Skip to main content
Erschienen in: Drugs 9/2013

01.06.2013 | Review Article

Amphotericin B Formulations: A Comparative Review of Efficacy and Toxicity

verfasst von: Richard J. Hamill

Erschienen in: Drugs | Ausgabe 9/2013

Einloggen, um Zugang zu erhalten

Abstract

Because of the increasing prevalence and changing microbiological spectrum of invasive fungal infections, some form of amphotericin B still provides the most reliable and broad spectrum therapeutic alternative. However, the use of amphotericin B deoxycholate is accompanied by dose-limited toxicities, most importantly, infusion-related reactions and nephrotoxicity. In an attempt to improve the therapeutic index of amphotericin B, three lipid-associated formulations were developed, including amphotericin B lipid complex (ABLC), liposomal amphotericin B (L-AmB), and amphotericin B colloidal dispersion (ABCD). The lipid composition of all three of these preparations differs considerably and contributes to substantially different pharmacokinetic parameters. ABLC is the largest of the lipid preparations. Because of its size, it is taken up rapidly by macrophages and becomes sequestered in tissues of the mononuclear phagocyte system such as the liver and spleen. Consequently, compared with the conventional formulation, it has lower circulating amphotericin B serum concentrations, reflected in a marked increase in volume of distribution and clearance. Lung levels are considerably higher than those achieved with other lipid-associated preparations. The recommended therapeutic dose of ABLC is 5 mg/kg/day. Because of its small size and negative charge, L-AmB avoids substantial recognition and uptake by the mononuclear phagocyte system. Therefore, a single dose of L-AmB results in a much higher peak plasma level (Cmax) than conventional amphotericin B deoxycholate and a much larger area under the concentration–time curve. Tissue concentrations in patients receiving L-AmB tend to be highest in the liver and spleen and much lower in kidneys and lung. Recommended therapeutic dosages are 3–6 mg/kg/day. After intravenous infusion, ABCD complexes remain largely intact and are rapidly removed from the circulation by cells of the macrophage phagocyte system. On a milligram-to-milligram basis, the Cmax achieved is lower than that attained by conventional amphotericin B, although the larger doses of ABCD that are administered produce an absolute level that is similar to amphotericin B. ABCD exhibits dose-limiting, infusion-related toxicities; consequently, the administered dosages should not exceed 3–4 mg/kg/day. The few comparative clinical trials that have been completed with the lipid-associated formulations have not demonstrated important clinical differences among these agents and amphotericin B for efficacy, although there are significant safety benefits of the lipid products. Furthermore, only one published trial has ever compared one lipid product against another for any indication. The results of these trials are particularly difficult to interpret because of major heterogeneities in study design, disease definitions, drug dosages, differences in clinical and microbiological endpoints as well as specific outcomes examined. Nevertheless, it is possible to derive some general conclusions given the available data. The most commonly studied syndrome has been empiric therapy for febrile neutropenic patients, where the lipid-associated preparations did not appear to provide a survival benefit over conventional amphotericin B deoxycholate, but did offer a significant advantage for the prevention of various breakthrough invasive fungal infections. For treatment of documented invasive fungal infections that usually involved hematological malignancy patients, no individual randomized trial has demonstrated a mortality benefit due to therapy with one of the lipid formulations. Results from meta-analyses have been contradictory, with one demonstrating a mortality benefit from all-cause mortality and one that did not demonstrate a mortality benefit. In the only published study to examine HIV-infected patients with disseminated histoplasmosis, clinical success and mortality were significantly better with L-AmB compared with amphotericin B deoxycholate; there were no differences in microbiological outcomes between treatment groups. The lipid-associated preparations were not significantly better than amphotericin B deoxycholate for treatment of AIDS-associated acute cryptococcal meningitis for either clinical or microbiological outcomes that were studied. In all of the trials that specifically examined renal toxicity, the lipid-associated formulations were significantly less nephrotoxic than amphotericin B deoxycholate. Infusion-related reactions occurred less frequently with L-AmB when compared with amphotericin B deoxycholate; however, ABCD had equivalent or more frequent infusion-related reactions than conventional amphotericin B, and this resulted in the cessation of at least one clinical trial. At the present time, this particular lipid formulation is no longer commercially available. For the treatment of most invasive fungal infections, an amphotericin B lipid formulation provides a safer alternative than conventional amphotericin B, with at least equivalent efficacy. As the cost of therapy with these agents continues to decline, these drugs will likely maintain their important role in the antifungal drug armamentarium because of their efficacy and improved safety profile.
Literatur
1.
Zurück zum Zitat Kontoyiannis DP, Marr KA, Park BJ, et al. Prospective surveillance for invasive fungal infections in hematopoietic stem cell transplant recipients, 1002–2006: overview of the Transplant-Associated Infection Surveillance Network (TRANSNET) database. Clin Infect Dis. 2010;50(8):1091–100.PubMedCrossRef Kontoyiannis DP, Marr KA, Park BJ, et al. Prospective surveillance for invasive fungal infections in hematopoietic stem cell transplant recipients, 1002–2006: overview of the Transplant-Associated Infection Surveillance Network (TRANSNET) database. Clin Infect Dis. 2010;50(8):1091–100.PubMedCrossRef
2.
Zurück zum Zitat Park BJ, Pappas PG, Wannemuehler KA, et al. Invasive non-aspergillus mold infections in transplant recipients, United States, 2001–2006. Emerg Infect Dis. 2011;17(10):1855–64.PubMedCrossRef Park BJ, Pappas PG, Wannemuehler KA, et al. Invasive non-aspergillus mold infections in transplant recipients, United States, 2001–2006. Emerg Infect Dis. 2011;17(10):1855–64.PubMedCrossRef
3.
Zurück zum Zitat Azie N, Neofytos D, Pfaller M, et al. The PATH (Prospective Antifungal Therapy) Alliance® registry and invasive fungal infections: update 2012. Diagn Microbiol Infect Dis. 2012;73(4):293–300.PubMedCrossRef Azie N, Neofytos D, Pfaller M, et al. The PATH (Prospective Antifungal Therapy) Alliance® registry and invasive fungal infections: update 2012. Diagn Microbiol Infect Dis. 2012;73(4):293–300.PubMedCrossRef
4.
