Skip to main content
Erschienen in: BMC Oral Health 1/2019

Open Access 01.12.2019 | Research article

Anti-inflammatory effects of olanexidine gluconate on oral epithelial cells

verfasst von: Takuya Nii, Hiromichi Yumoto, Katsuhiko Hirota, Yoichiro Miyake

Erschienen in: BMC Oral Health | Ausgabe 1/2019

Abstract

Background

Periodontitis is a biofilm-induced chronic inflammatory condition of the periodontium. Chemokines produced by the innate and acquired immune responses play a significant role in disease progression. Reducing biofilm formation and inflammatory response caused by chemokines is vital for preventing and treating periodontitis. Previously, we observed that treatment with 0.1% olanexidine gluconate (OLG) inhibited biofilm formation on saliva-coated hydroxyapatite. This study aimed to evaluate the anti-inflammatory effect of OLG on oral epithelial cells.

Methods

We examined if OLG could inhibit the inflammatory responses caused by Porphyromonas gingivalis (P. gingivalis) lipopolysaccharide (LPS) and heat-killed P. gingivalis in immortalized human oral keratinocytes (RT7).

Results

Treatment of RT7 with non-cytotoxic OLG concentrations significantly inhibited the production of inflammatory chemokines such as interleukin 8 (IL-8), C-C motif ligand 20 (CCL20), and growth-related oncogene protein-α (GRO-α), which are stimulated by P. gingivalis LPS in a concentration-dependent manner. Moreover, the inhibitory effects were observed regardless of the treatment time with P. gingivalis LPS (6, 12, or 24 h). OLG also significantly inhibited chemokine production stimulated by heat-killed P. gingivalis.

Conclusions

The findings of this study suggest that treatment with OLG inhibits chronic inflammatory reactions in oral mucosal cells, such as periodontitis, caused by oral bacteria.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
CCL20
C-C motif ligand 20
GRO-α
Growth-related oncogene protein-α
HA
Hydroxyapatite
IL-8
Interleukin 8
LDH
Lactate dehydrogenase
LPS
Lipopolysaccharide
MOI
Multiplicity of infection
OLG
Olanexidine gluconate
P. gingivalis
Porphyromonas gingivalis
PAMPs
Pathogen-associated molecular patterns
PBS
Phosphate buffered saline
POEPOPG
Polyoxyethylene polyoxypropylene glycol
RT
Room temperature
RT7
immortalized human oral keratinocytes
Th17
T helper type 17
TLRs
Toll-like receptors

Background

Periodontitis is a chronic inflammatory condition triggered by microbial biofilm formation in the periodontal pocket, which induces periodontal tissue destruction and leads to tooth loss [1]. The inflammatory response in periodontitis is initiated by the innate immune response and progresses by the acquired and innate immune responses. Both immune responses are regulated by many factors, including chemokines that are involved in the migration of phagocytic cells to the site of infection. Therefore, to prevent and treat periodontitis, biofilm formation and the inflammatory response to chemokines must be reduced.
The innate immune response is initiated by toll-like receptors (TLRs) when biofilm-forming bacteria, such as Porphyromonas gingivalis infect the periodontal tissue [2, 3]. TLRs recognize various bacterial products called pathogen-associated molecular patterns (PAMPs), including lipopolysaccharide (LPS). Both in vitro and in vivo studies have reported that TLRs are expressed in the human gingival epithelium [47]. TLRs, which are highly expressed in the epithelial cells of the periodontal pocket tissue, were reported to recognize PAMPs of P. gingivalis and participate in the signaling pathway that induces the production of chemokines, such as interleukin-8 (IL-8) [4, 5].
IL-8 is produced during the initial steps of the inflammatory response and plays a crucial role in the recruitment and activation of neutrophils, which are major contributors to tissue damage during inflammatory diseases [810]. In recent years, growth-related oncogene protein-α (GRO-α) has been recognized for its chemotactic activity on neutrophils [11]. In a three-dimensional co-culture model of gingival epithelial cells, the expression levels of GRO-α were elevated in response to increasing inflammatory reactions [12]. Apart from the innate responses, the acquired immune response involving the invasion of T-cells and B-cells is also known to be involved in periodontitis.
The role of T helper type 17 (Th17) cells in the acquired immune response was recently reported, and their presence in periodontal tissue was confirmed [13]. The chemokine C-C motif ligand 20 (CCL20) is known to regulate Th17 cell migration and infiltration [14] and its expression, particularly in the basal layer of inflamed gingival epithelial cells, has been previously reported [15]. Therefore, the inhibition of chemokines appears to be essential in the treatment and prevention of periodontitis.
Olanedine® antiseptic solution 1.5% (Olanedine, Fig. 1) was launched in 2015 as an antiseptic for preoperative skin preparation. It contains olanexidine gluconate (OLG) [1-(3,4-dichlorobenzyl)-5-octylbiguanide gluconate] as an active ingredient. Olanedine is more effective bactericide than existing antiseptics in sites contaminated with blood [16] and acts against a broad spectrum of bacteria, including some that are drug-resistant [17, 18]. Besides, Olanedine has fast-acting and long-lasting bactericidal effects [16]. Based on these characteristics, OLG is considered an effective chemical plaque control agent in oral hygiene management.
In a previous study, we observed that 0.1% OLG inhibited the adherence of Streptococcus mutans on saliva-coated hydroxyapatite (HA) pellets. The results suggested that OLG covered the surface and reduced the hydrophobic interactions between S. mutans and saliva-coated HA-pellets, which form the salivary pellicle (unpublished). Since OLG can coat the surface and has a high binding affinity for LPS [17], we hypothesized that 0.1% OLG could inhibit the inflammatory response induced by bacteria or LPS stimulation, including the production of IL-8, GRO-α, and CCL20, in the oral mucosal epithelium. These anti-inflammatory effects might be valuable in preventing and treating periodontitis. Therefore, in this study, we examined if OLG inhibited the inflammatory reactions caused by P. gingivalis LPS or heat-killed P. gingivalis using immortalized human oral keratinocytes (RT7).

