Skip to main content
Erschienen in: Odontology 2/2018

14.06.2017 | Original Article

Biological effects of silk fibroin 3D scaffolds on stem cells from human exfoliated deciduous teeth (SHEDs)

verfasst von: M. Collado-González, M. P. Pecci-Lloret, D. García-Bernal, S. Aznar-Cervantes, R. E. Oñate-Sánchez, J. M. Moraleda, J. L. Cenis, F. J. Rodríguez-Lozano

Erschienen in: Odontology | Ausgabe 2/2018

Einloggen, um Zugang zu erhalten

Abstract

The aim is to investigate in vitro biological effects of silk fibroin 3D scaffolds on stem cells from human exfoliated deciduous teeth (SHEDs) in terms of proliferation, morphological appearance, cell viability, and expression of mesenchymal stem cell markers. Silk fibroin 3D scaffolding materials may represent promising suitable scaffolds for their application in regenerative endodontic therapy approaches. SHEDs were cultured in silk fibroin 3D scaffolds. Then, cell numbers were counted and the Alamar blue colorimetric assay was used to analyse cell proliferation after 24, 48, 72, and 168 h of culture. The morphological features of SHEDs cultured on silk fibroin scaffolds were evaluated by scanning electron microscopy (SEM). Finally, cell viability and the expression of mesenchymal stem cell markers were analysed by flow cytometry. One-way analysis of variance (ANOVA) followed by a Bonferroni post-test was performed (P < 0.05). At 24 and 48 h of culture, SHED proliferation on scaffolds was modest compared to the control although still significant (p < 0.05). However, cell proliferation progressively increased from 72 to 168 h compared with the control (p < 0.001; p < 0.01). In addition, flow cytometry analysis showed that the culture of SHEDs on silk fibroin scaffolds did not significantly alter the level of expression of the mesenchymal markers CD73, CD90, or CD105 up to 168 h; in addition, cell viability in silk fibroin was similar to than obtained in plastic. Moreover, SEM studies revealed a suitable degree of proliferation, cell spreading, and attachment, especially after 168 h of culture. The findings from the current study suggest that silk fibroin 3D scaffolds had a favourable effect on the biological responses of SHEDs. Further in vivo investigations are required to confirm these results.
Literatur
1.
Zurück zum Zitat Conde MC, Chisini LA, Demarco FF, Nör JE, Casagrande L, Tarquinio SB. Stem cell-based pulp tissue engineering: variables enrolled in translation from the bench to the bedside, a systematic review of literature. Int Endod J. 2016;49:543–50.CrossRefPubMed Conde MC, Chisini LA, Demarco FF, Nör JE, Casagrande L, Tarquinio SB. Stem cell-based pulp tissue engineering: variables enrolled in translation from the bench to the bedside, a systematic review of literature. Int Endod J. 2016;49:543–50.CrossRefPubMed
3.
Zurück zum Zitat Albuquerque MT, Valera MC, Nakashima M, Nör JE, Bottino MC. Tissue-engineering-based strategies for regenerative endodontics. J Dent Res. 2014;93:1222–31.CrossRefPubMedPubMedCentral Albuquerque MT, Valera MC, Nakashima M, Nör JE, Bottino MC. Tissue-engineering-based strategies for regenerative endodontics. J Dent Res. 2014;93:1222–31.CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Rodríguez-Lozano FJ, Bueno C, Insausti CL, et al. Mesenchymal stem cells derived from dental tissues. Int Endod J. 2011;44:800–6.CrossRefPubMed Rodríguez-Lozano FJ, Bueno C, Insausti CL, et al. Mesenchymal stem cells derived from dental tissues. Int Endod J. 2011;44:800–6.CrossRefPubMed
5.
