Skip to main content
Erschienen in: The Cerebellum 4/2008

01.12.2008

Adaptive-filter Models of the Cerebellum: Computational Analysis

verfasst von: Paul Dean, John Porrill

Erschienen in: The Cerebellum | Ausgabe 4/2008

Einloggen, um Zugang zu erhalten

Abstract

Many current models of the cerebellar cortical microcircuit are equivalent to an adaptive filter using the covariance learning rule. The adaptive filter is a development of the original Marr–Albus framework that deals naturally with continuous time-varying signals, thus addressing the issue of 'timing' in cerebellar function, and it can be connected in a variety of ways to other parts of the system, consistent with the microzonal organization of cerebellar cortex. However, its computational capacities are not well understood. Here we summarise the results of recent work that has focused on two of its intrinsic properties. First, an adaptive filter seeks to decorrelate its (mossy fibre) inputs from a (climbing fibre) teaching signal. This procedure can be used both for sensory processing, e.g. removal of interference from sensory signals, and for learning accurate motor commands, by decorrelating an efference copy of those commands from a sensory signal of inaccuracy. As a model of the cerebellum the adaptive filter thus forms a natural link between events at the cellular level, such as forms of synaptic plasticity and the learning rules they embody, and intelligent behaviour at the system level. Secondly, it has been shown that the covariance learning rule enables the filter to handle input and intrinsic noise optimally. Such optimality may underlie the recently described role of the cerebellum in producing accurate smooth pursuit eye movements in the face of sensory noise. Moreover, it has the consequence of driving most input weights to very small values, consistent with experimental data that many parallel-fibre synapses are normally silent. The effectiveness of silent synapses can only be altered by LTP, so learning tasks depending on a reduction of Purkinje cell firing require the synapses to be embedded in a second, inhibitory pathway from parallel fibre to Purkinje cell. This pathway and the appropriate climbing-fibre related plasticity have been described experimentally, and its presence has implications for asymmetries and hysteresis in behavioural learning rates that are also consistent with experimental observations. These computational properties of the adaptive filter suggest that it is both powerful and realistic enough to be a suitable candidate model of the cerebellar cortical microcircuit.
Literatur
1.
Zurück zum Zitat Eccles JC, Ito M, Szentágothai J (1967) The cerebellum as a neuronal machine. Springer, Berlin Eccles JC, Ito M, Szentágothai J (1967) The cerebellum as a neuronal machine. Springer, Berlin
2.
Zurück zum Zitat Marr D (1969) A theory of cerebellar cortex. J Physiol 202:437–470PubMed Marr D (1969) A theory of cerebellar cortex. J Physiol 202:437–470PubMed
3.
Zurück zum Zitat Albus JS (1971) A theory of cerebellar function. Math Biosci 10:25–61CrossRef Albus JS (1971) A theory of cerebellar function. Math Biosci 10:25–61CrossRef
4.
6.
Zurück zum Zitat Sejnowski TJ (1977) Storing covariance with nonlinearly interacting neurons. J Math Biol 4:303–321PubMedCrossRef Sejnowski TJ (1977) Storing covariance with nonlinearly interacting neurons. J Math Biol 4:303–321PubMedCrossRef
7.
Zurück zum Zitat Widrow B, Stearns SD (1985) Adaptive signal processing. Prentice-Hall Inc, Engelwood Cliffs NJ Widrow B, Stearns SD (1985) Adaptive signal processing. Prentice-Hall Inc, Engelwood Cliffs NJ
8.