Methods

Cell lines and reagents

The 0.1% OLG formulation (Fig. 1) was composed of the solubilizing agent, polyoxyethylene polyoxypropylene glycol (POEPOPG), and the active ingredient olanexidine, and was prepared by Otsuka Pharmaceutical Factory, Inc. (Tokushima, Japan). Dilutions were prepared with phosphate buffered saline (PBS). The RT7 cell line, kindly provided by Dr. N. Kamata (Hiroshima University, Japan), was cultured in Keratinocyte-SFM (Thermo Fisher Scientific, MA, US) as described previously [19]. P. gingivalis strain ATCC 33277 was obtained from ATCC (Manassas, VA, US) and cultured in brain-heart infusion broth (Difco, Detroit, MI, US) supplemented with 0.5% yeast extract (Difco), hemin (10 μg/mL), and vitamin K (1 μg/mL) and harvested in the stationary phase. Bacterial numbers were determined spectrophotometrically using a standard curve adjusted with PBS (pH 7.4). Heat-killed P. gingivalis was prepared by heating a bacterial suspension (~ 1 × 109 cells/mL) for 10 min at 65 °C. P. gingivalis LPS purified by a standard preparation is a TLR2 and TLR4-specific ligand and was commercially obtained from InvivoGen (San Diego, CA, US).

Cytotoxicity test

RT7 were cultured to confluent monolayers in 24-well plates. After the aspiration of the medium, 0.2 mL of OLG at each concentration was added to the RT7 monolayer in each well and left to stand for 1 min at room temperature (RT). After the aspiration of OLG, fresh medium (0.5 mL/well) was added and RT7 monolayers were cultured further. After 6, 12, and 24 h of cultivation, total culture supernatants were collected to determine the concentration of lactate dehydrogenase (LDH) using the LDH cytotoxicity assay kit (Cayman Chemical Co., MI, US). At 24 h, the cell morphology of the cultures was observed using an inverted microscope (Nikon ECLIPSE TS100LED-F, Tokyo, Japan). RT7 monolayers, treated with 0.1% Triton X-100 for 10 min at RT, were used as a positive control in the cytotoxicity test.

Measurement of inflammatory chemokines

We added fresh medium with 1 μg/mL P. gingivalis LPS (0.5 mL/well) to RT7 monolayers treated with 10 or 50 μg/mL OLG (1 min at RT). After 6, 12, and 24 h of incubation, total culture supernatants were collected to determine the concentration of IL-8, CCL20, and GRO-α using an ELISA kit (R&D systems, MN, US). To measure the cytokines stimulated with heat-killed P. gingivalis, fresh medium containing heat-killed P. gingivalis at a multiplicity of infection (MOI) of 10 were added to the RT7 monolayer treated with 50 μg/mL OLG (1 min at RT).

