Skip to main content
Erschienen in: Tumor Biology 6/2015

01.06.2015 | Review

Autophagy and its function in radiosensitivity

verfasst von: Yan Yang, Yuehua Yang, Xi Yang, Hongcheng Zhu, Qing Guo, Xiaochen Chen, Hao Zhang, Hongyan Cheng, Xinchen Sun

Erschienen in: Tumor Biology | Ausgabe 6/2015

Einloggen, um Zugang zu erhalten

Abstract

Autophagy differs from apoptosis and is independent of phagocytes by the appearance of autophagosomes, autolysosomes, and complete nuclei in the cell. This process significantly contributes to the antineoplastic effects of radiation. Radiation is an important strategy in cancer treatment; however, many types of cancer show radioresistance. The effects of radiotherapy are affected by factors, including the degree of tumor tissue hypoxia, the ability to repair DNA damage, and the presence of cancer stem cells. We review the relationships among autophagy, the three factors in cancer radiation, and the possible underlying molecular mechanisms. The therapeutic implications of these relationships and mechanisms in clinical settings are also discussed.
Literatur
1.
Zurück zum Zitat Dalby KN, Tekedereli I, Lopez-Berestein G, Ozpolat B. Targeting the prodeath and prosurvival functions of autophagy as novel therapeutic strategies in cancer. Autophagy. 2010;6:322–9.PubMedPubMedCentralCrossRef Dalby KN, Tekedereli I, Lopez-Berestein G, Ozpolat B. Targeting the prodeath and prosurvival functions of autophagy as novel therapeutic strategies in cancer. Autophagy. 2010;6:322–9.PubMedPubMedCentralCrossRef
2.
Zurück zum Zitat Hara T, Takamura A, Kishi C, Iemura S, Natsume T, Guan JL, et al. FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J Cell Biol. 2008;181:497–510.PubMedPubMedCentralCrossRef Hara T, Takamura A, Kishi C, Iemura S, Natsume T, Guan JL, et al. FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J Cell Biol. 2008;181:497–510.PubMedPubMedCentralCrossRef
3.
Zurück zum Zitat Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y, et al. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell. 2009;20:1981–91.PubMedPubMedCentralCrossRef Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y, et al. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell. 2009;20:1981–91.PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Hosokawa N, Sasaki T, Iemura S, Natsume T, Hara T, Mizushima N. Atg101, a novel mammalian autophagy protein interacting with Atg13. Autophagy. 2009;5:973–9.PubMedCrossRef Hosokawa N, Sasaki T, Iemura S, Natsume T, Hara T, Mizushima N. Atg101, a novel mammalian autophagy protein interacting with Atg13. Autophagy. 2009;5:973–9.PubMedCrossRef
5.
Zurück zum Zitat Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA, Mair W, et al. Phosphorylation of Ulk1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science (NY). 2011;331:456–61.CrossRef Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA, Mair W, et al. Phosphorylation of Ulk1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science (NY). 2011;331:456–61.CrossRef
6.
Zurück zum Zitat Kihara A, Noda T, Ishihara N, Ohsumi Y. Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J Cell Biol. 2001;152:519–30.PubMedPubMedCentralCrossRef Kihara A, Noda T, Ishihara N, Ohsumi Y. Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J Cell Biol. 2001;152:519–30.PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 2000;19:5720–8.PubMedPubMedCentralCrossRef Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 2000;19:5720–8.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Fujita N, Itoh T, Omori H, Fukuda M, Noda T, Yoshimori T. The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. Mol Biol Cell. 2008;19:2092–100.PubMedPubMedCentralCrossRef Fujita N, Itoh T, Omori H, Fukuda M, Noda T, Yoshimori T. The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. Mol Biol Cell. 2008;19:2092–100.PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Ichimura Y, Kirisako T, Takao T, Satomi Y, Shimonishi Y, Ishihara N, et al. A ubiquitin-like system mediates protein lipidation. Nature. 2000;408:488–92.PubMedCrossRef Ichimura Y, Kirisako T, Takao T, Satomi Y, Shimonishi Y, Ishihara N, et al. A ubiquitin-like system mediates protein lipidation. Nature. 2000;408:488–92.PubMedCrossRef
10.
Zurück zum Zitat Kirisako T, Ichimura Y, Okada H, Kabeya Y, Mizushima N, Yoshimori T, et al. The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway. J Cell Biol. 2000;151:263–76.PubMedPubMedCentralCrossRef Kirisako T, Ichimura Y, Okada H, Kabeya Y, Mizushima N, Yoshimori T, et al. The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway. J Cell Biol. 2000;151:263–76.PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Mizushima N, Yamamoto A, Hatano M, Kobayashi Y, Kabeya Y, Suzuki K, et al. Dissection of autophagosome formation using APG5-deficient mouse embryonic stem cells. J Cell Biol. 2001;152:657–68.PubMedPubMedCentralCrossRef Mizushima N, Yamamoto A, Hatano M, Kobayashi Y, Kabeya Y, Suzuki K, et al. Dissection of autophagosome formation using APG5-deficient mouse embryonic stem cells. J Cell Biol. 2001;152:657–68.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Koritzinsky M, Wouters BG. The roles of reactive oxygen species and autophagy in mediating the tolerance of tumor cells to cycling hypoxia. Semin Radiat Oncol. 2013;23:252–61.PubMedCrossRef Koritzinsky M, Wouters BG. The roles of reactive oxygen species and autophagy in mediating the tolerance of tumor cells to cycling hypoxia. Semin Radiat Oncol. 2013;23:252–61.PubMedCrossRef