Zurück zum Zitat Isobe Y, Koyama N, Nakao K, et al. Comparison of human mesenchymal stem cells derived from bone marrow, synovial fluid, adult dental pulp, and exfoliated deciduous tooth pulp. Int J Oral Maxillofac Surg. 2016;45:124–31.CrossRefPubMed Isobe Y, Koyama N, Nakao K, et al. Comparison of human mesenchymal stem cells derived from bone marrow, synovial fluid, adult dental pulp, and exfoliated deciduous tooth pulp. Int J Oral Maxillofac Surg. 2016;45:124–31.CrossRefPubMed
6.
Zurück zum Zitat Insausti CL, Blanquer M, Bleda P, et al. The amniotic membrane as a source of stem cells. Histol Histopathol. 2010;25:91–8.PubMed Insausti CL, Blanquer M, Bleda P, et al. The amniotic membrane as a source of stem cells. Histol Histopathol. 2010;25:91–8.PubMed
7.
Zurück zum Zitat Aghajani F, Hooshmand T, Khanmohammadi M, et al. Comparative immunophenotypic characteristics, proliferative features, and osteogenic differentiation of stem cells isolated from human permanent and deciduous teeth with bone marrow. Mol Biotechnol. 2016;58:415–27.CrossRefPubMed Aghajani F, Hooshmand T, Khanmohammadi M, et al. Comparative immunophenotypic characteristics, proliferative features, and osteogenic differentiation of stem cells isolated from human permanent and deciduous teeth with bone marrow. Mol Biotechnol. 2016;58:415–27.CrossRefPubMed
9.
Zurück zum Zitat Zheng Y, Wang XY, Wang YM, et al. Dentin regeneration using deciduous pulp stem/progenitor cells. J Dent Res. 2012;91:676–82.CrossRefPubMed Zheng Y, Wang XY, Wang YM, et al. Dentin regeneration using deciduous pulp stem/progenitor cells. J Dent Res. 2012;91:676–82.CrossRefPubMed
10.
Zurück zum Zitat Rodríguez-Lozano FJ, Insausti CL, Iniesta F, et al. Mesenchymal dental stem cells in regenerative dentistry. Med Oral Patol Oral Cir Bucal. 2012;17:e1062–7.CrossRefPubMedPubMedCentral Rodríguez-Lozano FJ, Insausti CL, Iniesta F, et al. Mesenchymal dental stem cells in regenerative dentistry. Med Oral Patol Oral Cir Bucal. 2012;17:e1062–7.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Rosa V, Dubey N, Islam I, Min KS, Nör JE. Pluripotency of stem cells from human exfoliated deciduous teeth for tissue engineering. Stem Cells Int. 2016;2016:5957806.PubMedPubMedCentral Rosa V, Dubey N, Islam I, Min KS, Nör JE. Pluripotency of stem cells from human exfoliated deciduous teeth for tissue engineering. Stem Cells Int. 2016;2016:5957806.PubMedPubMedCentral
12.
Zurück zum Zitat Liu J, Yu F, Sun Y, et al. Concise reviews: characteristics and potential applications of human dental tissue-derived mesenchymal stem cells. Stem Cells. 2015;33:627–38.CrossRefPubMed Liu J, Yu F, Sun Y, et al. Concise reviews: characteristics and potential applications of human dental tissue-derived mesenchymal stem cells. Stem Cells. 2015;33:627–38.CrossRefPubMed
13.
Zurück zum Zitat Huang GT, Gronthos S, Shi S. Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res. 2009;88:792–806.CrossRefPubMedPubMedCentral Huang GT, Gronthos S, Shi S. Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res. 2009;88:792–806.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Gotlieb EL, Murray PE, Namerow KN, Kuttler S, Garcia-Godoy F. An ultrastructural investigation of tissue-engineered pulp constructs implanted within endodontically treated teeth. J Am Dent Assoc. 2008;139:457–65.CrossRefPubMed Gotlieb EL, Murray PE, Namerow KN, Kuttler S, Garcia-Godoy F. An ultrastructural investigation of tissue-engineered pulp constructs implanted within endodontically treated teeth. J Am Dent Assoc. 2008;139:457–65.CrossRefPubMed
15.
Zurück zum Zitat Aznar-Cervantes SD, Vicente-Cervantes D, Meseguer-Olmo L, Cenis JL, Lozano-Pérez AA. Influence of the protocol used for fibroin extraction on the mechanical properties and fiber sizes of electrospun silk mats. Mater Sci Eng C Mater Biol Appl. 2013;33:1945–50.CrossRefPubMed Aznar-Cervantes SD, Vicente-Cervantes D, Meseguer-Olmo L, Cenis JL, Lozano-Pérez AA. Influence of the protocol used for fibroin extraction on the mechanical properties and fiber sizes of electrospun silk mats. Mater Sci Eng C Mater Biol Appl. 2013;33:1945–50.CrossRefPubMed
