Skip to main content
Erschienen in: BMC Medical Genetics 1/2019

Open Access 01.12.2019 | Case report

An immunocompetent patient with a nonsense mutation in NHEJ1 gene

verfasst von: Hossein Esmaeilzadeh, Mohammad Reza Bordbar, Zahra Hojaji, Parham Habibzadeh, Dorna Afshinfar, Mohammad Miryounesi, Majid Fardaei, Mohammad Ali Faghihi

Erschienen in: BMC Medical Genetics | Ausgabe 1/2019

Abstract

Background

DNA double-strand breaks (DSBs) are among the most deleterious types of DNA damage. DSBs are repaired by homologous recombination or non-homologous end-joining (NHEJ). NHEJ, which is central to the process of V(D)J recombination is the principle pathway for DSB repair in higher eukaryotes. Mutations in NHEJ1 gene have been associated with severe combined immunodeficiency.

Case presentation

The patient was a 3.5-year-old girl, a product of consanguineous first-degree cousin marriage, who was homozygous for a nonsense mutation in NHEJ1 gene. She had initially presented with failure to thrive, proportional microcephaly as well as autoimmune hemolytic anemia (AIHA), which responded well to treatment with prednisolone. However, the patient was immunocompetent despite having this pathogenic mutation.

Conclusions

Herein, we report on a patient who was clinically immunocompetent despite having a pathogenic mutation in NHEJ1 gene. Our findings provided evidence for the importance of other end-joining auxiliary pathways that would function in maintaining genetic stability. Clinicians should therefore be aware that pathogenic mutations in NHEJ pathway are not necessarily associated with clinical immunodeficiency.
Abkürzungen
ACLA
Anticardiolipin antibody
AIHA
Autoimmune hemolytic anemia
ANA
Antinuclear antibody
ANCA
Anti-neutrophil cytoplasmic antibody
BCG
Bacillus Calmette–Guérin
CMV
Cytomegalovirus
DSB
Double-strand break
Ds-DNA
Double stranded DNA
DTP
Diphtheria, tetanus and pertussis
FTT
Failure to thrive
MMR
Measles, mumps, and rubella
NHEJ
Non-homologous end-joining
SCID
Severe combined immunodeficiency
WBC
White blood cell

Background

DNA double-strand breaks (DSBs), resulting in loss of considerable chromosomal regions, are among the most deleterious types of DNA damage. With an estimated rate of ten per day, DSBs can either be caused by DNA damaging agents such as reactive oxygen species or could be a part of physiological DNA recombination taking place in the immune system [1, 2]. V(D)J recombination is a process during which the highly diverse lymphocyte antigen receptors breed. One of the consequences of this process is DSB [3]. If left unrepaired, DSB will induce either apoptosis or cellular dysfunction [4].
DSBs are repaired by homologous recombination or non-homologous end-joining (NHEJ) [5]. Error-prone NHEJ, which is central to the process of V(D)J recombination, is the main pathway of DSB repair system in higher eukaryotes [5, 6]. Considering its major role in the immune system development, deficiency of NHEJ1 gene products manifests with absence of mature T and B lymphocytes, also known as “severe combined immunodeficiency” (SCID) [7]. Mutations in the NHEJ1 have been associated with the clinical phenotype of severe combined immunodeficiency with microcephaly, growth retardation, and sensitivity to ionizing radiation (Phenotype MIM # 611291). The patients reported so far have always presented with clinical manifestations such as failure to thrive (FTT), severe growth retardation, microcephaly, and autoimmune hemolytic anemia (AIHA) [810]. Herein, we report on a patient who was clinically immunocompetent despite having a pathogenic mutation in NHEJ1 gene.