Statistical analysis

All statistical analyses were performed using the unpaired Student’s t-test and GraphPad Prism (GraphPad Software, Inc. La Jolla, CA, USA). Differences were considered significant when the probability value was less than 5% (p < 0.05).

Results

Cytotoxicity of OLG on oral epithelial cells

OLG concentrations less than or equal to 50 μg/mL showed no cytotoxic effects on the morphology of the cells (Fig. 2). The LDH concentrations corroborated this observation (Figs. 3 and 4). Upon morphological analysis, cytotoxicity was observed at concentrations higher than 100 μg/mL OLG; however, no LDH cytotoxicity was observed even at 1000 μg/mL OLG.

Inhibitory effect of OLG on the production of chemokines IL-8, CCL20, and GRO-α

OLG treatment significantly inhibited the production of IL-8, CCL20, and GRO-α after 24 h of stimulation by P. gingivalis LPS in a concentration-dependent manner (Fig. 5). Furthermore, treatment with 50 μg/mL OLG significantly inhibited the production of chemokines after stimulation by 1 μg/mL P. gingivalis LPS at all time points (6, 12, and 24 h) (Fig. 6).
As observed with P. gingivalis LPS, 50 μg/mL OLG treatment significantly inhibited the production of IL-8, CCL20, and GRO-α after stimulation for 24 h with heat-killed P. gingivalis (Fig. 7).

Discussion

We examined the cytotoxic effects of OLG on RT7 and whether OLG inhibited the inflammatory responses stimulated by P. gingivalis LPS or heat-killed P. gingivalis. Microscopic observation of cell morphology and the LDH cytotoxicity assay showed that up to 50 μg/mL of OLG (1 min at RT) were non-cytotoxic. Inconsistencies among the results of morphological analysis and LDH cytotoxicity analysis at 1000 μg/mL OLG could be due to the mode of action of OLG, which causes protein denaturation as is common in other antiseptics.
Recent research indicated that OLG disrupts bacterial membrane integrity and denatures proteins at relatively high concentrations (≥160 μg/mL) [17]. High concentrations of OLG could aggregate RT7 cells by protein denaturation, which prevents the release of LDH. Therefore, the amount of LDH released at 500 and 1000 μg/mL of OLG would be less than that released at 250 μg/mL or lower concentrations. To validate this, we confirmed that the released LDH was detected in the discarded medium after 1 min treatment of OLG (data not shown). When we analyzed the effects of long-term exposure (8–24 h at RT) to OLG, we detected cytotoxicity at lower concentrations (≥5 μg/mL). However, the results of this study suggest that a short exposure period of approximately 1 min is sufficient for the antiseptic to have an adequate effect, and therefore it would not be necessary to use it in conditions that would cause cytotoxicity.
Concerning the inflammatory responses, it was reported that oral and gingival epithelial cells stimulated with P. gingivalis LPS or heat-killed P. gingivalis had an increased mRNA expression and secretion of pro-inflammatory cytokines, including IL-8 [2022]. In this study, the measurement of inflammatory chemokine levels showed that OLG at 10 and 50 μg/mL significantly inhibited the production of IL-8, CCL20, and GRO-α in RT7 cells stimulated with P. gingivalis LPS or heat-killed P. gingivalis. We performed the same experiment using Escherichia coli LPS (ultrapure LPS, E. coli 0111:B4, InvivoGen, San Diego, CA, US) to determine whether the anti-inflammatory effects of OLG were P. gingivalis LPS-specific. Results for E. coli LPS were the same as for P. gingivalis LPS; 10 and 50 μg/mL OLG significantly inhibited the production of IL-8, CCL20, and GRO-α in E. coli LPS-stimulated RT7 cells (Fig. 8). Considering past report [17], our results suggest that OLG inhibits LPS-induced inflammation in RT7 cells regardless of the bacterial species. In some experiments, the statistical data show minimal differences between untreated samples and those treated with OLG, even in cases of non-stimulation with P. gingivalis LPS or heat-killed P. gingivalis. However, we considered that there are no physiological differences based on the initial low expression levels of the different chemokines.
Chlorhexidine, one of the most effective antiseptics, was also reported to inhibit the inflammatory chemokine IL-8 at both mRNA and protein levels in oral epithelial cells. This effect conforms to the mechanism of action of chlorhexidine, which shows an immediate bactericidal activity, combined with prolonged bacteriostatic action, due to absorption on the active surface [23, 24]. Further experiments such as the analysis of the mRNA expression of TLR2 or 4 are needed to understand the mechanism underlying OLG anti-inflammatory action entirely. However, the results of this study and previous studies suggest that OLG exhibits inhibitory effects on the oral inflammatory response to LPS from P. gingivalis, a major pathogen causing periodontitis, by forming a protective layer over the gingival epithelial cells and through its bactericidal activity.
To fully understand the effects of utilizing 0.1% OLG in the clinical practice, we would need to perform in vivo studies. However, since chlorhexidine has been approved for the management of gingivitis, the use of 0.1% OLG as a new chemical plaque-control agent for oral hygiene management to prevent oral infections, including dental caries and periodontal diseases, should be expected in the future.