16.
Zurück zum Zitat Aznar-Cervantes S, Roca MI, Martinez JG, et al. Fabrication of conductive electrospun silk fibroin scaffolds by coating with polypyrrole for biomedical applications. Bioelectrochemistry. 2012;85:36–43.CrossRefPubMed Aznar-Cervantes S, Roca MI, Martinez JG, et al. Fabrication of conductive electrospun silk fibroin scaffolds by coating with polypyrrole for biomedical applications. Bioelectrochemistry. 2012;85:36–43.CrossRefPubMed
17.
Zurück zum Zitat Wang D, Liu H, Fan Y. Silk fibroin for vascular regeneration. Microsc Res Tech. 2017;80:280–90.CrossRefPubMed Wang D, Liu H, Fan Y. Silk fibroin for vascular regeneration. Microsc Res Tech. 2017;80:280–90.CrossRefPubMed
18.
19.
Zurück zum Zitat Bhattacharjee M, Schultz-Thater E, Trella E, et al. The role of 3D structure and protein conformation on the innate and adaptive immune responses to silk-based biomaterials. Biomaterials. 2013;34:8161–71.CrossRefPubMed Bhattacharjee M, Schultz-Thater E, Trella E, et al. The role of 3D structure and protein conformation on the innate and adaptive immune responses to silk-based biomaterials. Biomaterials. 2013;34:8161–71.CrossRefPubMed
20.
Zurück zum Zitat Chen J, Altman GH, Karageorgiou V, et al. Human bone marrow stromal cell and ligament fibroblast responses on RGD-modified silk fibers. J Biomed Mater Res A. 2003;67:559–70.CrossRefPubMed Chen J, Altman GH, Karageorgiou V, et al. Human bone marrow stromal cell and ligament fibroblast responses on RGD-modified silk fibers. J Biomed Mater Res A. 2003;67:559–70.CrossRefPubMed
21.
Zurück zum Zitat Hodgkinson T, Yuan XF, Bayat A. Electrospun silk fibroin fiber diameter influences in vitro dermal fibroblast behavior and promotes healing of ex vivo wound models. J Tissue Eng. 2014;5:2041731414551661.CrossRefPubMedPubMedCentral Hodgkinson T, Yuan XF, Bayat A. Electrospun silk fibroin fiber diameter influences in vitro dermal fibroblast behavior and promotes healing of ex vivo wound models. J Tissue Eng. 2014;5:2041731414551661.CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Rodríguez-Lozano FJ, García-Bernal D, Aznar-Cervantes S, et al. Effects of composite films of silk fibroin and graphene oxide on the proliferation, cell viability and mesenchymal phenotype of periodontal ligament stem cells. J Mater Sci Mater Med. 2014;25:2731–41.CrossRefPubMed Rodríguez-Lozano FJ, García-Bernal D, Aznar-Cervantes S, et al. Effects of composite films of silk fibroin and graphene oxide on the proliferation, cell viability and mesenchymal phenotype of periodontal ligament stem cells. J Mater Sci Mater Med. 2014;25:2731–41.CrossRefPubMed
23.
Zurück zum Zitat Li G, Kong Y, Zhao Y, Zhang L, Yang Y. Fabrication and characterization of polyacrylamide/silk fibroin hydrogels for peripheral nerve regeneration. J Biomater Sci Polym Ed. 2015;26:899–916.CrossRefPubMed Li G, Kong Y, Zhao Y, Zhang L, Yang Y. Fabrication and characterization of polyacrylamide/silk fibroin hydrogels for peripheral nerve regeneration. J Biomater Sci Polym Ed. 2015;26:899–916.CrossRefPubMed
24.
Zurück zum Zitat Sun W, Incitti T, Migliaresi C, Quattrone A, Casarosa S, Motta A. Viability and neuronal differentiation of neural stem cells encapsulated in silk fibroin hydrogel functionalized with an IKVAV peptide. J Tissue Eng Regen Med. 2017;11:1532–41.CrossRefPubMed Sun W, Incitti T, Migliaresi C, Quattrone A, Casarosa S, Motta A. Viability and neuronal differentiation of neural stem cells encapsulated in silk fibroin hydrogel functionalized with an IKVAV peptide. J Tissue Eng Regen Med. 2017;11:1532–41.CrossRefPubMed