Zurück zum Zitat Gallis HA, Drew RH, Pickard WW. Amphotericin B: 30 years of clinical experience. Rev Infect Dis. 1990;12(2):308–29.PubMedCrossRef Gallis HA, Drew RH, Pickard WW. Amphotericin B: 30 years of clinical experience. Rev Infect Dis. 1990;12(2):308–29.PubMedCrossRef
5.
Zurück zum Zitat Wasan KM, Lopez-Berestein G. Diversity of lipid-based polyene formulations and their behavior in biological systems. Eur J Clin Microbiol Infect Dis. 1997;16(1):81–92.PubMedCrossRef Wasan KM, Lopez-Berestein G. Diversity of lipid-based polyene formulations and their behavior in biological systems. Eur J Clin Microbiol Infect Dis. 1997;16(1):81–92.PubMedCrossRef
6.
Zurück zum Zitat Wong-Beringer A, Jacobs RA, Guglielmo BJ. Lipid formulations of amphotericin B: clinical efficacy and toxicities. Clin Infect Dis. 1998;27(3):603–18.PubMedCrossRef Wong-Beringer A, Jacobs RA, Guglielmo BJ. Lipid formulations of amphotericin B: clinical efficacy and toxicities. Clin Infect Dis. 1998;27(3):603–18.PubMedCrossRef
7.
Zurück zum Zitat Vogelsinger H, Weiler S, Djanani A, et al. Amphotericin B tissue distribution in autopsy material after treatment with liposomal amphotericin B and amphotericin B colloidal dispersion. J Antimicrob Chemother. 2006;57(6):1153–60.PubMedCrossRef Vogelsinger H, Weiler S, Djanani A, et al. Amphotericin B tissue distribution in autopsy material after treatment with liposomal amphotericin B and amphotericin B colloidal dispersion. J Antimicrob Chemother. 2006;57(6):1153–60.PubMedCrossRef
8.
Zurück zum Zitat Bekersky I, Fielding RM, Dressler DE, et al. Plasma protein binding of amphotericin B and pharmacokinetics of bound versus unbound amphotericin B after administration of intravenous liposomal amphotericin B (AmBisome) and amphotericin B deoxycholate. Antimicrob Agents Chemother. 2002;46(3):834–40.PubMedCrossRef Bekersky I, Fielding RM, Dressler DE, et al. Plasma protein binding of amphotericin B and pharmacokinetics of bound versus unbound amphotericin B after administration of intravenous liposomal amphotericin B (AmBisome) and amphotericin B deoxycholate. Antimicrob Agents Chemother. 2002;46(3):834–40.PubMedCrossRef
9.
10.
Zurück zum Zitat Sutton DA, Sanche SE, Revankar SG, et al. In vitro amphotericin B resistance in clinical isolates of Aspergillus terreus, with a head-to-head comparison to voriconazole. J Clin Microbiol. 1999;37(7):2343–5.PubMed Sutton DA, Sanche SE, Revankar SG, et al. In vitro amphotericin B resistance in clinical isolates of Aspergillus terreus, with a head-to-head comparison to voriconazole. J Clin Microbiol. 1999;37(7):2343–5.PubMed
11.
Zurück zum Zitat Pujol I, Gurarro J, Gené J, et al. In-vitro antifungal susceptibility of clinical and environmental Fusarium spp. strains. J Antimicrob Chemother. 1997;39(2):163–7.PubMedCrossRef Pujol I, Gurarro J, Gené J, et al. In-vitro antifungal susceptibility of clinical and environmental Fusarium spp. strains. J Antimicrob Chemother. 1997;39(2):163–7.PubMedCrossRef
12.
Zurück zum Zitat Lackner M, de Hoog GS, Verweij PE, et al. Species-specific antifungal susceptibility patterns of Scedosporium and Pseudallescheria species. Antimicrob Agents Chemother. 2012;56(5):2635–42.PubMedCrossRef Lackner M, de Hoog GS, Verweij PE, et al. Species-specific antifungal susceptibility patterns of Scedosporium and Pseudallescheria species. Antimicrob Agents Chemother. 2012;56(5):2635–42.PubMedCrossRef
13.
Zurück zum Zitat Walsh TJ, Melcher GP, Rinaldi MG, et al. Trichosporon beigelii, an emerging pathogen resistant to amphotericin B. J Clin Microbiol. 1990;28(7):1616–22.PubMed Walsh TJ, Melcher GP, Rinaldi MG, et al. Trichosporon beigelii, an emerging pathogen resistant to amphotericin B. J Clin Microbiol. 1990;28(7):1616–22.PubMed
14.
Zurück zum Zitat Chagas-Neto TC, Chaves GM, Colombo AL. Update on the genus Trichosporon. Mycopathologia. 2008;166(3):121–32.PubMedCrossRef Chagas-Neto TC, Chaves GM, Colombo AL. Update on the genus Trichosporon. Mycopathologia. 2008;166(3):121–32.PubMedCrossRef
15.
Zurück zum Zitat Chagas-Neto TC, Chaves GM, Melo ASA, et al. Bloodstream infections due to Trichosporon spp.: species distribution, Trichosoporon ashahii genotypes determined on the basis of ribosomal DNA intergenic spacer 1 sequencing, and antifungal susceptibility testing. J Clin Microbiol. 2009;47(4):1074–81.PubMedCrossRef Chagas-Neto TC, Chaves GM, Melo ASA, et al. Bloodstream infections due to Trichosporon spp.: species distribution, Trichosoporon ashahii genotypes determined on the basis of ribosomal DNA intergenic spacer 1 sequencing, and antifungal susceptibility testing. J Clin Microbiol. 2009;47(4):1074–81.PubMedCrossRef
16.