13.
Zurück zum Zitat Gewirtz DA. The four faces of autophagy: implications for cancer therapy. Cancer Res. 2014;74:647–51.PubMedCrossRef Gewirtz DA. The four faces of autophagy: implications for cancer therapy. Cancer Res. 2014;74:647–51.PubMedCrossRef
14.
Zurück zum Zitat Marino G, Salvador-Montoliu N, Fueyo A, Knecht E, Mizushima N, Lopez-Otin C. Tissue-specific autophagy alterations and increased tumorigenesis in mice deficient in ATG4C/autophagin-3. J Biol Chem. 2007;282:18573–83.PubMedCrossRef Marino G, Salvador-Montoliu N, Fueyo A, Knecht E, Mizushima N, Lopez-Otin C. Tissue-specific autophagy alterations and increased tumorigenesis in mice deficient in ATG4C/autophagin-3. J Biol Chem. 2007;282:18573–83.PubMedCrossRef
15.
Zurück zum Zitat Honscheid P, Datta K, Muders MH. Autophagy: detection, regulation and its role in cancer and therapy response. Int J Radiat Biol. 2014;90:628–35.PubMedCrossRef Honscheid P, Datta K, Muders MH. Autophagy: detection, regulation and its role in cancer and therapy response. Int J Radiat Biol. 2014;90:628–35.PubMedCrossRef
16.
Zurück zum Zitat Kim JJ, Tannock IF. Repopulation of cancer cells during therapy: an important cause of treatment failure. Nat Rev Cancer. 2005;5:516–25.PubMedCrossRef Kim JJ, Tannock IF. Repopulation of cancer cells during therapy: an important cause of treatment failure. Nat Rev Cancer. 2005;5:516–25.PubMedCrossRef
17.
Zurück zum Zitat Chatterjee S, Willis N, Locks SM, Mott JH, Kelly CG. Dosimetric and radiobiological comparison of helical tomotherapy, forward-planned intensity-modulated radiotherapy and two-phase conformal plans for radical radiotherapy treatment of head and neck squamous cell carcinomas. Br J Radiol. 2011;84:1083–90.PubMedPubMedCentralCrossRef Chatterjee S, Willis N, Locks SM, Mott JH, Kelly CG. Dosimetric and radiobiological comparison of helical tomotherapy, forward-planned intensity-modulated radiotherapy and two-phase conformal plans for radical radiotherapy treatment of head and neck squamous cell carcinomas. Br J Radiol. 2011;84:1083–90.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Hasan M, Glees P. Ultrastructural features of the human frontal cortex neurons of maturing and hydrocephalic cerebrum. Archivio italiano di anatomia e di embriologia. Ital J Anat Embryol. 1990;95:17–26. Hasan M, Glees P. Ultrastructural features of the human frontal cortex neurons of maturing and hydrocephalic cerebrum. Archivio italiano di anatomia e di embriologia. Ital J Anat Embryol. 1990;95:17–26.
19.
Zurück zum Zitat Hu YL, Jahangiri A, Delay M, Aghi MK. Tumor cell autophagy as an adaptive response mediating resistance to treatments such as antiangiogenic therapy. Cancer Res. 2012;72:4294–9.PubMedPubMedCentralCrossRef Hu YL, Jahangiri A, Delay M, Aghi MK. Tumor cell autophagy as an adaptive response mediating resistance to treatments such as antiangiogenic therapy. Cancer Res. 2012;72:4294–9.PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Mo N, Lu YK, Xie WM, Liu Y, Zhou WX, Wang HX, et al. Inhibition of autophagy enhances the radiosensitivity of nasopharyngeal carcinoma by reducing Rad51 expression. Oncol Rep. 2014;32:1905–12.PubMed Mo N, Lu YK, Xie WM, Liu Y, Zhou WX, Wang HX, et al. Inhibition of autophagy enhances the radiosensitivity of nasopharyngeal carcinoma by reducing Rad51 expression. Oncol Rep. 2014;32:1905–12.PubMed
21.
Zurück zum Zitat Sun Q, Liu T, Yuan Y, Guo Z, Xie G, Du S, et al. MiR-200c inhibits autophagy and enhances radiosensitivity in breast cancer cells by targeting UBQLN1. Int J Cancer J Int Cancer. 2014. Sun Q, Liu T, Yuan Y, Guo Z, Xie G, Du S, et al. MiR-200c inhibits autophagy and enhances radiosensitivity in breast cancer cells by targeting UBQLN1. Int J Cancer J Int Cancer. 2014.
22.
Zurück zum Zitat Sun Y, Xing X, Liu Q, Wang Z, Xin Y, Zhang P, et al. Hypoxia-induced autophagy reduces radiosensitivity by the HIF-1alpha/miR-210/Bcl-2 pathway in colon cancer cells. Int J Oncol. 2014. Sun Y, Xing X, Liu Q, Wang Z, Xin Y, Zhang P, et al. Hypoxia-induced autophagy reduces radiosensitivity by the HIF-1alpha/miR-210/Bcl-2 pathway in colon cancer cells. Int J Oncol. 2014.
23.
Zurück zum Zitat Yuan X, Du J, Hua S, Zhang H, Gu C, Wang J, et al. Suppression of autophagy augments the radiosensitizing effects of STAT3 inhibition on human glioma cells. Exp Cell Res. 2014. Yuan X, Du J, Hua S, Zhang H, Gu C, Wang J, et al. Suppression of autophagy augments the radiosensitizing effects of STAT3 inhibition on human glioma cells. Exp Cell Res. 2014.
24.
Zurück zum Zitat Wu SY, Liu YW, Wang YK, Lin TH, Li YZ, Chen SH, et al. Ionizing radiation induces autophagy in human oral squamous cell carcinoma. J BUON: Off J Balkan Union Oncol. 2014;19:137–44. Wu SY, Liu YW, Wang YK, Lin TH, Li YZ, Chen SH, et al. Ionizing radiation induces autophagy in human oral squamous cell carcinoma. J BUON: Off J Balkan Union Oncol. 2014;19:137–44.
25.
Zurück zum Zitat Kim KW, Mutter RW, Cao C, Albert JM, Freeman M, Hallahan DE, et al. Autophagy for cancer therapy through inhibition of pro-apoptotic proteins and mammalian target of rapamycin signaling. J Biol Chem. 2006;281:36883–90.PubMedCrossRef Kim KW, Mutter RW, Cao C, Albert JM, Freeman M, Hallahan DE, et al. Autophagy for cancer therapy through inhibition of pro-apoptotic proteins and mammalian target of rapamycin signaling. J Biol Chem. 2006;281:36883–90.PubMedCrossRef
26.