25.
Zurück zum Zitat Riccio M, Maraldi T, Pisciotta A, et al. Fibroin scaffold repairs critical-size bone defects in vivo supported by human amniotic fluid and dental pulp stem cells. Tissue Eng Part A. 2012;18:1006–13.CrossRefPubMed Riccio M, Maraldi T, Pisciotta A, et al. Fibroin scaffold repairs critical-size bone defects in vivo supported by human amniotic fluid and dental pulp stem cells. Tissue Eng Part A. 2012;18:1006–13.CrossRefPubMed
26.
Zurück zum Zitat Woloszyk A, Holsten Dircksen S, Bostanci N, Müller R, Hofmann S, Mitsiadis TA. Influence of the mechanical environment on the engineering of mineralised tissues using human dental pulp stem cells and silk fibroin scaffolds. PLoS One. 2014;9:e111010.CrossRefPubMedPubMedCentral Woloszyk A, Holsten Dircksen S, Bostanci N, Müller R, Hofmann S, Mitsiadis TA. Influence of the mechanical environment on the engineering of mineralised tissues using human dental pulp stem cells and silk fibroin scaffolds. PLoS One. 2014;9:e111010.CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Voytik-Harbin SL, Brightman AO, Waisner B, Lamar CH, Badylak SF. Application and evaluation of the alamarblue assay for cell growth and survival of fibroblasts. In Vitro Cell Dev Biol Anim. 1998;34:239–46.CrossRefPubMed Voytik-Harbin SL, Brightman AO, Waisner B, Lamar CH, Badylak SF. Application and evaluation of the alamarblue assay for cell growth and survival of fibroblasts. In Vitro Cell Dev Biol Anim. 1998;34:239–46.CrossRefPubMed
28.
Zurück zum Zitat Wilson CE, Dhert WJ, Van Blitterswijk CA, Verbout AJ, De Bruijn JD. Evaluating 3D bone tissue engineered constructs with different seeding densities using the alamarBlue assay and the effect on in vivo bone formation. J Mater Sci Mater Med. 2002;13:1265–9.CrossRefPubMed Wilson CE, Dhert WJ, Van Blitterswijk CA, Verbout AJ, De Bruijn JD. Evaluating 3D bone tissue engineered constructs with different seeding densities using the alamarBlue assay and the effect on in vivo bone formation. J Mater Sci Mater Med. 2002;13:1265–9.CrossRefPubMed
29.
Zurück zum Zitat Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy. 2006;8:315–7.CrossRefPubMed Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy. 2006;8:315–7.CrossRefPubMed
30.
Zurück zum Zitat Horwitz EM, Le Blanc K, Dominici M, et al. Clarification of the nomenclature for MSC: the international society for cellular therapy position statement. Cytotherapy. 2005;7:393–5.CrossRefPubMed Horwitz EM, Le Blanc K, Dominici M, et al. Clarification of the nomenclature for MSC: the international society for cellular therapy position statement. Cytotherapy. 2005;7:393–5.CrossRefPubMed
31.
Zurück zum Zitat Kuang R, Zhang Z, Jin X, et al. Nanofibrous spongy microspheres for the delivery of hypoxia-primed human dental pulp stem cells to regenerate vascularized dental pulp. Acta Biomater. 2016;33:225–34.CrossRefPubMed Kuang R, Zhang Z, Jin X, et al. Nanofibrous spongy microspheres for the delivery of hypoxia-primed human dental pulp stem cells to regenerate vascularized dental pulp. Acta Biomater. 2016;33:225–34.CrossRefPubMed
32.
Zurück zum Zitat Leong DJ, Setzer FC, Trope M, Karabucak B. Biocompatibility of two experimental scaffolds for regenerative endodontics. Restor Dent Endod. 2016;41:98–105.CrossRefPubMedPubMedCentral Leong DJ, Setzer FC, Trope M, Karabucak B. Biocompatibility of two experimental scaffolds for regenerative endodontics. Restor Dent Endod. 