Zurück zum Zitat Yoon SA, Vazquez JA, Steffan PE, et al. High-frequency, in vitro reversible switching of Candida lusitaniae clinical isolates from amphotericin B susceptibility to resistance. Antimicrob Agents Chemother. 1999;43(4):836–45.PubMed Yoon SA, Vazquez JA, Steffan PE, et al. High-frequency, in vitro reversible switching of Candida lusitaniae clinical isolates from amphotericin B susceptibility to resistance. Antimicrob Agents Chemother. 1999;43(4):836–45.PubMed
17.
Zurück zum Zitat Klepser ME, Wolfe EJ, Jones RN, et al. Antifungal pharmacodynamic characteristics of fluconazole and amphotericin B tested against Candida albicans. Antimicrob Agents Chemother. 1997;41(6):1392–5.PubMed Klepser ME, Wolfe EJ, Jones RN, et al. Antifungal pharmacodynamic characteristics of fluconazole and amphotericin B tested against Candida albicans. Antimicrob Agents Chemother. 1997;41(6):1392–5.PubMed
18.
Zurück zum Zitat Sau K, Mambula SS, Latz E, et al. The antifungal drug amphotericin B promotes inflammatory cytokine release by a Toll-like receptor- and CD14-dependent mechanism. J Biol Chem. 2003;278(39):37561–8.PubMedCrossRef Sau K, Mambula SS, Latz E, et al. The antifungal drug amphotericin B promotes inflammatory cytokine release by a Toll-like receptor- and CD14-dependent mechanism. J Biol Chem. 2003;278(39):37561–8.PubMedCrossRef
19.
Zurück zum Zitat Ben-Ami R, Lewis RE, Kontoyiannis DP. Immunopharmacology of modern antifungals. Clin Infect Dis. 2008;47(2):226–35.PubMedCrossRef Ben-Ami R, Lewis RE, Kontoyiannis DP. Immunopharmacology of modern antifungals. Clin Infect Dis. 2008;47(2):226–35.PubMedCrossRef
20.
Zurück zum Zitat Arning M, Kliche KO, Heer-Sonderhoff AH, et al. Infusion-related toxicity of three different amphotericin B formulations and its relation to cytokine plasma levels. Mycoses. 1995;38(11–12):459–65.PubMedCrossRef Arning M, Kliche KO, Heer-Sonderhoff AH, et al. Infusion-related toxicity of three different amphotericin B formulations and its relation to cytokine plasma levels. Mycoses. 1995;38(11–12):459–65.PubMedCrossRef
21.
Zurück zum Zitat Rogers PD, Jenkins JK, Chapman SW, et al. Amphotericin B activation of human genes encoding for cytokines. J Infect Dis. 1998;178(6):1726–33.PubMedCrossRef Rogers PD, Jenkins JK, Chapman SW, et al. Amphotericin B activation of human genes encoding for cytokines. J Infect Dis. 1998;178(6):1726–33.PubMedCrossRef
22.
Zurück zum Zitat Cleary JD, Rogers PD, Chapman SW. Variability in polyene content and cellular toxicity among deoxycholate amphotericin B formulations. Pharmacotherapy. 2003;23(5):572–8.PubMedCrossRef Cleary JD, Rogers PD, Chapman SW. Variability in polyene content and cellular toxicity among deoxycholate amphotericin B formulations. Pharmacotherapy. 2003;23(5):572–8.PubMedCrossRef
23.
Zurück zum Zitat Goodwin SD, Cleary JD, Walawander CA, et al. Pretreatment regiments for adverse events related to infusion of amphotericin B. Clin Infect Dis. 1995;20(4):755–61.PubMedCrossRef Goodwin SD, Cleary JD, Walawander CA, et al. Pretreatment regiments for adverse events related to infusion of amphotericin B. Clin Infect Dis. 1995;20(4):755–61.PubMedCrossRef
24.
Zurück zum Zitat Sawaya BP, Briggs JP, Schnermann J. Amphotericin B nephrotoxicity: the adverse consequences of altered membrane properties. J Am Soc Nephrol. 1995;6(2):154–64.PubMed Sawaya BP, Briggs JP, Schnermann J. Amphotericin B nephrotoxicity: the adverse consequences of altered membrane properties. J Am Soc Nephrol. 1995;6(2):154–64.PubMed
25.
Zurück zum Zitat Readio JD, Bittman R. Equilibrium binding of amphotericin B and its methyl ester and borate complex to sterols. Biochim Biophys Acta. 1982;685(2):219–34.PubMedCrossRef Readio JD, Bittman R. Equilibrium binding of amphotericin B and its methyl ester and borate complex to sterols. Biochim Biophys Acta. 1982;685(2):219–34.PubMedCrossRef
26.
Zurück zum Zitat Wasan KM, Lopez-Berestein G. Characteristics of lipid-based formulations that influence their biological behavior in the plasma of patients. Clin Infect Dis. 1996;23(5):1126–38.PubMedCrossRef Wasan KM, Lopez-Berestein G. Characteristics of lipid-based formulations that influence their biological behavior in the plasma of patients. Clin Infect Dis. 1996;23(5):1126–38.PubMedCrossRef
27.
Zurück zum Zitat Wasan KM, Rosenblum MG, Cheung L, et al. Influence of lipoproteins on renal cytotoxicity and antifungal activity of amphotericin B. Antimicrob Agents Chemother. 1994;38(2):223–7.PubMedCrossRef Wasan KM, Rosenblum MG, Cheung L, et al. Influence of lipoproteins on renal cytotoxicity and antifungal activity of amphotericin B. Antimicrob Agents Chemother. 1994;38(2):223–7.PubMedCrossRef
28.
Zurück zum Zitat Krieger M. The use of amphotericin B to detect inhibitors of cellular cholesterol biosynthesis. Anal Biochem. 1983;135(2):383–91.PubMedCrossRef Krieger M. The use of amphotericin B to detect inhibitors of cellular cholesterol biosynthesis. Anal Biochem. 1983;135(2):383–91.PubMedCrossRef
29.