Conclusion

OLG treatment inhibited the production of chemokines IL-8, CCL20, and GRO-α in oral epithelial cells stimulated with P. gingivalis LPS or heat-killed P. gingivalis in vitro.

Acknowledgements

We would like to thank Dr. N. Kamata (Hiroshima University, Japan) for kindly providing the RT7 cell line, Editage (www.​editage.​jp) for English language editing, and Hiroko Inoue and Yoshie Tsubotani (Otsuka Pharmaceutical Factory, Inc., Japan) for their helpful suggestions.
To establish RT7 cell line, buccal mucosal epithelial cells was collected from a healthy adult volunteer who gave a written informed consent following the guidance of the Ethics Committee of Tokushima University Hospital.
Not applicable.

Competing interests

TN is an employee of Otsuka Pharmaceutical Factory, Inc., which founded this study.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Offenbacher S. Periodontal diseases: pathogenesis. Ann Periodontol. 1996;1:821–78.CrossRef Offenbacher S. Periodontal diseases: pathogenesis. Ann Periodontol. 1996;1:821–78.CrossRef
2.
Zurück zum Zitat Hirschfeld M, Weis JJ, Toshchakov V, Salkowski CA, Cody MJ, Ward DC, et al. Signaling by toll-like receptor 2 and 4 agonists results in differential gene expression in murine macrophages. Infect Immun. 2001;69:1477–82.CrossRef Hirschfeld M, Weis JJ, Toshchakov V, Salkowski CA, Cody MJ, Ward DC, et al. Signaling by toll-like receptor 2 and 4 agonists results in differential gene expression in murine macrophages. Infect Immun. 2001;69:1477–82.CrossRef
3.
Zurück zum Zitat Holt SC, Kesavalu L, Walker S, Genco CA. Virulence factors of Porphyromonas gingivalis. Periodontol 2000. 1999;20:168–238.CrossRef Holt SC, Kesavalu L, Walker S, Genco CA. Virulence factors of Porphyromonas gingivalis. Periodontol 2000. 1999;20:168–238.CrossRef
4.
Zurück zum Zitat Ren L, Leung WK, Darveau RP, Jin L. The expression profile of lipopolysaccharide-binding protein, membrane-bound CD14, and toll-like receptors 2 and 4 in chronic periodontitis. J Periodontol. 2005;76:1950–9.CrossRef Ren L, Leung WK, Darveau RP, Jin L. The expression profile of lipopolysaccharide-binding protein, membrane-bound CD14, and toll-like receptors 2 and 4 in chronic periodontitis. J Periodontol. 2005;76:1950–9.CrossRef
5.
Zurück zum Zitat Kusumoto Y, Hirano H, Saitoh K, Yamada S, Takedachi M, Nozaki T, et al. Human gingival epithelial cells produce chemotactic factors interleukin-8 and monocyte chemo attractant protein-1 after stimulation with Porphyromonas gingivalis via toll-like receptor 2. J Periodontol. 2004;75:370–9.CrossRef Kusumoto Y, Hirano H, Saitoh K, Yamada S, Takedachi M, Nozaki T, et al. Human gingival epithelial cells produce chemotactic factors interleukin-8 and monocyte chemo attractant protein-1 after stimulation with Porphyromonas gingivalis via toll-like receptor 2. J Periodontol. 2004;75:370–9.CrossRef
6.
Zurück zum Zitat Sugawara Y, Uehara A, Fujimoto Y, Kusumoto S, Fukase K, Shibata K, et al. Toll-like receptors, NOD1, and NOD2 in oral epithelial cells. J Dent Res. 2006;85:524–9.CrossRef Sugawara Y, Uehara A, Fujimoto Y, Kusumoto S, Fukase K, Shibata K, et al. Toll-like receptors, NOD1, and NOD2 in oral epithelial cells. J Dent Res. 2006;85:524–9.CrossRef
7.
Zurück zum Zitat Beklen A, Hukkanen M, Richardson R, Konttinen YT. Immunohistochemical localization of toll-like receptors 1-10 in periodontitis. Oral Microbiol Immunol. 2008;23:425–31.CrossRef Beklen A, Hukkanen M, Richardson R, Konttinen YT. Immunohistochemical localization of toll-like receptors 1-10 in periodontitis. Oral Microbiol Immunol. 2008;23:425–31.CrossRef
8.
Zurück zum Zitat Baggiolini M. Chemokines and leukocyte traffic. Nature. 1998;392:565–8.CrossRef Baggiolini M. Chemokines and leukocyte traffic. Nature. 1998;392:565–8.CrossRef
9.