2016;41:98–105.CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Yin Z, Wang Q, Li Y, Wei H, Shi J, Li A. A novel method for banking stem cells from human exfoliated deciduous teeth: lentiviral TERT immortalization and phenotypical analysis. Stem Cell Res Ther. 2016;7:50.CrossRefPubMedPubMedCentral Yin Z, Wang Q, Li Y, Wei H, Shi J, Li A. A novel method for banking stem cells from human exfoliated deciduous teeth: lentiviral TERT immortalization and phenotypical analysis. Stem Cell Res Ther. 2016;7:50.CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Ghasemi-Mobarakeh L, Prabhakaran MP, Tian L, Shamirzaei-Jeshvaghani E, Dehghani L, Ramakrishna S. Structural properties of scaffolds: crucial parameters towards stem cells differentiation. World J Stem Cells. 2015;7:728–44.CrossRefPubMedPubMedCentral Ghasemi-Mobarakeh L, Prabhakaran MP, Tian L, Shamirzaei-Jeshvaghani E, Dehghani L, Ramakrishna S. Structural properties of scaffolds: crucial parameters towards stem cells differentiation. World J Stem Cells. 2015;7:728–44.CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Kim KH, Jeong L, Park HN, et al. Biological efficacy of silk fibroin nanofiber membranes for guided bone regeneration. J Biotechnol. 2005;120:327–39.CrossRefPubMed Kim KH, Jeong L, Park HN, et al. Biological efficacy of silk fibroin nanofiber membranes for guided bone regeneration. J Biotechnol. 2005;120:327–39.CrossRefPubMed
36.
Zurück zum Zitat Song JY, Kim SG, Lee JW, et al. Accelerated healing with the use of a silk fibroin membrane for the guided bone regeneration technique. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011;11:e26–33.CrossRef Song JY, Kim SG, Lee JW, et al. Accelerated healing with the use of a silk fibroin membrane for the guided bone regeneration technique. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011;11:e26–33.CrossRef
37.
Zurück zum Zitat Hayashi Y, Murakami M, Kawamura R, Ishizaka R, Fukuta O, Nakashima M. CXCL14 and MCP1 are potent trophic factors associated with cell migration and angiogenesis leading to higher regenerative potential of dental pulp side population cells. Stem Cell Res Ther. 2015;6:111.CrossRefPubMedPubMedCentral Hayashi Y, Murakami M, Kawamura R, Ishizaka R, Fukuta O, Nakashima M. CXCL14 and MCP1 are potent trophic factors associated with cell migration and angiogenesis leading to higher regenerative potential of dental pulp side population cells. Stem Cell Res Ther. 2015;6:111.CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Varkey A, Venugopal E, Sugumaran P, et al. Impact of silk fibroin-based scaffold structures on human osteoblast MG63 cell attachment and proliferation. Int J Nanomed. 2015;10(Suppl 1):43–51. Varkey A, Venugopal E, Sugumaran P, et al. Impact of silk fibroin-based scaffold structures on human osteoblast MG63 cell attachment and proliferation. Int J Nanomed. 2015;10(Suppl 1):43–51.
39.
Zurück zum Zitat Yoo CK, Jeon JY, Kim YJ, Kim SG, Hwang KG. Cell attachment and proliferation of osteoblast-like MG63 cells on silk fibroin membrane for guided bone regeneration. Maxillofac Plast Reconstr Surg. 2016;38:17.CrossRefPubMedPubMedCentral Yoo CK, Jeon JY, Kim YJ, Kim SG, Hwang KG. Cell attachment and proliferation of osteoblast-like MG63 cells on silk fibroin membrane for guided bone regeneration. Maxillofac Plast Reconstr Surg. 2016;38:17.CrossRefPubMedPubMedCentral
Metadaten
Titel
Biological effects of silk fibroin 3D scaffolds on stem cells from human exfoliated deciduous teeth (SHEDs)
verfasst von
M. Collado-González
M. P. Pecci-Lloret
D. García-Bernal
S. Aznar-Cervantes
R. E. Oñate-Sánchez
J. M. Moraleda
J. L. Cenis
F. J. Rodríguez-Lozano
Publikationsdatum
14.06.2017
Verlag
Springer Japan
Erschienen in
Odontology / Ausgabe 2/2018
Print ISSN: 1618-1247
Elektronische ISSN: 1618-1255
DOI
https://doi.org/10.1007/s10266-017-0310-9

Weitere Artikel der Ausgabe 2/2018

Odontology 2/2018 Zur Ausgabe

Newsletter

Bestellen Sie unseren kostenlosen Newsletter Update Zahnmedizin und bleiben Sie gut informiert – ganz bequem per eMail.