Zurück zum Zitat Wingard JR, Kubilis P, Lee L, et al. Clinical significance of nephrotoxicity in patients treated with amphotericin B for suspected or proven aspergillosis. Clin Infect Dis. 1999;29(12):1402–7.PubMedCrossRef Wingard JR, Kubilis P, Lee L, et al. Clinical significance of nephrotoxicity in patients treated with amphotericin B for suspected or proven aspergillosis. Clin Infect Dis. 1999;29(12):1402–7.PubMedCrossRef
30.
Zurück zum Zitat Bates DW, Su L, Yu DT, et al. Mortality and costs of acute renal failure associated with amphotericin B therapy. Clin Infect Dis. 2001;32(3):686–93.PubMedCrossRef Bates DW, Su L, Yu DT, et al. Mortality and costs of acute renal failure associated with amphotericin B therapy. Clin Infect Dis. 2001;32(3):686–93.PubMedCrossRef
31.
Zurück zum Zitat Harbarth S, Burke JP, Lloyd JF, et al. Clinical and economic outcomes of conventional amphotericin B-associated nephrotoxicity. Clin Infect Dis. 2002;15(35):e120–7.CrossRef Harbarth S, Burke JP, Lloyd JF, et al. Clinical and economic outcomes of conventional amphotericin B-associated nephrotoxicity. Clin Infect Dis. 2002;15(35):e120–7.CrossRef
32.
Zurück zum Zitat Janknegt R, de Marie S, Bakker-Woudenberg IA, et al. Liposomal and lipid formulations of amphotericin B. Clinical pharmacokinetics. Clin Pharmacokinet. 1992;23(4):279–91.PubMedCrossRef Janknegt R, de Marie S, Bakker-Woudenberg IA, et al. Liposomal and lipid formulations of amphotericin B. Clinical pharmacokinetics. Clin Pharmacokinet. 1992;23(4):279–91.PubMedCrossRef
33.
Zurück zum Zitat Hiemenz JW, Walsh TJ. Lipid formulations of amphotericin B: recent progress and future directions. Clin Infect Dis. 1996;22(Suppl 2):S133–44.PubMedCrossRef Hiemenz JW, Walsh TJ. Lipid formulations of amphotericin B: recent progress and future directions. Clin Infect Dis. 1996;22(Suppl 2):S133–44.PubMedCrossRef
34.
Zurück zum Zitat Mehta J. Do variations in molecular structure affect the clinical efficacy and safety of lipid-based amphotericin B preparations? Leukemia Res. 1997;23(5):183–8.CrossRef Mehta J. Do variations in molecular structure affect the clinical efficacy and safety of lipid-based amphotericin B preparations? Leukemia Res. 1997;23(5):183–8.CrossRef
35.
Zurück zum Zitat Hillery AM. Supramolecular lipidic drug delivery systems: from laboratory to clinic. A review of the recently introduced commercial liposomal and lipid-based formulations of amphotericin B. Adv Drug Del Rev. 1997;24(2–3):345–63.CrossRef Hillery AM. Supramolecular lipidic drug delivery systems: from laboratory to clinic. A review of the recently introduced commercial liposomal and lipid-based formulations of amphotericin B. Adv Drug Del Rev. 1997;24(2–3):345–63.CrossRef
36.
Zurück zum Zitat Slain D. Lipid-based amphotericin B for the treatment of fungal infections. Pharmacotherapy. 1999;19(3):306–23.PubMedCrossRef Slain D. Lipid-based amphotericin B for the treatment of fungal infections. Pharmacotherapy. 1999;19(3):306–23.PubMedCrossRef
37.
Zurück zum Zitat Hann IM, Prentice HG. Lipid-based amphotericin B: a review of the last 10 years of use. Int J Antimicrob Agents. 2001;17(3):161–9.PubMedCrossRef Hann IM, Prentice HG. Lipid-based amphotericin B: a review of the last 10 years of use. Int J Antimicrob Agents. 2001;17(3):161–9.PubMedCrossRef
38.
Zurück zum Zitat Dupont B. Overview of the lipid formulations of amphotericin B. J Antimicrob Chemother. 2002;49(suppl S1):31–6.PubMedCrossRef Dupont B. Overview of the lipid formulations of amphotericin B. J Antimicrob Chemother. 2002;49(suppl S1):31–6.PubMedCrossRef
39.
Zurück zum Zitat Herbrecht R, Natarajan-Amé S, Nivoix Y, et al. The lipid formulations of amphotericin B. Expert Opin Pharmacother. 2003;4(8):1277–87.PubMedCrossRef Herbrecht R, Natarajan-Amé S, Nivoix Y, et al. The lipid formulations of amphotericin B. Expert Opin Pharmacother. 2003;4(8):1277–87.PubMedCrossRef
40.
Zurück zum Zitat Adler-Moore JP, Proffitt RT. Amphotericin B lipid preparations: what are the differences? Clin Microbiol Infect. 2008;14(Suppl 4):25–36.PubMedCrossRef Adler-Moore JP, Proffitt RT. Amphotericin B lipid preparations: what are the differences? Clin Microbiol Infect. 2008;14(Suppl 4):25–36.PubMedCrossRef
41.
Zurück zum Zitat Kennedy AL, Wasan KM. Preferential distribution of amphotericin B lipid complex into human HDL3 is a consequence of high density lipoprotein coat lipid content. J Pharm Sci. 1999;88(11):1149–55.PubMedCrossRef Kennedy AL, Wasan KM. Preferential distribution of amphotericin B lipid complex into human HDL3 is a consequence of high density lipoprotein coat lipid content. J Pharm Sci. 1999;88(11):1149–55.PubMedCrossRef
42.
Zurück zum Zitat Lee JW. Pharmacokinetics and safety of a unilamellar liposomal formulation of amphotericin B (AmBisome) in rabbits. Antimicrob Agents Chemother. 1994;38(4):713–8.PubMedCrossRef Lee JW. Pharmacokinetics and safety of a unilamellar liposomal formulation of amphotericin B (AmBisome) in rabbits. Antimicrob Agents Chemother. 1994;38(4):713–8.PubMedCrossRef
43.