Zurück zum Zitat Mitchell GB, Albright BN, Caswell JL. Effect of interleukin-8 and granulocyte colony-stimulating factor on priming and activation of bovine neutrophils. Infect Immun. 2003;71:1643–9.CrossRef Mitchell GB, Albright BN, Caswell JL. Effect of interleukin-8 and granulocyte colony-stimulating factor on priming and activation of bovine neutrophils. Infect Immun. 2003;71:1643–9.CrossRef
10.
Zurück zum Zitat Baggiolini M, Dewald B, Moser B. Interleukin-8 and related chemotactic cytokines--CXC and CC chemokines. Adv Immunol. 1994;55:97–179.CrossRef Baggiolini M, Dewald B, Moser B. Interleukin-8 and related chemotactic cytokines--CXC and CC chemokines. Adv Immunol. 1994;55:97–179.CrossRef
11.
Zurück zum Zitat Moser B, Clark-Lewis I, Zwahlen R, Baggiolini M. Neutrophil-activating properties of the melanoma growth-stimulatory activity. J Exp Med. 1990;171:1797–802.CrossRef Moser B, Clark-Lewis I, Zwahlen R, Baggiolini M. Neutrophil-activating properties of the melanoma growth-stimulatory activity. J Exp Med. 1990;171:1797–802.CrossRef
12.
Zurück zum Zitat Lombardo Bedran TB, Palomari Spolidorio D, Grenier D. Green tea polyphenol epigallocatechin-3-gallate and cranberry proanthocyanidins act in synergy with cathelicidin (LL-37) to reduce the LPS-induced inflammatory response in a three-dimensional co-culture model of gingival epithelial cells and fibroblasts. Arch Oral Biol. 2015;60:845–53.CrossRef Lombardo Bedran TB, Palomari Spolidorio D, Grenier D. Green tea polyphenol epigallocatechin-3-gallate and cranberry proanthocyanidins act in synergy with cathelicidin (LL-37) to reduce the LPS-induced inflammatory response in a three-dimensional co-culture model of gingival epithelial cells and fibroblasts. Arch Oral Biol. 2015;60:845–53.CrossRef
13.
Zurück zum Zitat Cardoso CR, Garlet GP, Crippa GE, Rosa AL, Júnior WM, Rossi MA, et al. Evidence of the presence of T helper type 17 cells in chronic lesions of human periodontal disease. Oral Microbiol Immunol. 2009;24:1–6.CrossRef Cardoso CR, Garlet GP, Crippa GE, Rosa AL, Júnior WM, Rossi MA, et al. Evidence of the presence of T helper type 17 cells in chronic lesions of human periodontal disease. Oral Microbiol Immunol. 2009;24:1–6.CrossRef
14.
Zurück zum Zitat Hirota K, Yoshitomi H, Hashimoto M, Maeda S, Teradaira S, Sugimoto N, et al. Preferential recruitment of CCR6-expressing Th17 cells to inflamed joints via CCL20 in rheumatoid arthritis and its animal model. J Exp Med. 2007;204:2803–12.CrossRef Hirota K, Yoshitomi H, Hashimoto M, Maeda S, Teradaira S, Sugimoto N, et al. Preferential recruitment of CCR6-expressing Th17 cells to inflamed joints via CCL20 in rheumatoid arthritis and its animal model. J Exp Med. 2007;204:2803–12.CrossRef
15.
Zurück zum Zitat Hosokawa Y, Nakanishi T, Yamaguchi D, Takahashi K, Yumoto H, Ozaki K, et al. Macrophage inflammatory protein 3alpha-CC chemokine receptor 6 interactions play an important role in CD4+ T-cell accumulation in periodontal diseased tissue. Clin Exp Immunol. 2002;128:548–54.CrossRef Hosokawa Y, Nakanishi T, Yamaguchi D, Takahashi K, Yumoto H, Ozaki K, et al. Macrophage inflammatory protein 3alpha-CC chemokine receptor 6 interactions play an important role in CD4+ T-cell accumulation in periodontal diseased tissue. Clin Exp Immunol. 2002;128:548–54.CrossRef
16.
Zurück zum Zitat Nakata H, Tsubotani Y, Nii T, Hagi A, Inoue Y, Imamura T. Effects of olanexidine gluconate on preoperative skin preparation: an experimental study in cynomolgus monkeys. J Med Microbiol. 2017;66:678–85.CrossRef Nakata H, Tsubotani Y, Nii T, Hagi A, Inoue Y, Imamura T. Effects of olanexidine gluconate on preoperative skin preparation: an experimental study in cynomolgus monkeys. J Med Microbiol. 2017;66:678–85.CrossRef
17.
Zurück zum Zitat Hagi A, Iwata K, Nii T, Nakata H, Tsubotani Y, Inoue Y. Bactericidal effects and mechanism of action of olanexidine gluconate, a new antiseptic. Antimicrob Agents Chemother. 2015;59:4551–9.CrossRef Hagi A, Iwata K, Nii T, Nakata H, Tsubotani Y, Inoue Y. Bactericidal effects and mechanism of action of olanexidine gluconate, a new antiseptic. Antimicrob Agents Chemother. 2015;59:4551–9.CrossRef