Case presentation

The patient was a 3.5-year-old girl, a product of consanguineous first-degree cousin marriage, who was born at the gestational age of 38 weeks after a normal and uncomplicated pregnancy. She was in good health after delivery with a good APGAR score. Her weight, length and head circumference were 2500 g, 45 cm and 33 cm, respectively. Weight and length were below the 3rd percentile, whereas head circumference was slightly above the 15th percentile according to the national child growth curve. Failure to thrive and proportional microcephaly continued until one year of age but development was good. She presented with jaundice at the age of one year. Laboratory tests showed decreased WBC count (3000/mm3, reference range for age: 5000–15,500/mm3) with 64% neutrophil and decreased hemoglobin levels (11 g/dL, reference range for age: 12–14 g/dL). Furthermore, lab results revealed an MCV of 88.7 fL, platelet count of 261,000, ESR of 2 mm/h, reticulocyte count of 5.1%, a positive direct Coomb’s test, negative indirect Coomb’s test. Moreover, ACLA, ANA, ds-DNA, C3, C4, ANCA were within normal range. Osmotic fragility test was negative. Hb electrophoresis showed Hb-A1 of 91.8%, Hb-F of 5.7%, and Hb-A2 of 2.5%. Viral marker tests revealed negative cytomegalovirus (CMV) PCR and parvovirus antibody. The patient was referred to a hemato-oncologist with a diagnosis of AIHA and was subsequently treated with prednisolone. The patient’s parents did not mention any history of hospitalization or outpatient visits due to infectious disorders. Furthermore, according to her flow-cytometry results, low level of CD19+ and the very high level of CD56+ cells were detected. (Table 1). The immunophenotyping test were performed at the age of 2.5 years.
Table 1
The results of flow-cytometry and blood count
Laboratory Test
Values
Reference Values
CD3+ % (Absolute cell value)
40% (306)
39–73%
CD16+ % (Absolute cell value)
55% (420)
8.3–17.5%
CD45+ % (Absolute cell value)
88% (673)
 
CD11b + (adhesion molecules)
Normal
 
CD4+ % (Absolute cell value)
28% (214)
25–50%
CD8+ % (Absolute cell value)
8% (61)
11–32%
CD19+ % (Absolute cell value)
5% (38)
17–41%
CD14+ % (Absolute cell value)
12% (90)
3–6%
CD56+ (NK cells)
55
8.3–17.5
CD4/CD8
3.50
0.9–3.7
CD20+ % (Absolute cell value)
5% (42)
17–41%
Interferon γ receptor
Normal
 
WBC count
3100
5000–15,500
 Neutrophil % (Absolute cell value)
64.5% (2000)
 
 Lymphocyte % (Absolute cell value)
24.7% (765)
 
 Mix % (Absolute cell value)
10.8% (335)
 