Zurück zum Zitat Thomlinson RH, Gray LH. The histological structure of some human lung cancers and the possible implications for radiotherapy. Br J Cancer. 1955;9:539–49.PubMedPubMedCentralCrossRef Thomlinson RH, Gray LH. The histological structure of some human lung cancers and the possible implications for radiotherapy. Br J Cancer. 1955;9:539–49.PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Wijsman R, Kaanders JH, Oyen WJ, Bussink J. Hypoxia and tumor metabolism in radiation oncology: targets visualized by positron emission tomography. Q J Nucl Med Mol Imaging: Off Publ Ital Assoc Nucl Med (AIMN) Int Assoc of Radiopharmacol (IAR) Sect So. 2013;57:244–56. Wijsman R, Kaanders JH, Oyen WJ, Bussink J. Hypoxia and tumor metabolism in radiation oncology: targets visualized by positron emission tomography. Q J Nucl Med Mol Imaging: Off Publ Ital Assoc Nucl Med (AIMN) Int Assoc of Radiopharmacol (IAR) Sect So. 2013;57:244–56.
28.
Zurück zum Zitat Rouschop KM, van den Beucken T, Dubois L, Niessen H, Bussink J, Savelkouls K, et al. The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5. J Clin Invest. 2010;120:127–41.PubMedCrossRef Rouschop KM, van den Beucken T, Dubois L, Niessen H, Bussink J, Savelkouls K, et al. The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5. J Clin Invest. 2010;120:127–41.PubMedCrossRef
29.
Zurück zum Zitat He WS, Dai XF, Jin M, Liu CW, Rent JH. Hypoxia-induced autophagy confers resistance of breast cancer cells to ionizing radiation. Oncol Res. 2012;20:251–8.PubMedCrossRef He WS, Dai XF, Jin M, Liu CW, Rent JH. Hypoxia-induced autophagy confers resistance of breast cancer cells to ionizing radiation. Oncol Res. 2012;20:251–8.PubMedCrossRef
30.
Zurück zum Zitat Moeller BJ, Dreher MR, Rabbani ZN, Schroeder T, Cao Y, Li CY, et al. Pleiotropic effects of HIF-1 blockade on tumor radiosensitivity. Cancer Cell. 2005;8:99–110.PubMedCrossRef Moeller BJ, Dreher MR, Rabbani ZN, Schroeder T, Cao Y, Li CY, et al. Pleiotropic effects of HIF-1 blockade on tumor radiosensitivity. Cancer Cell. 2005;8:99–110.PubMedCrossRef
31.
Zurück zum Zitat Seagroves TN, Ryan HE, Lu H, Wouters BG, Knapp M, Thibault P, et al. Transcription factor HIF-1 is a necessary mediator of the pasteur effect in mammalian cells. Mol Cell Biol. 2001;21:3436–44.PubMedPubMedCentralCrossRef Seagroves TN, Ryan HE, Lu H, Wouters BG, Knapp M, Thibault P, et al. Transcription factor HIF-1 is a necessary mediator of the pasteur effect in mammalian cells. Mol Cell Biol. 2001;21:3436–44.PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Park CW, Hong SM, Kim ES, Kwon JH, Kim KT, Nam HG, et al. Bnip3 is degraded by Ulk1-dependent autophagy via mTORC1 and AMPK. Autophagy. 2013;9:345–60.PubMedPubMedCentralCrossRef Park CW, Hong SM, Kim ES, Kwon JH, Kim KT, Nam HG, et al. Bnip3 is degraded by Ulk1-dependent autophagy via mTORC1 and AMPK. Autophagy. 2013;9:345–60.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Vande Velde C, Cizeau J, Dubik D, Alimonti J, Brown T, Israels S, et al. Bnip3 and genetic control of necrosis-like cell death through the mitochondrial permeability transition pore. Mol Cell Biol. 2000;20:5454–68.PubMedPubMedCentralCrossRef Vande Velde C, Cizeau J, Dubik D, Alimonti J, Brown T, Israels S, et al. Bnip3 and genetic control of necrosis-like cell death through the mitochondrial permeability transition pore. Mol Cell Biol. 2000;20:5454–68.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Pattingre S, Levine B. Bcl-2 inhibition of autophagy: a new route to cancer? Cancer Res. 2006;66:2885–8.PubMedCrossRef Pattingre S, Levine B. Bcl-2 inhibition of autophagy: a new route to cancer? Cancer Res. 2006;66:2885–8.PubMedCrossRef
36.
Zurück zum Zitat Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell. 2005;122:927–39.PubMedCrossRef Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell. 2005;122:927–39.PubMedCrossRef
37.
Zurück zum Zitat Li Y, Wang Y, Kim E, Beemiller P, Wang CY, Swanson J, et al. Bnip3 mediates the hypoxia-induced inhibition on mammalian target of rapamycin by interacting with Rheb. J Biol Chem. 2007;282:35803–13.PubMedCrossRef Li Y, Wang Y, Kim E, Beemiller P, Wang CY, Swanson J, et al. Bnip3 mediates the hypoxia-induced inhibition on mammalian target of rapamycin by interacting with Rheb. J Biol Chem. 2007;282:35803–13.PubMedCrossRef
38.
Zurück zum Zitat Brugarolas J, Lei K, Hurley RL, Manning BD, Reiling JH, Hafen E, et al. Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev. 2004;18:2893–904.PubMedPubMedCentralCrossRef Brugarolas J, Lei K, Hurley RL, Manning BD, Reiling JH, Hafen E, et al. Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev. 2004;18:2893–904.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Liu L, Cash TP, Jones RG, Keith B, Thompson CB, Simon MC. Hypoxia-induced energy stress regulates mRNA translation and cell growth. Mol Cell. 2006;21:521–31.PubMedPubMedCentralCrossRef Liu L, Cash TP, Jones RG, Keith B, Thompson CB, Simon MC. Hypoxia-induced energy stress regulates mRNA translation and cell growth. Mol Cell. 2006;21:521–31.PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Schaaf MB, Cojocari D, Keulers TG, Jutten B, Starmans MH, de Jong MC, et al. The autophagy associated gene, Ulk1, promotes tolerance to chronic and acute hypoxia. Radiother Oncol: J Eur Soc Ther Radiol Oncol. 2013;108:529–34.CrossRef Schaaf MB, Cojocari D, Keulers TG, Jutten B, Starmans MH, de Jong MC, et al. The autophagy associated gene, Ulk1, promotes tolerance to chronic and acute hypoxia. Radiother Oncol: J Eur Soc Ther Radiol Oncol. 2013;108:529–34.CrossRef