Zurück zum Zitat Porrill J, Dean P (2007) Recurrent cerebellar loops simplify adaptive control of redundant and nonlinear motor systems. Neural Comp 19:170–193CrossRef Porrill J, Dean P (2007) Recurrent cerebellar loops simplify adaptive control of redundant and nonlinear motor systems. Neural Comp 19:170–193CrossRef
9.
Zurück zum Zitat Porrill J, Dean P (2007) Cerebellar motor learning: when is cortical plasticity not enough? PLoS Comput Biol 3:1935–1950PubMedCrossRef Porrill J, Dean P (2007) Cerebellar motor learning: when is cortical plasticity not enough? PLoS Comput Biol 3:1935–1950PubMedCrossRef
10.
Zurück zum Zitat Dean P, Porrill J (2008) Oculomotor anatomy and the motor-error problem: the role of the paramedian tract nuclei. Prog Brain Res 171:177–186PubMedCrossRef Dean P, Porrill J (2008) Oculomotor anatomy and the motor-error problem: the role of the paramedian tract nuclei. Prog Brain Res 171:177–186PubMedCrossRef
11.
Zurück zum Zitat Lenz A, Balakrishnan T, Pipe AG, Melhuish C (2008) An adaptive gaze stabilisation controller inspired by the vestibulo-ocular reflex. Bioinspir Biomim 3:35001PubMedCrossRef Lenz A, Balakrishnan T, Pipe AG, Melhuish C (2008) An adaptive gaze stabilisation controller inspired by the vestibulo-ocular reflex. Bioinspir Biomim 3:35001PubMedCrossRef
12.
Zurück zum Zitat Apps R, Garwicz M (2005) Anatomical and physiological foundations of cerebellar information processing. Nat Rev, Neurosci 6:297–311CrossRef Apps R, Garwicz M (2005) Anatomical and physiological foundations of cerebellar information processing. Nat Rev, Neurosci 6:297–311CrossRef
13.
Zurück zum Zitat Dean P, Porrill J, Stone JV (2002) Decorrelation control by the cerebellum achieves oculomotor plant compensation in simulated vestibulo-ocular reflex. Proc R Soc Lond B Biol Sci 269:1895–1904CrossRef Dean P, Porrill J, Stone JV (2002) Decorrelation control by the cerebellum achieves oculomotor plant compensation in simulated vestibulo-ocular reflex. Proc R Soc Lond B Biol Sci 269:1895–1904CrossRef
14.
Zurück zum Zitat Dean P, Porrill J, Stone JV (2004) Visual awareness and the cerebellum: possible role of decorrelation control. Prog Brain Res 144:61–75PubMedCrossRef Dean P, Porrill J, Stone JV (2004) Visual awareness and the cerebellum: possible role of decorrelation control. Prog Brain Res 144:61–75PubMedCrossRef
15.
Zurück zum Zitat Porrill J, Dean P, Stone JV (2004) Recurrent cerebellar architecture solves the motor error problem. Proc R Soc Lond B Biol Sci 271:789–796CrossRef Porrill J, Dean P, Stone JV (2004) Recurrent cerebellar architecture solves the motor error problem. Proc R Soc Lond B Biol Sci 271:789–796CrossRef
16.
Zurück zum Zitat Porrill J, Dean P (2008) Silent synapses, LTP and the indirect parallel-fibre pathway: computational consequences of optimal noise processing. PLoS Comput Biol 4:e1000085PubMedCrossRef Porrill J, Dean P (2008) Silent synapses, LTP and the indirect parallel-fibre pathway: computational consequences of optimal noise processing. PLoS Comput Biol 4:e1000085PubMedCrossRef
17.
Zurück zum Zitat Osborne LC, Hohl SS, Bialek W, Lisberger SG (2007) Time course of precision in smooth-pursuit eye movements of monkeys. J Neurosci 27:2987–2998PubMedCrossRef Osborne LC, Hohl SS, Bialek W, Lisberger SG (2007) Time course of precision in smooth-pursuit eye movements of monkeys. J Neurosci 27:2987–2998PubMedCrossRef
18.
Zurück zum Zitat Medina JF, Lisberger SG (2007) Variation, signal, and noise in cerebellar sensory-motor processing for smooth-pursuit eye movements. J Neurosci 27:6832–6842PubMedCrossRef Medina JF, Lisberger SG (2007) Variation, signal, and noise in cerebellar sensory-motor processing for smooth-pursuit eye movements. J Neurosci 27:6832–6842PubMedCrossRef
19.
Zurück zum Zitat Isope P, Barbour B (2002) Properties of unitary granule cell -> Purkinje cell synapses in adult rat cerebellar slices. J Neurosci 22:9668–9678PubMed Isope P, Barbour B (2002) Properties of unitary granule cell -> Purkinje cell synapses in adult rat cerebellar slices. J Neurosci 22:9668–9678PubMed