Hb (g/dL)
11.1
12–14
Plt (103/mm3)
124
150–400
IgA (g/L)
1.234
0.13–1.02
IgG (g/L)
4.318
3.49–11.39
IgM (g/L)
0.967
0.40–2.29
DHR
180
> 50
As the patient was a result of a consanguineous marriage, a thorough family history was taken from her parents. Both her parents were in good health. The other sibling was a boy who presented with jaundice and anemia at the age of three months. He then presented with recurrent infections and passed away at the age of three years due to pneumonia. Serum PCR for CMV was positive in the deceased individual. No further clinical and laboratory data were available.
To evaluate the patient for the underlying genetic disorder, whole-exome sequencing was carried out on the DNA extracted from the proband’s peripheral blood sample. Whole Exome Sequencing (WES) was performed on Illumina NextSeq500 instrument. The sequencing results were subsequently analyzed using different bioinformatics tools and databases such as BWA aligner, GATK and ANNOVAR. Whole exome sequencing details of coverage and number of reads are provided in Table 2. It was found that the patient had a stop-gain mutation in NHEJ1 gene (NM_024782.2:c.532C > A). Sanger sequencing subsequently confirmed that the patient was homozygous and both parents were heterozygous for the mutation (Fig. 1).
Table 2
Whole Exome Sequencing detail of coverage and number of reads
Type
Value
Type
Value
Total Reads
74,338,832
Percent reads on target
46.45%
Passed filter Unique Reads aligned
74,253,527
Percent Passed filter Unique Reads aligned
99.89%
Mean Target Coverage
39.07
Percent on Target
46.45%
Percent Duplicate
22.38%
Percent duplicate in analysis
0%
Capture Method
Whole exome sequencing
Run method
NextSeq 500
GC content
44%
Sequence length
125
Nucleotide Covered GTE_1
98%
Nucleotide Covered GTE_5
87%
Nucleotide Covered GTE_8
79%
Nucleotide Covered GTE_10
75%
Nucleotide Covered GTE_15
65%
Nucleotide Covered GTE_20
58%
Nucleotide Covered GTE_30
47%
Nucleotide Covered GTE_40
38%
Nucleotide Covered GTE_50
31%
Nucleotide Covered GTE_60
24%
Nucleotide Covered GTE_70
19%
Nucleotide Covered GTE_80
14%
Nucleotide Covered GTE_90
10%
Nucleotide Covered GTE_100
8%
GTE Greater or equal to #
On follow-up, the patient had growth and development retardation with her length/height, head circumference and weight being below the 3rd percentile corrected for the age. Except for axillary lymphadenitis following BCG vaccination, the patient had had full vaccination including BCG, HepB, polio, MMR and DTP without any complications. On the last follow-up at the age of three years, the patient’s height and weight were 86 cm and 9.1 kg, respectively—both below the 3rd percentile corrected for the age. However, she has not had any evidence of immunodeficiency, despite living a normal life without any special precautions to preserve the patient’s health.