Zurück zum Zitat Juliano RL, Lopez-Berestein G, Hopfer R, et al. Selective toxicity and enhanced therapeutic index of liposomal polyene antibiotics in systemic fungal infections. Ann N Y Acad Sci. 1985;446(1):390–402.PubMedCrossRef Juliano RL, Lopez-Berestein G, Hopfer R, et al. Selective toxicity and enhanced therapeutic index of liposomal polyene antibiotics in systemic fungal infections. Ann N Y Acad Sci. 1985;446(1):390–402.PubMedCrossRef
44.
Zurück zum Zitat Hope WW, Goodwin J, Felton TW, et al. Population pharmacokinetics of conventional and intermittent dosing of liposomal amphotericin B in adults: a first critical step for rational dosing of innovative regimens. Antimicrob Agents Chemother. 2013;56(10):5303–8.CrossRef Hope WW, Goodwin J, Felton TW, et al. Population pharmacokinetics of conventional and intermittent dosing of liposomal amphotericin B in adults: a first critical step for rational dosing of innovative regimens. Antimicrob Agents Chemother. 2013;56(10):5303–8.CrossRef
45.
Zurück zum Zitat Louie A, Baltch AL, Fanke MA, et al. Comparative capacity of four antifungal agents to stimulate murine macrophages to produce tumour necrosis factor alpha: an effect that is attenuated by pentoxifylline, liposomal vesicles, and dexamethasone. J Antimicrob Chemother. 1994;24(6):975–87.CrossRef Louie A, Baltch AL, Fanke MA, et al. Comparative capacity of four antifungal agents to stimulate murine macrophages to produce tumour necrosis factor alpha: an effect that is attenuated by pentoxifylline, liposomal vesicles, and dexamethasone. J Antimicrob Chemother. 1994;24(6):975–87.CrossRef
46.
Zurück zum Zitat Bellocchio S, Gaziano R, Bozza S, et al. Liposomal amphotericin B activates antifungal resistance with reduced toxicity by diverting Toll-like receptor signaling from TLR-2 to TLR-4. J Antimicrob Chemother. 2005;55(2):214–22.PubMedCrossRef Bellocchio S, Gaziano R, Bozza S, et al. Liposomal amphotericin B activates antifungal resistance with reduced toxicity by diverting Toll-like receptor signaling from TLR-2 to TLR-4. J Antimicrob Chemother. 2005;55(2):214–22.PubMedCrossRef
47.
Zurück zum Zitat Simitsopoulou M, Roilides E, Dotis J, et al. Differential expression of cytokines and chemokines in human monocytes induced by lipid formulations of amphotericin B. Antimicrob Agents Chemother. 2005;49(4):1397–403.PubMedCrossRef Simitsopoulou M, Roilides E, Dotis J, et al. Differential expression of cytokines and chemokines in human monocytes induced by lipid formulations of amphotericin B. Antimicrob Agents Chemother. 2005;49(4):1397–403.PubMedCrossRef
48.
Zurück zum Zitat Martino R. Efficacy, safety and cost-effectiveness of amphotericin B lipid complex (ABLC): a review of the literature. Curr Med Res Opin. 2004;20(4):485–504.PubMedCrossRef Martino R. Efficacy, safety and cost-effectiveness of amphotericin B lipid complex (ABLC): a review of the literature. Curr Med Res Opin. 2004;20(4):485–504.PubMedCrossRef
49.
Zurück zum Zitat Adedoyin A, Bernardo JF, Swenson CE, et al. Pharmacokinetic profile of ABELCET (amphotericin B lipid complex injection): combined experience from phase I and phase II studies. Antimicrob Agents Chemother. 1997;41(10):2201–8.PubMed Adedoyin A, Bernardo JF, Swenson CE, et al. Pharmacokinetic profile of ABELCET (amphotericin B lipid complex injection): combined experience from phase I and phase II studies. Antimicrob Agents Chemother. 1997;41(10):2201–8.PubMed
50.
Zurück zum Zitat Swenson CE, Perkins WR, Roberts P, et al. In vitro and in vivo antifungal activity of amphotericin B lipid complex: are phospholipases important? Antimicrob Agents Chemother. 1998;32(4):767–71. Swenson CE, Perkins WR, Roberts P, et al. In vitro and in vivo antifungal activity of amphotericin B lipid complex: are phospholipases important? Antimicrob Agents Chemother. 1998;32(4):767–71.
51.
Zurück zum Zitat Gottfredsson M, Jessup CJ, Cox GM, et al. Fungal phospholipase activity and susceptibility to lipid preparations of amphotericin B. Antimicrob Agents Chemother. 2001;45(11):3231–3.PubMedCrossRef Gottfredsson M, Jessup CJ, Cox GM, et al. Fungal phospholipase activity and susceptibility to lipid preparations of amphotericin B. Antimicrob Agents Chemother. 2001;45(11):3231–3.PubMedCrossRef
52.
Zurück zum Zitat Boswell GW, Buell D, Bekersky I. AmBisome (liposomal amphotericin B): a comparative review. J Clin Pharmacol. 1998;38(7):583–92.PubMedCrossRef Boswell GW, Buell D, Bekersky I. AmBisome (liposomal amphotericin B): a comparative review. J Clin Pharmacol. 1998;38(7):583–92.PubMedCrossRef
53.
Zurück zum Zitat Moen MD, Lyseng-Williamson KA, Scott LJ. Liposomal amphotericin B. A review of its use as empirical therapy in febrile neutropenia and in the treatment of invasive fungal infections. Drugs. 2009;69(3):361–92.PubMedCrossRef Moen MD, Lyseng-Williamson KA, Scott LJ. Liposomal amphotericin B. A review of its use as empirical therapy in febrile neutropenia and in the treatment of invasive fungal infections. Drugs. 2009;69(3):361–92.PubMedCrossRef
54.
Zurück zum Zitat Adler-Moore JP, Fujii G, Lee MA. In vitro and in vivo interactions of AmBisome with pathogenic fungi. J Liposome Res. 1993;3(3):151–6.CrossRef Adler-Moore JP, Fujii G, Lee MA. In vitro and in vivo interactions of AmBisome with pathogenic fungi. J Liposome Res. 1993;3(3):151–6.CrossRef
55.
