushil K. Mehandru
Avais Masud
Mohammad A. Hossain
Gurpreet S. Lamba
Harry Dounis
Michael Levitt
Arif Asif
Publikationsdatum
01.12.2019
Verlag
BioMed Central
Erschienen in
Journal of Medical Case Reports / Ausgabe 1/2019
Elektronische ISSN: 1752-1947
DOI
https://doi.org/10.1186/s13256-019-2187-4

Weitere Artikel der Ausgabe 1/2019

Journal of Medical Case Reports 1/2019 Zur Ausgabe