Discussion and conclusion

Human cells are exposed to a wide variety of endogenous and exogenous DNA damaging agents. DSBs are considered one of the most severe forms of DNA damage, which could lead to cellular apoptosis or carcinogenesis, if left unrepaired [4, 6, 8]. DSBs are mostly repaired by either homologous recombination or non-homologous end-joining pathway [5]. Animal models evaluating the role of NHEJ pathway in the immune system have highlighted its importance in the immune system [11]. Animal models with defects in NHEJ have B and T lymphocyte maturation arrest and even embryonic lethality when accompanied by deficiencies in XRCC4/DNA-Ligase IV complex [1214]. Given the vital role of repairing DSBs, mutation in any of the NHEJ genes, cause disruption in the immune system development, particularly B cell and T cell maturation, resulting in SCID [6, 8]. SCID presents early during the first few months of life and displays with severe bacterial and opportunistic infections, particularly respiratory infections [9].
In addition, it has been proposed that NHEJ1 has an important role in human cerebral cortex development [15]. Decreased expression of NHEJ1 has been shown to lead to defects in neuronal migration and decreased width of external cortical layers [4]. Furthermore, NHEJ deficiency appears to be a risk factor for the development of malignancy. Defects in NHEJ in P53-deficient mice have been shown to perpetually lead to development of pro-B cell lymphomas [16].
During the embryonic period, all cells are in a hyper-mitotic state. Therefore, mutations in NHEJ1 commonly affect different cell types. Microcephaly, severe growth retardation, dysmorphic facial features and autoimmunity are reported alongside immunodeficiency [8, 17, 18]. To the best of our knowledge, the patient reported here is the first case with a homozygous pathogenic nonsense mutation (CADD score: 37) in NHEJ1 gene with a competent immune system. This mutation would lead to the production of a protein lacking about one-third of its C-terminal amino-acid sequence.
We reported a patient with a pathogenic stop-gain mutation in NHEJ1 who presented with AIHA, failure to thrive and microcephaly. However, she had no history of any bacterial or opportunistic infections. No previous history of respiratory infections, chronic diarrhea or any other complains was mentioned by her parents. The patient reported here had no history of prior hospital admission other than the one mentioned due to severe anemia. Buck, et al, reported a patient of Turkish origin with a similar mutation presenting with microcephaly and growth retardation and recurrent bacterial and opportunistic infections who had died at the age of four years due to septic shock [6]. Our findings highlight the importance of other end-joining auxiliary pathways such as polymerase θ-mediated end-joining, also known as a-EJ pathway [19, 20]. Although, due to the scarce number of individuals with deficiency in NHEJ, the exact role and function of a-EJ pathway is largely unknown, recent studies have emphasized its role in sustaining cell viability and genetic stability in case NHEJ is compromised.
All patients with defects in NHEJ reported to date, have been immunocompromised. Flow-cytometry in these patients demonstrates low T cell, very low or absent B cell and normal NK cell count. Serum immunoglobulin levels in these patients are generally low for IgG and IgA, and normal or high for IgM [3, 9, 18]. Our Patient had leukopenia with low level of CD19+ cells and very high level of CD56+ cells. In addition, IgA levels were mildly elevated. These findings might be a novel presentation. Further investigations to shed light on how these findings are compatible with immunocompetent phenotype are warranted. FTT and severe growth retardation have reported in all cases of NHEJ mutation [10]. Our patient’s weight, length/height and head circumference were below the 3rd percentile at birth and has been below the 3rd percentile on follow-up. Growth chart demonstrated that her growth pattern was not steady, as there were multiple periods of growth arrest. Her development was otherwise normal.
Microcephaly has been widely reported in previous studies, indicating the role of NHEJ gene in cerebral expansion [8]. NHEJ gene mutation leads to apoptotic death of post-mitotic neurons, causing CNS development issues, presenting itself with microcephaly, psychomotor retardation and ataxia [7, 17]. Our patient’s head circumference has always been below the 3rd percentile corrected for age. Her neurological development was otherwise normal and no finding in favor of developmental delay was noticed in her history or physical examination.
Live vaccines are absolutely contraindicated in patients with SCID as life-threatening complications could occur [21]. Our patient had complete vaccination record according to the national protocol including BCG, OPV and MMR without any complications except mild axillary lymphadenitis after BCG vaccination, which had resolved without medical intervention. Notably, vaccination against smallpox, chickenpox, influenza, and rotavirus is not part of Iran vaccination program.
Autoimmunity is common in previously reported patients with mutations in NHEJ genes; autoimmune cytopenia in particular is reported to be present in about a quarter of the patients [3, 22, 23]. The patient presented here was initially diagnosed with AIHA, but responded very well to oral prednisolone and required no further interventions.
In conclusion, our report highlights the importance of pathways other than NHEJ in DSB repair. Therefore, clinicians should be aware that pathogenic mutations in NHEJ pathway are not necessarily associated with clinical immunodeficiency.

Acknowledgments

The authors would like to thank the family members for participating in this study.

Funding

This study was partly supported by the US NIH NINDS R01NS081208-01A1 awarded to MAF. The study was also partly supported by the NIMAD research grant (940714) awarded to MAF. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Availability of data and materials