Zurück zum Zitat Adler-Moore JP, Proffitt T. Development, characterization, efficacy and mode of action of AmBisome, a unilamellar liposomal formulation of amphotericin B. J Liposome Res. 1993;3(3):429–50.CrossRef Adler-Moore JP, Proffitt T. Development, characterization, efficacy and mode of action of AmBisome, a unilamellar liposomal formulation of amphotericin B. J Liposome Res. 1993;3(3):429–50.CrossRef
56.
Zurück zum Zitat Walsh TJ, Goodman JL, Pappas P, et al. Safety, tolerance, and pharmacokinetics of high-dose liposomal amphotericin B (AmBisome) in patients infected with Aspergillus species and other filamentous fungi: maximum tolerated dose study. Antimicrob Agents Chemother. 2001;45(12):3487–96.PubMedCrossRef Walsh TJ, Goodman JL, Pappas P, et al. Safety, tolerance, and pharmacokinetics of high-dose liposomal amphotericin B (AmBisome) in patients infected with Aspergillus species and other filamentous fungi: maximum tolerated dose study. Antimicrob Agents Chemother. 2001;45(12):3487–96.PubMedCrossRef
57.
Zurück zum Zitat Groll AH, Giri N, Petraitis V, et al. Comparative efficacy and distribution of lipid formulations of amphotericin B in experimental Candida albicans infection of the central nervous system. J Infect Dis. 2000;182(1):274–82.PubMedCrossRef Groll AH, Giri N, Petraitis V, et al. Comparative efficacy and distribution of lipid formulations of amphotericin B in experimental Candida albicans infection of the central nervous system. J Infect Dis. 2000;182(1):274–82.PubMedCrossRef
58.
Zurück zum Zitat Guo LS, Fielding RM, Lasic DD, et al. Novel antifungal drug delivery: stable amphotericin B-cholesteryl sulfate discs. Int J Pharm. 1991;75(1):45–54.CrossRef Guo LS, Fielding RM, Lasic DD, et al. Novel antifungal drug delivery: stable amphotericin B-cholesteryl sulfate discs. Int J Pharm. 1991;75(1):45–54.CrossRef
59.
Zurück zum Zitat Working PK, Amphotericin B. Colloidal dispersion. A pre-clinical review. Chemotherapy. 1999;45(Suppl 1):15–26.PubMedCrossRef Working PK, Amphotericin B. Colloidal dispersion. A pre-clinical review. Chemotherapy. 1999;45(Suppl 1):15–26.PubMedCrossRef
60.
Zurück zum Zitat Bowden RA, Cays M, Gooley T, et al. Phase 1 study of amphotericin B colloidal dispersion for the treatment of invasive fungal infections after marrow transplantation. J Infect Dis. 1996;173(5):1208–15.PubMedCrossRef Bowden RA, Cays M, Gooley T, et al. Phase 1 study of amphotericin B colloidal dispersion for the treatment of invasive fungal infections after marrow transplantation. J Infect Dis. 1996;173(5):1208–15.PubMedCrossRef
61.
Zurück zum Zitat Herbrecht R, Letscher V, Andres E, et al. Safety and efficacy of amphotericin B colloidal dispersion. Chemotherapy. 1999;45(Suppl 1):67–76.PubMedCrossRef Herbrecht R, Letscher V, Andres E, et al. Safety and efficacy of amphotericin B colloidal dispersion. Chemotherapy. 1999;45(Suppl 1):67–76.PubMedCrossRef
62.
Zurück zum Zitat Timmers GJ, Zweegman S, Simoons-Smit AM, et al. Amphotericin B colloidal dispersion (Amphocil) versus fluconazole for the prevention of fungal infection in neutropenic patients: data of a prematurely stopped clinical trial. Bone Marrow Transplant. 2000;25(8):879–84.PubMedCrossRef Timmers GJ, Zweegman S, Simoons-Smit AM, et al. Amphotericin B colloidal dispersion (Amphocil) versus fluconazole for the prevention of fungal infection in neutropenic patients: data of a prematurely stopped clinical trial. Bone Marrow Transplant. 2000;25(8):879–84.PubMedCrossRef
63.
Zurück zum Zitat Subirà M, Martino R, Gómez L, et al. Low-dose amphotericin B lipid complex vs. conventional amphotericin B for empirical antifungal therapy of neutropenic fever in patients with hematologic malignancies—a randomized, controlled trial. Eur J Haematol. 2004;72(5):342–7.PubMedCrossRef Subirà M, Martino R, Gómez L, et al. Low-dose amphotericin B lipid complex vs. conventional amphotericin B for empirical antifungal therapy of neutropenic fever in patients with hematologic malignancies—a randomized, controlled trial. Eur J Haematol. 2004;72(5):342–7.PubMedCrossRef
64.
Zurück zum Zitat Prentice HG, Hann IM, Herbrecht R, et al. A randomized comparison of liposomal versus conventional amphotericin B for the treatment of pyrexia of unknown origin in neutropenic patients. Br J Haematol. 1997;98(3):711–8.PubMedCrossRef Prentice HG, Hann IM, Herbrecht R, et al. A randomized comparison of liposomal versus conventional amphotericin B for the treatment of pyrexia of unknown origin in neutropenic patients. Br J Haematol. 1997;98(3):711–8.PubMedCrossRef
65.
Zurück zum Zitat Walsh TJ, Finberg RW, Arndt C, et al. Liposomal amphotericin B for empirical therapy in patients with persistent fever and neutropenia. N Engl J Med. 1999;340(10):764–71.PubMedCrossRef Walsh TJ, Finberg RW, Arndt C, et al. Liposomal amphotericin B for empirical therapy in patients with persistent fever and neutropenia. N Engl J Med. 1999;340(10):764–71.PubMedCrossRef
66.