42.
Zurück zum Zitat Katayama M, Kawaguchi T, Berger MS, Pieper RO. DNA damaging agent-induced autophagy produces a cytoprotective adenosine triphosphate surge in malignant glioma cells. Cell Death Differ. 2007;14:548–58.PubMedCrossRef Katayama M, Kawaguchi T, Berger MS, Pieper RO. DNA damaging agent-induced autophagy produces a cytoprotective adenosine triphosphate surge in malignant glioma cells. Cell Death Differ. 2007;14:548–58.PubMedCrossRef
43.
Zurück zum Zitat Maiuri MC, Zalckvar E, Kimchi A, Kroemer G. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol. 2007;8:741–52.PubMedCrossRef Maiuri MC, Zalckvar E, Kimchi A, Kroemer G. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol. 2007;8:741–52.PubMedCrossRef
44.
Zurück zum Zitat Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB, et al. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem. 2008;283:10892–903.PubMedPubMedCentralCrossRef Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB, et al. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem. 2008;283:10892–903.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Rouschop KM, Ramaekers CH, Schaaf MB, Keulers TG, Savelkouls KG, Lambin P, et al. Autophagy is required during cycling hypoxia to lower production of reactive oxygen species. Radiother Oncol: J Eur Soc Ther Radiol Oncol. 2009;92:411–6.CrossRef Rouschop KM, Ramaekers CH, Schaaf MB, Keulers TG, Savelkouls KG, Lambin P, et al. Autophagy is required during cycling hypoxia to lower production of reactive oxygen species. Radiother Oncol: J Eur Soc Ther Radiol Oncol. 2009;92:411–6.CrossRef
46.
Zurück zum Zitat Emerling BM, Weinberg F, Snyder C, Burgess Z, Mutlu GM, Viollet B, et al. Hypoxic activation of AMPK is dependent on mitochondrial ROS but independent of an increase in AMP/ATP ratio. Free Radic Biol Med. 2009;46:1386–91.PubMedPubMedCentralCrossRef Emerling BM, Weinberg F, Snyder C, Burgess Z, Mutlu GM, Viollet B, et al. Hypoxic activation of AMPK is dependent on mitochondrial ROS but independent of an increase in AMP/ATP ratio. Free Radic Biol Med. 2009;46:1386–91.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Gusarova GA, Trejo HE, Dada LA, Briva A, Welch LC, Hamanaka RB, et al. Hypoxia leads to Na, K-ATPase downregulation via Ca(2+) release-activated Ca(2+) channels and AMPK activation. Mol Cell Biol. 2011;31:3546–56.PubMedPubMedCentralCrossRef Gusarova GA, Trejo HE, Dada LA, Briva A, Welch LC, Hamanaka RB, et al. Hypoxia leads to Na, K-ATPase downregulation via Ca(2+) release-activated Ca(2+) channels and AMPK activation. Mol Cell Biol. 2011;31:3546–56.PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Mungai PT, Waypa GB, Jairaman A, Prakriya M, Dokic D, Ball MK, et al. Hypoxia triggers ampk activation through reactive oxygen species-mediated activation of calcium release-activated calcium channels. Mol Cell Biol. 2011;31:3531–45.PubMedPubMedCentralCrossRef Mungai PT, Waypa GB, Jairaman A, Prakriya M, Dokic D, Ball MK, et al. Hypoxia triggers ampk activation through reactive oxygen species-mediated activation of calcium release-activated calcium channels. Mol Cell Biol. 2011;31:3531–45.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Papandreou I, Lim AL, Laderoute K, Denko NC. Hypoxia signals autophagy in tumor cells via AMPK activity, independent of HIF-1, BNIP3, and BNIP3l. Cell Death Differ. 2008;15:1572–81.PubMedCrossRef Papandreou I, Lim AL, Laderoute K, Denko NC. Hypoxia signals autophagy in tumor cells via AMPK activity, independent of HIF-1, BNIP3, and BNIP3l. Cell Death Differ. 2008;15:1572–81.PubMedCrossRef
50.
Zurück zum Zitat Inoki K, Zhu T, Guan KL. TSC2 mediates cellular energy response to control cell growth and survival. Cell. 2003;115:577–90.PubMedCrossRef Inoki K, Zhu T, Guan KL. TSC2 mediates cellular energy response to control cell growth and survival. Cell. 2003;115:577–90.PubMedCrossRef
52.
53.
Zurück zum Zitat Huang X, Qi Q, Hua X, Li X, Zhang W, Sun H, et al. Beclin 1, an autophagy-related gene, augments apoptosis in u87 glioblastoma cells. Oncol Rep. 2014;31:1761–7.PubMed Huang X, Qi Q, Hua X, Li X, Zhang W, Sun H, et al. Beclin 1, an autophagy-related gene, augments apoptosis in u87 glioblastoma cells. Oncol Rep. 2014;31:1761–7.PubMed
54.
55.
Zurück zum Zitat Amaravadi RK, Yu D, Lum JJ, Bui T, Christophorou MA, Evan GI, et al. Autophagy inhibition enhances therapy-induced apoptosis in a myc-induced model of lymphoma. J Clin Invest. 2007;117:326–36.PubMedPubMedCentralCrossRef Amaravadi RK, Yu D, Lum JJ, Bui T, Christophorou MA, Evan GI, et al. Autophagy inhibition enhances therapy-induced apoptosis in a myc-induced model of lymphoma. J Clin Invest. 2007;117:326–36.PubMedPubMedCentralCrossRef
56.
Zurück zum Zitat Little CD, Nau MM, Carney DN, Gazdar AF, Minna JD. Amplification and expression of the c-myc oncogene in human lung cancer cell lines. Nature. 1983;306:194–6.PubMedCrossRef Little CD, Nau MM, Carney DN, Gazdar AF, Minna JD. Amplification and expression of the c-myc oncogene in human lung cancer cell lines. Nature. 1983;306:194–6.PubMedCrossRef
57.
58.
Zurück zum Zitat Prise KM, Schettino G, Folkard M, Held KD. New insights on cell death from radiation exposure. Lancet Oncol. 2005;6:520–8.PubMedCrossRef Prise KM, Schettino G, Folkard M, Held KD. New insights on cell death from radiation exposure. Lancet Oncol. 2005;6:520–8.PubMedCrossRef