All data are available from the corresponding author on request.
The Ethics Committee of the Persian BayanGene Research and Training Center approved the study protocol. The parents signed a written informed consent to participate in this study. Written informed consent was obtained from the parents of the patient for the publication of this case report.
The parents of the affected patient have consented to the publication of the case and accompanying clinical and genetics data.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Lieber MR. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem. 2010;79:181–211.CrossRef Lieber MR. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem. 2010;79:181–211.CrossRef
2.
Zurück zum Zitat Lieber MR, Karanjawala ZE. Ageing, repetitive genomes and DNA damage. Nat Rev Mol Cell Biol. 2004;5(1):69–75.CrossRef Lieber MR, Karanjawala ZE. Ageing, repetitive genomes and DNA damage. Nat Rev Mol Cell Biol. 2004;5(1):69–75.CrossRef
3.
Zurück zum Zitat Gellert M. DNA double-strand breaks and hairpins in V(D)J recombination. Semin Immunol. 1994;6(3):125–30.CrossRef Gellert M. DNA double-strand breaks and hairpins in V(D)J recombination. Semin Immunol. 1994;6(3):125–30.CrossRef
4.
Zurück zum Zitat El Waly B, Buhler E, Haddad MR, Villard L. Nhej1 deficiency causes abnormal development of the cerebral cortex. Mol Neurobiol. 2015;52(1):771–82.CrossRef El Waly B, Buhler E, Haddad MR, Villard L. Nhej1 deficiency causes abnormal development of the cerebral cortex. Mol Neurobiol. 2015;52(1):771–82.CrossRef
5.
Zurück zum Zitat Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K, Linn S. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem. 2004;73:39–85.CrossRef Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K, Linn S. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem. 2004;73:39–85.CrossRef
6.
Zurück zum Zitat Buck D, Malivert L, de Chasseval R, Barraud A, Fondaneche MC, Sanal O, Plebani A, Stephan JL, Hufnagel M, le Deist F, et al. Cernunnos, a novel nonhomologous end-joining factor, is mutated in human immunodeficiency with microcephaly. Cell. 2006;124(2):287–99.CrossRef Buck D, Malivert L, de Chasseval R, Barraud A, Fondaneche MC, Sanal O, Plebani A, Stephan JL, Hufnagel M, le Deist F, et al. Cernunnos, a novel nonhomologous end-joining factor, is mutated in human immunodeficiency with microcephaly. Cell. 2006;124(2):287–99.CrossRef
7.
Zurück zum Zitat Revy P, Malivert L, de Villartay JP. Cernunnos-XLF, a recently identified non-homologous end-joining factor required for the development of the immune system. Curr Opin Allergy Clin Immunol. 2006;6(6):416–20.CrossRef Revy P, Malivert L, de Villartay JP. Cernunnos-XLF, a recently identified non-homologous end-joining factor required for the development of the immune system. Curr Opin Allergy Clin Immunol. 2006;6(6):416–20.CrossRef
8.
Zurück zum Zitat Cagdas D, Ozgur TT, Asal GT, Revy P, De Villartay JP, van der Burg M, Sanal O, Tezcan I. Two SCID cases with Cernunnos-XLF deficiency successfully treated by hematopoietic stem cell transplantation. Pediatr Transplant. 2012;16(5):E167–71.CrossRef Cagdas D, Ozgur TT, Asal GT, Revy P, De Villartay JP, van der Burg M, Sanal O, Tezcan I. Two SCID cases with Cernunnos-XLF deficiency successfully treated by hematopoietic stem cell transplantation. Pediatr Transplant. 2012;16(5):E167–71.CrossRef
9.