Zurück zum Zitat Wingard JR, White MH, Anaissie E, L Amph/ABLC Collaborative Study Group, et al. A randomized, double-blind comparative trial evaluating the safety of liposomal amphotericin B versus amphotericin B lipid complex in the empirical treatment of febrile neutropenia. Clin Infect Dis. 2000;31(5):1155–63.PubMedCrossRef Wingard JR, White MH, Anaissie E, L Amph/ABLC Collaborative Study Group, et al. A randomized, double-blind comparative trial evaluating the safety of liposomal amphotericin B versus amphotericin B lipid complex in the empirical treatment of febrile neutropenia. Clin Infect Dis. 2000;31(5):1155–63.PubMedCrossRef
67.
Zurück zum Zitat White MH, Bowden RA, Sandler ES, et al. Randomized, double-blind clinical trial of amphotericin B colloidal dispersion vs. amphotericin B in the empirical treatment of fever and neutropenia. Clin Infect Dis. 1998;27(2):296–302.PubMedCrossRef White MH, Bowden RA, Sandler ES, et al. Randomized, double-blind clinical trial of amphotericin B colloidal dispersion vs. amphotericin B in the empirical treatment of fever and neutropenia. Clin Infect Dis. 1998;27(2):296–302.PubMedCrossRef
68.
Zurück zum Zitat Bowden R, Chandresekar P, White MH, et al. A double-blind, randomized, controlled trial of amphotericin B colloidal dispersion versus amphotericin B for treatment of invasive aspergillosis in immunocompromised patients. Clin Infect Dis. 2002;35(2):359–66.PubMedCrossRef Bowden R, Chandresekar P, White MH, et al. A double-blind, randomized, controlled trial of amphotericin B colloidal dispersion versus amphotericin B for treatment of invasive aspergillosis in immunocompromised patients. Clin Infect Dis. 2002;35(2):359–66.PubMedCrossRef
69.
Zurück zum Zitat White MH, Anaissie EJ, Kusne S, et al. Amphotericin B colloidal dispersion vs. amphotericin B as therapy for invasive aspergillosis. Clin Infect Dis. 1997;24(4):635–42.PubMed White MH, Anaissie EJ, Kusne S, et al. Amphotericin B colloidal dispersion vs. amphotericin B as therapy for invasive aspergillosis. Clin Infect Dis. 1997;24(4):635–42.PubMed
70.
Zurück zum Zitat Cornely OA, Maertens J, Bresnik M, for the AmBiLoad Trial Study Group, et al. Liposomal amphotericin B as initial therapy for invasive mold infection: a randomized trial comparing a high-loading dose regimen with standard dosing (AmBiLoad Trial). Clin Infect Dis. 2007;44(10):1289–306.PubMedCrossRef Cornely OA, Maertens J, Bresnik M, for the AmBiLoad Trial Study Group, et al. Liposomal amphotericin B as initial therapy for invasive mold infection: a randomized trial comparing a high-loading dose regimen with standard dosing (AmBiLoad Trial). Clin Infect Dis. 2007;44(10):1289–306.PubMedCrossRef
71.
Zurück zum Zitat Leenders AC, Daenen S, Jansen RLH, et al. Liposomal amphotericin B compared with amphotericin B deoxycholate in the treatment of documented and suspected neutropenia-associated invasive fungal infections. Br J Haematol. 1998;103(3):205–12.PubMedCrossRef Leenders AC, Daenen S, Jansen RLH, et al. Liposomal amphotericin B compared with amphotericin B deoxycholate in the treatment of documented and suspected neutropenia-associated invasive fungal infections. Br J Haematol. 1998;103(3):205–12.PubMedCrossRef
72.
Zurück zum Zitat Fleming RV, Kantarjian HM, Husni R, et al. Comparison of amphotericin B lipid complex (ABLC) vs. AmBisome in the treatment of suspected or documented fungal infections in patients with leukemia. Leukemia Lymphoma. 2001;40(5–6):511–20.PubMedCrossRef Fleming RV, Kantarjian HM, Husni R, et al. Comparison of amphotericin B lipid complex (ABLC) vs. AmBisome in the treatment of suspected or documented fungal infections in patients with leukemia. Leukemia Lymphoma. 2001;40(5–6):511–20.PubMedCrossRef
73.
Zurück zum Zitat Martín MT, Gavaldà J, López P, et al. Efficacy of high doses of liposomal amphotericin B in the treatment of experimental aspergillosis. J Antimicrob Chemother. 2003;52(6):1032–4.PubMedCrossRef Martín MT, Gavaldà J, López P, et al. Efficacy of high doses of liposomal amphotericin B in the treatment of experimental aspergillosis. J Antimicrob Chemother. 2003;52(6):1032–4.PubMedCrossRef
74.
Zurück zum Zitat Gavaldà J, Martín T, López P, et al. Efficacy of high loading doses of liposomal amphotericin B in the treatment of experimental invasive pulmonary aspergillosis. Clin Microbiol Infect. 2005;11(12):999–1004.PubMedCrossRef Gavaldà J, Martín T, López P, et al. Efficacy of high loading doses of liposomal amphotericin B in the treatment of experimental invasive pulmonary aspergillosis. Clin Microbiol Infect. 2005;11(12):999–1004.PubMedCrossRef
75.
Zurück zum Zitat Johnson PC, Wheat LJ, Cloud GA, for the U.S. National Institute of Allergy and Infectious Diseases Mycoses Study Group, et al. Safety and efficacy of liposomal amphotericin B compared with conventional amphotericin B for induction therapy of histoplasmosis in patients with AIDS. Ann Intern Med. 2002;137(2):105–9.PubMedCrossRef Johnson PC, Wheat LJ, Cloud GA, for the U.S. National Institute of Allergy and Infectious Diseases Mycoses Study Group, et al. Safety and efficacy of liposomal amphotericin B compared with conventional amphotericin B for induction therapy of histoplasmosis in patients with AIDS. Ann Intern Med. 2002;137(2):105–9.PubMedCrossRef
76.
Zurück zum Zitat Sharkey PK, Graybill JR, Johnson ES, et al. Amphotericin B lipid complex compared with amphotericin B in the treatment of cryptococcal meningitis in patients with AIDS. Clin Infect Dis. 1996;22(2):315–21.PubMedCrossRef Sharkey PK, Graybill JR, Johnson ES, et al. Amphotericin B lipid complex compared with amphotericin B in the treatment of cryptococcal meningitis in patients with AIDS. Clin Infect Dis. 1996;22(2):315–21.PubMedCrossRef
77.