59.
Zurück zum Zitat Selzer E, Hebar A. Basic principles of molecular effects of irradiation. Wien Med Wochenschr. 2012;162:47–54.PubMedCrossRef Selzer E, Hebar A. Basic principles of molecular effects of irradiation. Wien Med Wochenschr. 2012;162:47–54.PubMedCrossRef
61.
Zurück zum Zitat Lindahl T, Wood RD. Quality control by DNA repair. Science (NY). 1999;286:1897–905.CrossRef Lindahl T, Wood RD. Quality control by DNA repair. Science (NY). 1999;286:1897–905.CrossRef
62.
Zurück zum Zitat Park JM, Tougeron D, Huang S, Okamoto K, Sinicrope FA. Beclin 1 and UVRAG confer protection from radiation-induced DNA damage and maintain centrosome stability in colorectal cancer cells. PLoS One. 2014;9:e100819.PubMedCrossRef Park JM, Tougeron D, Huang S, Okamoto K, Sinicrope FA. Beclin 1 and UVRAG confer protection from radiation-induced DNA damage and maintain centrosome stability in colorectal cancer cells. PLoS One. 2014;9:e100819.PubMedCrossRef
63.
Zurück zum Zitat Szabo C, Dawson VL. Role of poly(adp-ribose) synthetase in inflammation and ischaemia-reperfusion. Trends Pharmacol Sci. 1998;19:287–98.PubMedCrossRef Szabo C, Dawson VL. Role of poly(adp-ribose) synthetase in inflammation and ischaemia-reperfusion. Trends Pharmacol Sci. 1998;19:287–98.PubMedCrossRef
64.
Zurück zum Zitat Calabrese CR, Almassy R, Barton S, Batey MA, Calvert AH, Canan-Koch S, et al. Anticancer chemosensitization and radiosensitization by the novel poly(adp-ribose) polymerase-1 inhibitor ag14361. J Natl Cancer Inst. 2004;96:56–67.PubMedCrossRef Calabrese CR, Almassy R, Barton S, Batey MA, Calvert AH, Canan-Koch S, et al. Anticancer chemosensitization and radiosensitization by the novel poly(adp-ribose) polymerase-1 inhibitor ag14361. J Natl Cancer Inst. 2004;96:56–67.PubMedCrossRef
65.
Zurück zum Zitat Polager S, Ofir M, Ginsberg D. E2f1 regulates autophagy and the transcription of autophagy genes. Oncogene. 2008;27:4860–4.PubMedCrossRef Polager S, Ofir M, Ginsberg D. E2f1 regulates autophagy and the transcription of autophagy genes. Oncogene. 2008;27:4860–4.PubMedCrossRef
66.
Zurück zum Zitat Albert JM, Cao C, Kim KW, Willey CD, Geng L, Xiao D, et al. Inhibition of poly(adp-ribose) polymerase enhances cell death and improves tumor growth delay in irradiated lung cancer models. Clin Cancer Res: Off J Am Assoc Cancer Res. 2007;13:3033–42.CrossRef Albert JM, Cao C, Kim KW, Willey CD, Geng L, Xiao D, et al. Inhibition of poly(adp-ribose) polymerase enhances cell death and improves tumor growth delay in irradiated lung cancer models. Clin Cancer Res: Off J Am Assoc Cancer Res. 2007;13:3033–42.CrossRef
67.
Zurück zum Zitat Alexander A, Cai SL, Kim J, Nanez A, Sahin M, MacLean KH, et al. ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS. Proc Natl Acad Sci U S A. 2010;107:4153–8.PubMedPubMedCentralCrossRef Alexander A, Cai SL, Kim J, Nanez A, Sahin M, MacLean KH, et al. ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS. Proc Natl Acad Sci U S A. 2010;107:4153–8.PubMedPubMedCentralCrossRef
68.
Zurück zum Zitat Munoz-Gamez JA, Rodriguez-Vargas JM, Quiles-Perez R, Aguilar-Quesada R, Martin-Oliva D, de Murcia G, et al. Parp-1 is involved in autophagy induced by DNA damage. Autophagy. 2009;5:61–74.PubMedCrossRef Munoz-Gamez JA, Rodriguez-Vargas JM, Quiles-Perez R, Aguilar-Quesada R, Martin-Oliva D, de Murcia G, et al. Parp-1 is involved in autophagy induced by DNA damage. Autophagy. 2009;5:61–74.PubMedCrossRef
69.
70.
Zurück zum Zitat Huang Q, Wu YT, Tan HL, Ong CN, Shen HM. A novel function of poly(adp-ribose) polymerase-1 in modulation of autophagy and necrosis under oxidative stress. Cell Death Differ. 2009;16:264–77.PubMedCrossRef Huang Q, Wu YT, Tan HL, Ong CN, Shen HM. A novel function of poly(adp-ribose) polymerase-1 in modulation of autophagy and necrosis under oxidative stress. Cell Death Differ. 2009;16:264–77.PubMedCrossRef
71.
Zurück zum Zitat Meley D, Bauvy C, Houben-Weerts JH, Dubbelhuis PF, Helmond MT, Codogno P, et al. Amp-activated protein kinase and the regulation of autophagic proteolysis. J Biol Chem. 2006;281:34870–9.PubMedCrossRef Meley D, Bauvy C, Houben-Weerts JH, Dubbelhuis PF, Helmond MT, Codogno P, et al. Amp-activated protein kinase and the regulation of autophagic proteolysis. J Biol Chem. 2006;281:34870–9.PubMedCrossRef
72.
Zurück zum Zitat Walker JW, Jijon HB, Madsen KL. Amp-activated protein kinase is a positive regulator of poly(adp-ribose) polymerase. Biochem Biophys Res Commun. 2006;342:336–41.PubMedCrossRef Walker JW, Jijon HB, Madsen KL. Amp-activated protein kinase is a positive regulator of poly(adp-ribose) polymerase. Biochem Biophys Res Commun. 2006;342:336–41.PubMedCrossRef
73.
Zurück zum Zitat Corradetti MN, Guan KL. Upstream of the mammalian target of rapamycin: do all roads pass through mTOR? Oncogene. 2006;25:6347–60.PubMedCrossRef Corradetti MN, Guan KL. Upstream of the mammalian target of rapamycin: do all roads pass through mTOR? Oncogene. 2006;25:6347–60.PubMedCrossRef
74.
Zurück zum Zitat Sarbassov DD, Ali SM, Sabatini DM. Growing roles for the mtor pathway. Curr Opin Cell Biol. 2005;17:596–603.PubMedCrossRef Sarbassov DD, Ali SM, Sabatini DM. Growing roles for the mtor pathway. Curr Opin Cell Biol. 2005;17:596–603.PubMedCrossRef
75.
Zurück zum Zitat Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, et al. Ampk phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell. 2008;30:214–26.PubMedPubMedCentralCrossRef Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, et al. Ampk phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell. 2008;30:214–26.PubMedPubMedCentralCrossRef