Zurück zum Zitat Sheikh F, Hawwari A, Alhissi S, Al Gazlan S, Al Dhekri H, Rehan Khaliq AM, Borrero E, El-Baik L, Arnaout R, Al-Mousa H, et al. Loss of NHEJ1 protein due to a novel splice site mutation in a family presenting with combined immunodeficiency, microcephaly, and growth retardation and literature review. J Clin Immunol. 2017;37(6):575–81.CrossRef Sheikh F, Hawwari A, Alhissi S, Al Gazlan S, Al Dhekri H, Rehan Khaliq AM, Borrero E, El-Baik L, Arnaout R, Al-Mousa H, et al. Loss of NHEJ1 protein due to a novel splice site mutation in a family presenting with combined immunodeficiency, microcephaly, and growth retardation and literature review. J Clin Immunol. 2017;37(6):575–81.CrossRef
10.
Zurück zum Zitat Turul T, Tezcan I, Sanal O. Cernunnos deficiency: a case report. J Investig Allergol Clin Immunol. 2011;21(4):313–6.PubMed Turul T, Tezcan I, Sanal O. Cernunnos deficiency: a case report. J Investig Allergol Clin Immunol. 2011;21(4):313–6.PubMed
11.
Zurück zum Zitat de Villartay JP, Fischer A, Durandy A. The mechanisms of immune diversification and their disorders. Nat Rev Immunol. 2003;3(12):962–72.CrossRef de Villartay JP, Fischer A, Durandy A. The mechanisms of immune diversification and their disorders. Nat Rev Immunol. 2003;3(12):962–72.CrossRef
12.
Zurück zum Zitat Bryans M, Valenzano MC, Stamato TD. Absence of DNA ligase IV protein in XR-1 cells: evidence for stabilization by XRCC4. Mutat Res. 1999;433(1):53–8.CrossRef Bryans M, Valenzano MC, Stamato TD. Absence of DNA ligase IV protein in XR-1 cells: evidence for stabilization by XRCC4. Mutat Res. 1999;433(1):53–8.CrossRef
13.
Zurück zum Zitat Dudley DD, Chaudhuri J, Bassing CH, Alt FW. Mechanism and control of V(D)J recombination versus class switch recombination: similarities and differences. Adv Immunol. 2005;86:43–112.CrossRef Dudley DD, Chaudhuri J, Bassing CH, Alt FW. Mechanism and control of V(D)J recombination versus class switch recombination: similarities and differences. Adv Immunol. 2005;86:43–112.CrossRef
14.
Zurück zum Zitat Revy P, Buck D, le Deist F, de Villartay JP. The repair of DNA damages/modifications during the maturation of the immune system: lessons from human primary immunodeficiency disorders and animal models. Adv Immunol. 2005;87:237–95.CrossRef Revy P, Buck D, le Deist F, de Villartay JP. The repair of DNA damages/modifications during the maturation of the immune system: lessons from human primary immunodeficiency disorders and animal models. Adv Immunol. 2005;87:237–95.CrossRef
15.
Zurück zum Zitat Cantagrel V, Lossi AM, Lisgo S, Missirian C, Borges A, Philip N, Fernandez C, Cardoso C, Figarella-Branger D, Moncla A, et al. Truncation of NHEJ1 in a patient with polymicrogyria. Hum Mutat. 2007;28(4):356–64.CrossRef Cantagrel V, Lossi AM, Lisgo S, Missirian C, Borges A, Philip N, Fernandez C, Cardoso C, Figarella-Branger D, Moncla A, et al. Truncation of NHEJ1 in a patient with polymicrogyria. Hum Mutat. 2007;28(4):356–64.CrossRef
16.
Zurück zum Zitat Ferguson DO, Alt FW. DNA double strand break repair and chromosomal translocation: lessons from animal models. Oncogene. 2001;20(40):5572–9.CrossRef Ferguson DO, Alt FW. DNA double strand break repair and chromosomal translocation: lessons from animal models. Oncogene. 2001;20(40):5572–9.CrossRef
17.