20.
Zurück zum Zitat Jörntell H, Ekerot CF (2002) Receptive field plasticity profoundly alters the cutaneous parallel fiber synaptic input to cerebellar interneurons in vivo. J Neurosci 23:9620–9631 Jörntell H, Ekerot CF (2002) Receptive field plasticity profoundly alters the cutaneous parallel fiber synaptic input to cerebellar interneurons in vivo. J Neurosci 23:9620–9631
21.
Zurück zum Zitat Ekerot CF, Jorntell H (2003) Parallel fiber receptive fields: a key to understanding cerebellar operation and learning. Cerebellum 2:101–109PubMedCrossRef Ekerot CF, Jorntell H (2003) Parallel fiber receptive fields: a key to understanding cerebellar operation and learning. Cerebellum 2:101–109PubMedCrossRef
22.
Zurück zum Zitat Coesmans M, Weber JT, De Zeeuw CI, Hansel C (2004) Bidirectional parallel fiber plasticity in the cerebellum under climbing fiber control. Neuron 44:691–700PubMedCrossRef Coesmans M, Weber JT, De Zeeuw CI, Hansel C (2004) Bidirectional parallel fiber plasticity in the cerebellum under climbing fiber control. Neuron 44:691–700PubMedCrossRef
23.
Zurück zum Zitat Jörntell H, Hansel C (2006) Synaptic memories upside down: bidirectional plasticity at cerebellar parallel fiber-Purkinje cell synapses. Neuron 52:227–238PubMedCrossRef Jörntell H, Hansel C (2006) Synaptic memories upside down: bidirectional plasticity at cerebellar parallel fiber-Purkinje cell synapses. Neuron 52:227–238PubMedCrossRef
24.
Zurück zum Zitat Jörntell H, Ekerot CF (2002) Reciprocal bidirectional plasticity of parallel fiber receptive fields in cerebellar Purkinje cells and their afferent interneurons. Neuron 34:797–806PubMedCrossRef Jörntell H, Ekerot CF (2002) Reciprocal bidirectional plasticity of parallel fiber receptive fields in cerebellar Purkinje cells and their afferent interneurons. Neuron 34:797–806PubMedCrossRef
25.
Zurück zum Zitat Boyden ES, Raymond JL (2003) Active reversal of motor memories reveals rules governing memory encoding. Neuron 39:1031–1042PubMedCrossRef Boyden ES, Raymond JL (2003) Active reversal of motor memories reveals rules governing memory encoding. Neuron 39:1031–1042PubMedCrossRef
26.
Zurück zum Zitat Boyden ES, Katoh A, Raymond JL (2004) Cerebellum-dependent learning: the role of multiple plasticity mechanisms. Ann Rev Neurosci 27:581–609PubMedCrossRef Boyden ES, Katoh A, Raymond JL (2004) Cerebellum-dependent learning: the role of multiple plasticity mechanisms. Ann Rev Neurosci 27:581–609PubMedCrossRef
27.
Zurück zum Zitat Kimpo RR, Boyden ES, Katoh A, Ke MC, Raymond JL (2005) Distinct patterns of stimulus generalization of increases and decreases in VOR gain. J Neurophysiol 94:3092–3100PubMedCrossRef Kimpo RR, Boyden ES, Katoh A, Ke MC, Raymond JL (2005) Distinct patterns of stimulus generalization of increases and decreases in VOR gain. J Neurophysiol 94:3092–3100PubMedCrossRef
28.
Zurück zum Zitat Cohen MR, Meissner GW, Schafer RJ, Raymond JL (2004) Reversal of motor learning in the vestibulo-ocular reflex in the absence of visual input. Learn Mem 11:559–565PubMedCrossRef Cohen MR, Meissner GW, Schafer RJ, Raymond JL (2004) Reversal of motor learning in the vestibulo-ocular reflex in the absence of visual input. Learn Mem 11:559–565PubMedCrossRef
29.
Zurück zum Zitat Kuki Y, Hirata Y, Blazquez PM, Heiney SA, Highstein SM (2004) Memory retention of vestibuloocular reflex motor learning in squirrel monkeys. Neurorep 15:1007–1011CrossRef Kuki Y, Hirata Y, Blazquez PM, Heiney SA, Highstein SM (2004) Memory retention of vestibuloocular reflex motor learning in squirrel monkeys. Neurorep 15:1007–1011CrossRef
30.