18.
Zurück zum Zitat Inoue Y, Hagi A, Nii T, Tsubotani Y, Nakata H, Iwata K. Novel antiseptic compound OPB-2045G shows potent bactericidal activity against methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus both in vitro and in vivo: a pilot study in animals. J Med Microbiol. 2015;64:32–6.CrossRef Inoue Y, Hagi A, Nii T, Tsubotani Y, Nakata H, Iwata K. Novel antiseptic compound OPB-2045G shows potent bactericidal activity against methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus both in vitro and in vivo: a pilot study in animals. J Med Microbiol. 2015;64:32–6.CrossRef
19.
Zurück zum Zitat Fujimoto R, Kamata N, Yokoyama K, Taki M, Tomonari M, Tsutsumi S, et al. Establishment of immortalized human oral keratinocytes by gene transfer of a telomerase component. J Jpn Oral Muco Membr. 2002;8:1–8.CrossRef Fujimoto R, Kamata N, Yokoyama K, Taki M, Tomonari M, Tsutsumi S, et al. Establishment of immortalized human oral keratinocytes by gene transfer of a telomerase component. J Jpn Oral Muco Membr. 2002;8:1–8.CrossRef
20.
Zurück zum Zitat Sugiyama A, Uehara A, Iki K, Matsushita K, Nakamura R, Ogawa T, et al. Activation of human gingival epithelial cells by cell-surface components of black-pigmented bacteria: augmentation of production of interleukin-8, granulocyte colony stimulating factor and granulocyte-macrophage colony-stimulating factor and expression of intercellular adhesion molecule 1. J Med Microbiol. 2002;51:27–33.CrossRef Sugiyama A, Uehara A, Iki K, Matsushita K, Nakamura R, Ogawa T, et al. Activation of human gingival epithelial cells by cell-surface components of black-pigmented bacteria: augmentation of production of interleukin-8, granulocyte colony stimulating factor and granulocyte-macrophage colony-stimulating factor and expression of intercellular adhesion molecule 1. J Med Microbiol. 2002;51:27–33.CrossRef
21.
Zurück zum Zitat Ohta K, Laborde NJ, Kajiya M, Shin J, Zhu T, Thondukolam AK, et al. Expression and possible immune-regulatory function of ghrelin in oral epithelium. J Dent Res. 2011;90:1286–92.CrossRef Ohta K, Laborde NJ, Kajiya M, Shin J, Zhu T, Thondukolam AK, et al. Expression and possible immune-regulatory function of ghrelin in oral epithelium. J Dent Res. 2011;90:1286–92.CrossRef
22.
Zurück zum Zitat Stathopoulou PG, Benakanakere MR, Galicia JC, Kinane DF. Epithelial cell pro-inflammatory cytokine response differs across dental plaque bacterial species. J Clin Periodontol. 2010;37:24–9.CrossRef Stathopoulou PG, Benakanakere MR, Galicia JC, Kinane DF. Epithelial cell pro-inflammatory cytokine response differs across dental plaque bacterial species. J Clin Periodontol. 2010;37:24–9.CrossRef
23.
Zurück zum Zitat Jenkins S, Addy M, Wade W. The mechanism of action of chlorhexidine. A study of plaque growth on enamel inserts in vivo. J Clin Periodontol. 1988;15:415–24.CrossRef Jenkins S, Addy M, Wade W. The mechanism of action of chlorhexidine. A study of plaque growth on enamel inserts in vivo. J Clin Periodontol. 1988;15:415–24.CrossRef
24.
Zurück zum Zitat Millhouse E, Jose A, Sherry L, Lappin DF, Patel N, Middleton AM, et al. Development of an in vitro periodontal biofilm model for assessing antimicrobial and host modulatory effects of bioactive molecules. BMC Oral Health. 2014;14:80.CrossRef Millhouse E, Jose A, Sherry L, Lappin DF, Patel N, Middleton AM, et al. Development of an in vitro periodontal biofilm model for assessing antimicrobial and host modulatory effects of bioactive molecules. BMC Oral Health. 2014;14:80.CrossRef
Metadaten
Titel
Anti-inflammatory effects of olanexidine gluconate on oral epithelial cells
verfasst von
Takuya Nii
Hiromichi Yumoto
Katsuhiko Hirota
Yoichiro Miyake
Publikationsdatum
01.12.2019
Verlag
BioMed Central
Erschienen in
BMC Oral Health / Ausgabe 1/2019
Elektronische ISSN: 1472-6831
DOI
https://doi.org/10.1186/s12903-019-0932-0