76.
78.
Zurück zum Zitat Mihara M, Erster S, Zaika A, Petrenko O, Chittenden T, Pancoska P, et al. P53 has a direct apoptogenic role at the mitochondria. Mol Cell. 2003;11:577–90.PubMedCrossRef Mihara M, Erster S, Zaika A, Petrenko O, Chittenden T, Pancoska P, et al. P53 has a direct apoptogenic role at the mitochondria. Mol Cell. 2003;11:577–90.PubMedCrossRef
80.
Zurück zum Zitat Tasdemir E, Chiara Maiuri M, Morselli E, Criollo A, D'Amelio M, Djavaheri-Mergny M, et al. A dual role of p53 in the control of autophagy. Autophagy. 2008;4:810–4.PubMedCrossRef Tasdemir E, Chiara Maiuri M, Morselli E, Criollo A, D'Amelio M, Djavaheri-Mergny M, et al. A dual role of p53 in the control of autophagy. Autophagy. 2008;4:810–4.PubMedCrossRef
81.
Zurück zum Zitat Tasdemir E, Maiuri MC, Galluzzi L, Vitale I, Djavaheri-Mergny M, D'Amelio M, et al. Regulation of autophagy by cytoplasmic p53. Nat Cell Biol. 2008;10:676–87.PubMedPubMedCentralCrossRef Tasdemir E, Maiuri MC, Galluzzi L, Vitale I, Djavaheri-Mergny M, D'Amelio M, et al. Regulation of autophagy by cytoplasmic p53. Nat Cell Biol. 2008;10:676–87.PubMedPubMedCentralCrossRef
82.
83.
Zurück zum Zitat Fortini P, Dogliotti E. Mechanisms of dealing with DNA damage in terminally differentiated cells. Mutat Res. 2010;685:38–44.PubMedCrossRef Fortini P, Dogliotti E. Mechanisms of dealing with DNA damage in terminally differentiated cells. Mutat Res. 2010;685:38–44.PubMedCrossRef
85.
Zurück zum Zitat Kang KB, Zhu C, Yong SK, Gao Q, Wong MC. Enhanced sensitivity of celecoxib in human glioblastoma cells: induction of DNA damage leading to p53-dependent g1 cell cycle arrest and autophagy. Mol Cancer. 2009;8:66.PubMedPubMedCentralCrossRef Kang KB, Zhu C, Yong SK, Gao Q, Wong MC. Enhanced sensitivity of celecoxib in human glioblastoma cells: induction of DNA damage leading to p53-dependent g1 cell cycle arrest and autophagy. Mol Cancer. 2009;8:66.PubMedPubMedCentralCrossRef
86.
Zurück zum Zitat Crighton D, Wilkinson S, O'Prey J, Syed N, Smith P, Harrison PR, et al. Dram, a p53-induced modulator of autophagy, is critical for apoptosis. Cell. 2006;126:121–34.PubMedCrossRef Crighton D, Wilkinson S, O'Prey J, Syed N, Smith P, Harrison PR, et al. Dram, a p53-induced modulator of autophagy, is critical for apoptosis. Cell. 2006;126:121–34.PubMedCrossRef
87.
Zurück zum Zitat Crighton D, Wilkinson S, Ryan KM. Dram links autophagy to p53 and programmed cell death. Autophagy. 2007;3:72–4.PubMedCrossRef Crighton D, Wilkinson S, Ryan KM. Dram links autophagy to p53 and programmed cell death. Autophagy. 2007;3:72–4.PubMedCrossRef
89.
Zurück zum Zitat Sanchez AM, Candau RB, Bernardi H. Foxo transcription factors: their roles in the maintenance of skeletal muscle homeostasis. Cell Mol Life Sci: CMLS. 2014;71:1657–71.PubMedCrossRef Sanchez AM, Candau RB, Bernardi H. Foxo transcription factors: their roles in the maintenance of skeletal muscle homeostasis. Cell Mol Life Sci: CMLS. 2014;71:1657–71.PubMedCrossRef
90.
Zurück zum Zitat Tran H, Brunet A, Grenier JM, Datta SR, Fornace Jr AJ, DiStefano PS, et al. DNA repair pathway stimulated by the forkhead transcription factor foxo3a through the gadd45 protein. Science (NY). 2002;296:530–4.CrossRef Tran H, Brunet A, Grenier JM, Datta SR, Fornace Jr AJ, DiStefano PS, et al. DNA repair pathway stimulated by the forkhead transcription factor foxo3a through the gadd45 protein. Science (NY). 2002;296:530–4.CrossRef
91.
Zurück zum Zitat Tsai WB, Chung YM, Takahashi Y, Xu Z, Hu MC. Functional interaction between foxo3a and atm regulates DNA damage response. Nat Cell Biol. 2008;10:460–7.PubMedPubMedCentralCrossRef Tsai WB, Chung YM, Takahashi Y, Xu Z, Hu MC. Functional interaction between foxo3a and atm regulates DNA damage response. Nat Cell Biol. 2008;10:460–7.PubMedPubMedCentralCrossRef
93.
Zurück zum Zitat Chiacchiera F, Simone C. The ampk-foxo3a axis as a target for cancer treatment. Cell Cycle. 2010;9:1091–6.PubMedCrossRef Chiacchiera F, Simone C. The ampk-foxo3a axis as a target for cancer treatment. Cell Cycle. 2010;9:1091–6.PubMedCrossRef
94.
Zurück zum Zitat Mammucari C, Milan G, Romanello V, Masiero E, Rudolf R, Del Piccolo P, et al. Foxo3 controls autophagy in skeletal muscle in vivo. Cell Metab. 2007;6:458–71.PubMedCrossRef Mammucari C, Milan G, Romanello V, Masiero E, Rudolf R, Del Piccolo P, et al. Foxo3 controls autophagy in skeletal muscle in vivo. Cell Metab. 2007;6:458–71.PubMedCrossRef
95.
Zurück zum Zitat Salminen A, Kaarniranta K. Regulation of the aging process by autophagy. Trends Mol Med. 2009;15:217–24.PubMedCrossRef Salminen A, Kaarniranta K. Regulation of the aging process by autophagy. Trends Mol Med. 2009;15:217–24.PubMedCrossRef
96.
Zurück zum Zitat Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL, et al. Cancer stem cells–perspectives on current status and future directions: Aacr workshop on cancer stem cells. Cancer Res. 2006;66:9339–44.PubMedCrossRef Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL, et al. Cancer stem cells–perspectives on current status and future directions: Aacr workshop on cancer stem cells. Cancer Res. 2006;66:9339–44.PubMedCrossRef
97.
Zurück zum Zitat Baumann M, Krause M, Hill R. Exploring the role of cancer stem cells in radioresistance. Nat Rev Cancer. 2008;8:545–54.PubMedCrossRef Baumann M, Krause M, Hill R. Exploring the role of cancer stem cells in radioresistance. Nat Rev Cancer. 2008;8:545–54.PubMedCrossRef