Zurück zum Zitat Berthet F, Caduff R, Schaad UB, Roten H, Tuchschmid P, Boltshauser E, Seger RA. A syndrome of primary combined immunodeficiency with microcephaly, cerebellar hypoplasia, growth failure and progressive pancytopenia. Eur J Pediatr. 1994;153(5):333–8.CrossRef Berthet F, Caduff R, Schaad UB, Roten H, Tuchschmid P, Boltshauser E, Seger RA. A syndrome of primary combined immunodeficiency with microcephaly, cerebellar hypoplasia, growth failure and progressive pancytopenia. Eur J Pediatr. 1994;153(5):333–8.CrossRef
18.
Zurück zum Zitat Cipe FE, Aydogmus C, Babayigit Hocaoglu A, Kilic M, Kaya GD, Yilmaz Gulec E: Cernunnos/XLF deficiency: a syndromic primary immunodeficiency. Case Rep Pediatr 2014, 2014:614238. Cipe FE, Aydogmus C, Babayigit Hocaoglu A, Kilic M, Kaya GD, Yilmaz Gulec E: Cernunnos/XLF deficiency: a syndromic primary immunodeficiency. Case Rep Pediatr 2014, 2014:614238.
19.
Zurück zum Zitat Wyatt DW, Feng W, Conlin MP, Yousefzadeh MJ, Roberts SA, Mieczkowski P, Wood RD, Gupta GP, Ramsden DA. Essential roles for polymerase theta-mediated end joining in the repair of chromosome breaks. Mol Cell. 2016;63(4):662–73.CrossRef Wyatt DW, Feng W, Conlin MP, Yousefzadeh MJ, Roberts SA, Mieczkowski P, Wood RD, Gupta GP, Ramsden DA. Essential roles for polymerase theta-mediated end joining in the repair of chromosome breaks. Mol Cell. 2016;63(4):662–73.CrossRef
20.
Zurück zum Zitat Chang HHY, Pannunzio NR, Adachi N, Lieber MR. Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat Rev Mol Cell Biol. 2017;18(8):495–506.CrossRef Chang HHY, Pannunzio NR, Adachi N, Lieber MR. Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat Rev Mol Cell Biol. 2017;18(8):495–506.CrossRef
21.
Zurück zum Zitat Marciano BE, Huang CY, Joshi G, Rezaei N, Carvalho BC, Allwood Z, Ikinciogullari A, Reda SM, Gennery A, Thon V, et al. BCG vaccination in patients with severe combined immunodeficiency: complications, risks, and vaccination policies. J Allergy Clin Immunol. 2014;133(4):1134–41.CrossRef Marciano BE, Huang CY, Joshi G, Rezaei N, Carvalho BC, Allwood Z, Ikinciogullari A, Reda SM, Gennery A, Thon V, et al. BCG vaccination in patients with severe combined immunodeficiency: complications, risks, and vaccination policies. J Allergy Clin Immunol. 2014;133(4):1134–41.CrossRef
22.
Zurück zum Zitat Notarangelo LD. Primary immunodeficiencies (PIDs) presenting with cytopenias. Hematology Am Soc Hematol Educ Program. 2009:139–43. Notarangelo LD. Primary immunodeficiencies (PIDs) presenting with cytopenias. Hematology Am Soc Hematol Educ Program. 2009:139–43.
23.
Zurück zum Zitat S A, M N, Bemanian MH, Shakeri R, Taghvaei B, Ghalebaghi B, Babaie D, Bahrami A, Fallahpour M, Esmaeilzadeh H, et al. Phenotyping and follow up of forty-seven Iranian patients with common variable immunodeficiency. Allergol Immunopathol (Madr). 2016;44(3):226–31.CrossRef S A, M N, Bemanian MH, Shakeri R, Taghvaei B, Ghalebaghi B, Babaie D, Bahrami A, Fallahpour M, Esmaeilzadeh H, et al. Phenotyping and follow up of forty-seven Iranian patients with common variable immunodeficiency. Allergol Immunopathol (Madr). 2016;44(3):226–31.CrossRef
Metadaten
Titel
An immunocompetent patient with a nonsense mutation in NHEJ1 gene
verfasst von
Hossein Esmaeilzadeh
Mohammad Reza Bordbar
Zahra Hojaji
Parham Habibzadeh
Dorna Afshinfar
Mohammad Miryounesi
Majid Fardaei
Mohammad Ali Faghihi
Publikationsdatum
01.12.2019
Verlag
BioMed Central
Erschienen in
BMC Medical Genetics / Ausgabe 1/2019
Elektronische ISSN: 1471-2350
DOI
https://doi.org/10.1186/s12881-019-0784-0

Weitere Artikel der Ausgabe 1/2019

BMC Medical Genetics 1/2019 Zur Ausgabe