Zurück zum Zitat Leenders AC, Reiss P, Portegies P, et al. Liposomal amphotericin B (AmBisome) compared with amphotericin B both followed by oral fluconazole in the treatment of AIDS-associated cryptococcal meningitis. AIDS. 1997;11(12):1463–71.PubMedCrossRef Leenders AC, Reiss P, Portegies P, et al. Liposomal amphotericin B (AmBisome) compared with amphotericin B both followed by oral fluconazole in the treatment of AIDS-associated cryptococcal meningitis. AIDS. 1997;11(12):1463–71.PubMedCrossRef
78.
Zurück zum Zitat Hamill RJ, Sobel JD, El-Sadr W, the AmBisome Cryptococcal Meningitis Study Group, et al. Comparison of 2 doses of liposomal amphotericin B and conventional amphotericin B deoxycholate for treatment of AIDS-associated acute cryptococcal meningitis: a randomized, double-blind clinical trial of efficacy and safety. Clin Infect Dis. 2010;51(2):225–32.PubMedCrossRef Hamill RJ, Sobel JD, El-Sadr W, the AmBisome Cryptococcal Meningitis Study Group, et al. Comparison of 2 doses of liposomal amphotericin B and conventional amphotericin B deoxycholate for treatment of AIDS-associated acute cryptococcal meningitis: a randomized, double-blind clinical trial of efficacy and safety. Clin Infect Dis. 2010;51(2):225–32.PubMedCrossRef
79.
Zurück zum Zitat den Boer M, Argaw D, Jannin J, et al. Leishmaniasis impact and treatment access. Clin Microbiol Infect. 2011;17(10):1471–7.CrossRef den Boer M, Argaw D, Jannin J, et al. Leishmaniasis impact and treatment access. Clin Microbiol Infect. 2011;17(10):1471–7.CrossRef
80.
Zurück zum Zitat Bern C, Adler-Moore J, Berenguer J, et al. Liposomal amphotericin B for the treatment of visceral leishmaniasis. Clin Infect Dis. 2006;43(7):917–24.PubMedCrossRef Bern C, Adler-Moore J, Berenguer J, et al. Liposomal amphotericin B for the treatment of visceral leishmaniasis. Clin Infect Dis. 2006;43(7):917–24.PubMedCrossRef
81.
Zurück zum Zitat Meyerhoff AUS. Food and Drug Administration approval of AmBisome (liposomal amphotericin B) for treatment of visceral leishmaniasis. Clin Infect Dis. 1999;28(1):42–8.PubMedCrossRef Meyerhoff AUS. Food and Drug Administration approval of AmBisome (liposomal amphotericin B) for treatment of visceral leishmaniasis. Clin Infect Dis. 1999;28(1):42–8.PubMedCrossRef
82.
Zurück zum Zitat Sundar S, Chakravarty J, Agarwal D, et al. Single-dose liposomal amphotericin B for visceral leishmaniasis in India. N Engl J Med. 2010;362(6):504–12.PubMedCrossRef Sundar S, Chakravarty J, Agarwal D, et al. Single-dose liposomal amphotericin B for visceral leishmaniasis in India. N Engl J Med. 2010;362(6):504–12.PubMedCrossRef
83.
Zurück zum Zitat Barrett JP, Vardulaki KA, Conlon C, The Amphotericin B Systematic Review Study Group, et al. A systematic review of the antifungal effectiveness and tolerability of amphotericin B formulations. Clin Ther. 2003;25(5):1295–320.PubMedCrossRef Barrett JP, Vardulaki KA, Conlon C, The Amphotericin B Systematic Review Study Group, et al. A systematic review of the antifungal effectiveness and tolerability of amphotericin B formulations. Clin Ther. 2003;25(5):1295–320.PubMedCrossRef
84.
Zurück zum Zitat Johansen HK, Gøtzsche PC. Amphotericin B lipid soluble formulations versus amphotericin B in cancer patients with neutropenia. Cochrane Database Syst Rev. 2000;(3):CD000969. doi:10.1002/14651858.CD000969. Johansen HK, Gøtzsche PC. Amphotericin B lipid soluble formulations versus amphotericin B in cancer patients with neutropenia. Cochrane Database Syst Rev. 2000;(3):CD000969. doi:10.​1002/​14651858.​CD000969.
85.
Zurück zum Zitat Girois SB, Chapuis F, Decullier E, et al. Adverse effects of antifungal therapies in invasive fungal infections: review and meta-analysis. Eur J Clin Microbiol Infect Dis. 2006;25(2):138–49.PubMedCrossRef Girois SB, Chapuis F, Decullier E, et al. Adverse effects of antifungal therapies in invasive fungal infections: review and meta-analysis. Eur J Clin Microbiol Infect Dis. 2006;25(2):138–49.PubMedCrossRef
86.
Zurück zum Zitat Safdar A, Ma J, Saliba F, et al. Drug-induced nephrotoxicity caused by amphotericin B lipid complex and liposomal amphotericin B: a review and meta-analysis. Medicine. 2010;89(4):236–44.PubMedCrossRef Safdar A, Ma J, Saliba F, et al. Drug-induced nephrotoxicity caused by amphotericin B lipid complex and liposomal amphotericin B: a review and meta-analysis. Medicine. 2010;89(4):236–44.PubMedCrossRef
Metadaten
Titel
Amphotericin B Formulations: A Comparative Review of Efficacy and Toxicity
verfasst von
Richard J. Hamill
Publikationsdatum
01.06.2013
Verlag
Springer International Publishing AG
Erschienen in
Drugs / Ausgabe 9/2013
Print ISSN: 0012-6667
Elektronische ISSN: 1179-1950
DOI
https://doi.org/10.1007/s40265-013-0069-4

Weitere Artikel der Ausgabe 9/2013

Drugs 9/2013 Zur Ausgabe