98.
Zurück zum Zitat Ueda Y, Wei FY, Hide T, Michiue H, Takayama K, Kaitsuka T, et al. Induction of autophagic cell death of glioma-initiating cells by cell-penetrating d-isomer peptides consisting of pas and the p53 c-terminus. Biomaterials. 2012;33:9061–9.PubMedCrossRef Ueda Y, Wei FY, Hide T, Michiue H, Takayama K, Kaitsuka T, et al. Induction of autophagic cell death of glioma-initiating cells by cell-penetrating d-isomer peptides consisting of pas and the p53 c-terminus. Biomaterials. 2012;33:9061–9.PubMedCrossRef
99.
Zurück zum Zitat Phillips TM, McBride WH, Pajonk F. The response of cd24(-/low)/cd44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst. 2006;98:1777–85.PubMedCrossRef Phillips TM, McBride WH, Pajonk F. The response of cd24(-/low)/cd44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst. 2006;98:1777–85.PubMedCrossRef
100.
Zurück zum Zitat Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003;63:5821–8.PubMed Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003;63:5821–8.PubMed
101.
Zurück zum Zitat Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, et al. Identification of human brain tumour initiating cells. Nature. 2004;432:396–401.PubMedCrossRef Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, et al. Identification of human brain tumour initiating cells. Nature. 2004;432:396–401.PubMedCrossRef
102.
Zurück zum Zitat Hemmati HD, Nakano I, Lazareff JA, Masterman-Smith M, Geschwind DH, Bronner-Fraser M, et al. Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci U S A. 2003;100:15178–83.PubMedPubMedCentralCrossRef Hemmati HD, Nakano I, Lazareff JA, Masterman-Smith M, Geschwind DH, Bronner-Fraser M, et al. Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci U S A. 2003;100:15178–83.PubMedPubMedCentralCrossRef
103.
Zurück zum Zitat Uchida N, Buck DW, He D, Reitsma MJ, Masek M, Phan TV, et al. Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci U S A. 2000;97:14720–5.PubMedPubMedCentralCrossRef Uchida N, Buck DW, He D, Reitsma MJ, Masek M, Phan TV, et al. Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci U S A. 2000;97:14720–5.PubMedPubMedCentralCrossRef
104.
Zurück zum Zitat Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN, et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature. 2009;458:780–3.PubMedPubMedCentralCrossRef Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN, et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature. 2009;458:780–3.PubMedPubMedCentralCrossRef
105.
Zurück zum Zitat Tothova Z, Gilliland DG. A radical bailout strategy for cancer stem cells. Cell Stem Cell. 2009;4:196–7.PubMedCrossRef Tothova Z, Gilliland DG. A radical bailout strategy for cancer stem cells. Cell Stem Cell. 2009;4:196–7.PubMedCrossRef
106.
Zurück zum Zitat Menendez JA, Joven J. Energy metabolism and metabolic sensors in stem cells: the metabostem crossroads of aging and cancer. Adv Exp Med Biol. 2014;824:117–40.PubMedCrossRef Menendez JA, Joven J. Energy metabolism and metabolic sensors in stem cells: the metabostem crossroads of aging and cancer. Adv Exp Med Biol. 2014;824:117–40.PubMedCrossRef
107.
Zurück zum Zitat Lomonaco SL, Finniss S, Xiang C, Decarvalho A, Umansky F, Kalkanis SN, et al. The induction of autophagy by gamma-radiation contributes to the radioresistance of glioma stem cells. Int J Cancer: J Int Cancer. 2009;125:717–22.CrossRef Lomonaco SL, Finniss S, Xiang C, Decarvalho A, Umansky F, Kalkanis SN, et al. The induction of autophagy by gamma-radiation contributes to the radioresistance of glioma stem cells. Int J Cancer: J Int Cancer. 2009;125:717–22.CrossRef
108.
Zurück zum Zitat Winardi D, Tsai HP, Chai CY, Chung CL, Loh JK, Chen YH, et al. Correlation of altered expression of the autophagy marker lc3b with poor prognosis in astrocytoma. Bio Med Res Int. 2014;2014:723176. Winardi D, Tsai HP, Chai CY, Chung CL, Loh JK, Chen YH, et al. Correlation of altered expression of the autophagy marker lc3b with poor prognosis in astrocytoma. Bio Med Res Int. 2014;2014:723176.
109.
Zurück zum Zitat Martinez-Outschoorn UE, Prisco M, Ertel A, Tsirigos A, Lin Z, Pavlides S, et al. Ketones and lactate increase cancer cell “stemness,” driving recurrence, metastasis and poor clinical outcome in breast cancer: achieving personalized medicine via metabolo-genomics. Cell Cycle. 2011;10:1271–86.PubMedPubMedCentralCrossRef Martinez-Outschoorn UE, Prisco M, Ertel A, Tsirigos A, Lin Z, Pavlides S, et al. Ketones and lactate increase cancer cell “stemness,” driving recurrence, metastasis and poor clinical outcome in breast cancer: achieving personalized medicine via metabolo-genomics. Cell Cycle. 2011;10:1271–86.PubMedPubMedCentralCrossRef
110.
111.
Zurück zum Zitat Gewirtz DA. An autophagic switch in the response of tumor cells to radiation and chemotherapy. Biochem Pharmacol. 2014;90:208–11.PubMedCrossRef Gewirtz DA. An autophagic switch in the response of tumor cells to radiation and chemotherapy. Biochem Pharmacol. 2014;90:208–11.PubMedCrossRef
Metadaten
Titel
Autophagy and its function in radiosensitivity
verfasst von
Yan Yang
Yuehua Yang
Xi Yang
Hongcheng Zhu
Qing Guo
Xiaochen Chen
Hao Zhang
Hongyan Cheng
Xinchen Sun
Publikationsdatum
01.06.2015
Verlag
Springer Netherlands
Erschienen in
Tumor Biology / Ausgabe 6/2015
Print ISSN: 1010-4283
Elektronische ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-015-3496-x