Zurück zum Zitat Kehoe EJ (2006) Repeated acquisitions and extinctions in classical conditioning of the rabbit nictitating membrane response. Learn Memory 13:366–375CrossRef Kehoe EJ (2006) Repeated acquisitions and extinctions in classical conditioning of the rabbit nictitating membrane response. Learn Memory 13:366–375CrossRef
31.
Zurück zum Zitat Jirenhed DA, Bengtsson F, Hesslow G (2007) Acquisition, extinction, and reacquisition of a cerebellar cortical memory trace. J Neurosci 27:2493–2502PubMedCrossRef Jirenhed DA, Bengtsson F, Hesslow G (2007) Acquisition, extinction, and reacquisition of a cerebellar cortical memory trace. J Neurosci 27:2493–2502PubMedCrossRef
32.
Zurück zum Zitat Gomi H, Kawato M (1992) Adaptive feedback control models of the vestibulocerebellum and spinocerebellum. Biol Cybern 68:105–114PubMedCrossRef Gomi H, Kawato M (1992) Adaptive feedback control models of the vestibulocerebellum and spinocerebellum. Biol Cybern 68:105–114PubMedCrossRef
33.
Zurück zum Zitat Coenen OJMD, Sejnowski TJ (1996) Learning to make predictions in the cerebellum may explain the anticipatory modulation of the vestibulo-ocular reflex (VOR) gain with vergence. In: Proceedings of the 3rd Joint Symposium on Neural Computation, Institute of Neural Computation; 1996; University of California, San Diego, pp 202–221 Coenen OJMD, Sejnowski TJ (1996) Learning to make predictions in the cerebellum may explain the anticipatory modulation of the vestibulo-ocular reflex (VOR) gain with vergence. In: Proceedings of the 3rd Joint Symposium on Neural Computation, Institute of Neural Computation; 1996; University of California, San Diego, pp 202–221
34.
Zurück zum Zitat Kettner RE, Mahamud S, Leung HC, Sitkoff N, Houk JC, Peterson BW et al (1997) Prediction of complex two-dimensional trajectories by a cerebellar model of smooth pursuit eye movement. J Neurophysiol 77:2115–2130PubMed Kettner RE, Mahamud S, Leung HC, Sitkoff N, Houk JC, Peterson BW et al (1997) Prediction of complex two-dimensional trajectories by a cerebellar model of smooth pursuit eye movement. J Neurophysiol 77:2115–2130PubMed
35.
Zurück zum Zitat Schweighofer N, Spoelstra J, Arbib MA, Kawato M (1998) Role of the cerebellum in reaching movements in humans. II. A neural model of the intermediate cerebellum. Eur J Neurosci 10:95–105PubMedCrossRef Schweighofer N, Spoelstra J, Arbib MA, Kawato M (1998) Role of the cerebellum in reaching movements in humans. II. A neural model of the intermediate cerebellum. Eur J Neurosci 10:95–105PubMedCrossRef
36.
Zurück zum Zitat Medina JF, Nores WL, Mauk MD (2002) Inhibition of climbing fibres is a signal for the extinction of conditioned eyelid responses. Nature 416:330–333PubMedCrossRef Medina JF, Nores WL, Mauk MD (2002) Inhibition of climbing fibres is a signal for the extinction of conditioned eyelid responses. Nature 416:330–333PubMedCrossRef
37.
Zurück zum Zitat Yamamoto K, Kobayashi Y, Takemura A, Kawano K, Kawato M (2002) Computational studies on acquisition and adaptation of ocular following responses based on cerebellar synaptic plasticity. J Neurophysiol 87:1554–1571PubMed Yamamoto K, Kobayashi Y, Takemura A, Kawano K, Kawato M (2002) Computational studies on acquisition and adaptation of ocular following responses based on cerebellar synaptic plasticity. J Neurophysiol 87:1554–1571PubMed
38.
Zurück zum Zitat Walter JT, Khodakhah K (2006) The linear computational algorithm of cerebellar Purkinje cells. J Neurosci 26:12861–12872PubMedCrossRef Walter JT, Khodakhah K (2006) The linear computational algorithm of cerebellar Purkinje cells. J Neurosci 26:12861–12872PubMedCrossRef
39.
Zurück zum Zitat Jörntell H, Ekerot CF (2006) Properties of somatosensory synaptic integration in cerebellar granule cells in vivo. J Neurosci 26:11786–11797PubMedCrossRef Jörntell H, Ekerot CF (2006) Properties of somatosensory synaptic integration in cerebellar granule cells in vivo. J Neurosci 26:11786–11797PubMedCrossRef