Weitere Artikel der Ausgabe 1/2019

BMC Oral Health 1/2019 Zur Ausgabe

Parodontalbehandlung verbessert Prognose bei Katheterablation

19.04.2024 Vorhofflimmern Nachrichten

Werden Personen mit Vorhofflimmern in der Blanking-Periode nach einer Katheterablation gegen eine bestehende Parodontitis behandelt, verbessert dies die Erfolgsaussichten. Dafür sprechen die Resultate einer prospektiven Untersuchung.

Invasive Zahnbehandlung: Wann eine Antibiotikaprophylaxe vor infektiöser Endokarditis schützt

11.04.2024 Endokarditis Nachrichten

Bei welchen Personen eine Antibiotikaprophylaxe zur Prävention einer infektiösen Endokarditis nach invasiven zahnärztlichen Eingriffen sinnvoll ist, wird diskutiert. Neue Daten stehen im Einklang mit den europäischen Leitlinienempfehlungen.

Zell-Organisatoren unter Druck: Mechanismen des embryonalen Zahnwachstums aufgedeckt

08.04.2024 Zahnmedizin Nachrichten

Der Aufbau von Geweben und Organen während der Embryonalentwicklung wird von den Zellen bemerkenswert choreografiert. Für diesen Prozess braucht es spezielle sogenannte „Organisatoren“. In einer aktuellen Veröffentlichung im Fachjournal Nature Cell Biology berichten Forschende durch welchen Vorgang diese Organisatoren im Gewebe entstehen und wie sie dann die Bildung von Zähnen orchestrieren.

Die Oralprophylaxe & Kinderzahnheilkunde umbenannt

11.03.2024 Kinderzahnmedizin Nachrichten

Infolge der Umbenennung der Deutschen Gesellschaft für Kinderzahnheilkunde in Deutsche Gesellschaft für Kinderzahnmedizin (DGKiZ) wird deren Mitgliederzeitschrift Oralprophylaxe & Kinderzahnheilkunde in Oralprophylaxe & Kinderzahnmedizin umbenannt. Aus diesem Grunde trägt die erste Ausgabe in 2024 erstmalig den neuen Titel.

Newsletter

Bestellen Sie unseren kostenlosen Newsletter Update Zahnmedizin und bleiben Sie gut informiert – ganz bequem per eMail.