Weitere Artikel der Ausgabe 6/2015

Tumor Biology 6/2015 Zur Ausgabe

Umsetzung der POMGAT-Leitlinie läuft

03.05.2024 DCK 2024 Kongressbericht

Seit November 2023 gibt es evidenzbasierte Empfehlungen zum perioperativen Management bei gastrointestinalen Tumoren (POMGAT) auf S3-Niveau. Vieles wird schon entsprechend der Empfehlungen durchgeführt. Wo es im Alltag noch hapert, zeigt eine Umfrage in einem Klinikverbund.

CUP-Syndrom: Künstliche Intelligenz kann Primärtumor finden

30.04.2024 Künstliche Intelligenz Nachrichten

Krebserkrankungen unbekannten Ursprungs (CUP) sind eine diagnostische Herausforderung. KI-Systeme können Pathologen dabei unterstützen, zytologische Bilder zu interpretieren, um den Primärtumor zu lokalisieren.

Sind Frauen die fähigeren Ärzte?

30.04.2024 Gendermedizin Nachrichten

Patienten, die von Ärztinnen behandelt werden, dürfen offenbar auf bessere Therapieergebnisse hoffen als Patienten von Ärzten. Besonders gilt das offenbar für weibliche Kranke, wie eine Studie zeigt.

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.