40.
Zurück zum Zitat Holtzman T, Rajapaksa T, Mostofi A, Edgley SA (2006) Different responses of rat cerebellar Purkinje cells and Golgi cells evoked by widespread convergent sensory inputs. J Physiol-London 574:491–507PubMedCrossRef Holtzman T, Rajapaksa T, Mostofi A, Edgley SA (2006) Different responses of rat cerebellar Purkinje cells and Golgi cells evoked by widespread convergent sensory inputs. J Physiol-London 574:491–507PubMedCrossRef
41.
Zurück zum Zitat Mittmann W, Hausser M (2007) Linking synaptic plasticity and spike output at excitatory and inhibitory synapses onto cerebellar Purkinje cells. J Neurosci 27:5559–5570PubMedCrossRef Mittmann W, Hausser M (2007) Linking synaptic plasticity and spike output at excitatory and inhibitory synapses onto cerebellar Purkinje cells. J Neurosci 27:5559–5570PubMedCrossRef
42.
Zurück zum Zitat McKay BE, Engbers JD, Mehaffey WH, Gordon GR, Molineux ML, Bains JS et al (2007) Climbing fiber discharge regulates cerebellar functions by controlling the intrinsic characteristics of Purkinje cell output. J Neurophysiol 97:2590–2604PubMedCrossRef McKay BE, Engbers JD, Mehaffey WH, Gordon GR, Molineux ML, Bains JS et al (2007) Climbing fiber discharge regulates cerebellar functions by controlling the intrinsic characteristics of Purkinje cell output. J Neurophysiol 97:2590–2604PubMedCrossRef
43.
Zurück zum Zitat Szapiro G, Barbour B (2007) Multiple climbing fibers signal to molecular layer interneurons exclusively via glutamate spillover. Nat Neurosci 10:735–742PubMedCrossRef Szapiro G, Barbour B (2007) Multiple climbing fibers signal to molecular layer interneurons exclusively via glutamate spillover. Nat Neurosci 10:735–742PubMedCrossRef
44.
Zurück zum Zitat Shin SL, Hoebeek FE, Schonewille M, De Zeeuw CI, Aertsen A, De Schutter E (2007) Regular patterns in cerebellar Purkinje cell simple spike trains. PLoS ONE 2:e485PubMedCrossRef Shin SL, Hoebeek FE, Schonewille M, De Zeeuw CI, Aertsen A, De Schutter E (2007) Regular patterns in cerebellar Purkinje cell simple spike trains. PLoS ONE 2:e485PubMedCrossRef
45.
Zurück zum Zitat Schonewille M, Khosrovanl S, Winkelman BHJ, Hoebeek FE, De Jeu MTG, Larsen IM et al (2006) Purkinje cells in awake behaving animals operate at the upstate membrane potential. Nat Neurosci 9:459–461PubMedCrossRef Schonewille M, Khosrovanl S, Winkelman BHJ, Hoebeek FE, De Jeu MTG, Larsen IM et al (2006) Purkinje cells in awake behaving animals operate at the upstate membrane potential. Nat Neurosci 9:459–461PubMedCrossRef
46.
Zurück zum Zitat Urbano FJ, Simpson JI, Llinas RR (2006) Somatomotor and oculomotor inferior olivary neurons have distinct electrophysiological phenotypes. Proc Natl Acad Sci U S A 103:16550–16555PubMedCrossRef Urbano FJ, Simpson JI, Llinas RR (2006) Somatomotor and oculomotor inferior olivary neurons have distinct electrophysiological phenotypes. Proc Natl Acad Sci U S A 103:16550–16555PubMedCrossRef
Metadaten
Titel
Adaptive-filter Models of the Cerebellum: Computational Analysis
verfasst von
Paul Dean
John Porrill
Publikationsdatum
01.12.2008
Verlag
Springer-Verlag
Erschienen in
The Cerebellum / Ausgabe 4/2008
Print ISSN: 1473-4222
Elektronische ISSN: 1473-4230
DOI
https://doi.org/10.1007/s12311-008-0067-3

Weitere Artikel der Ausgabe 4/2008

The Cerebellum 4/2008 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Sind Frauen die fähigeren Ärzte?

30.04.2024 Gendermedizin Nachrichten

Patienten, die von Ärztinnen behandelt werden, dürfen offenbar auf bessere Therapieergebnisse hoffen als Patienten von Ärzten. Besonders gilt das offenbar für weibliche Kranke, wie eine Studie zeigt.

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.